source: trunk/src/SDMath.cc@ 313

Last change on this file since 313 was 309, checked in by kil064, 20 years ago

remove 'velocityALignment' functions for new 'frequencyAlignment' ones

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 49.6 KB
Line 
1//#---------------------------------------------------------------------------
2//# SDMath.cc: A collection of single dish mathematical operations
3//#---------------------------------------------------------------------------
4//# Copyright (C) 2004
5//# ATNF
6//#
7//# This program is free software; you can redistribute it and/or modify it
8//# under the terms of the GNU General Public License as published by the Free
9//# Software Foundation; either version 2 of the License, or (at your option)
10//# any later version.
11//#
12//# This program is distributed in the hope that it will be useful, but
13//# WITHOUT ANY WARRANTY; without even the implied warranty of
14//# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
15//# Public License for more details.
16//#
17//# You should have received a copy of the GNU General Public License along
18//# with this program; if not, write to the Free Software Foundation, Inc.,
19//# 675 Massachusetts Ave, Cambridge, MA 02139, USA.
20//#
21//# Correspondence concerning this software should be addressed as follows:
22//# Internet email: Malte.Marquarding@csiro.au
23//# Postal address: Malte Marquarding,
24//# Australia Telescope National Facility,
25//# P.O. Box 76,
26//# Epping, NSW, 2121,
27//# AUSTRALIA
28//#
29//# $Id:
30//#---------------------------------------------------------------------------
31#include <vector>
32
33#include <casa/aips.h>
34#include <casa/BasicSL/String.h>
35#include <casa/Arrays/IPosition.h>
36#include <casa/Arrays/Array.h>
37#include <casa/Arrays/ArrayIter.h>
38#include <casa/Arrays/VectorIter.h>
39#include <casa/Arrays/ArrayMath.h>
40#include <casa/Arrays/ArrayLogical.h>
41#include <casa/Arrays/MaskedArray.h>
42#include <casa/Arrays/MaskArrMath.h>
43#include <casa/Arrays/MaskArrLogi.h>
44#include <casa/BasicMath/Math.h>
45#include <casa/Containers/Block.h>
46#include <casa/Exceptions.h>
47#include <casa/Quanta/Quantum.h>
48#include <casa/Quanta/Unit.h>
49#include <casa/Quanta/MVEpoch.h>
50#include <casa/Quanta/QC.h>
51#include <casa/Quanta/MVTime.h>
52#include <casa/Utilities/Assert.h>
53
54#include <coordinates/Coordinates/SpectralCoordinate.h>
55#include <coordinates/Coordinates/CoordinateSystem.h>
56#include <coordinates/Coordinates/CoordinateUtil.h>
57#include <coordinates/Coordinates/FrequencyAligner.h>
58
59#include <lattices/Lattices/LatticeUtilities.h>
60#include <lattices/Lattices/RebinLattice.h>
61
62#include <measures/Measures/MEpoch.h>
63#include <measures/Measures/MDirection.h>
64#include <measures/Measures/MPosition.h>
65
66#include <scimath/Mathematics/VectorKernel.h>
67#include <scimath/Mathematics/Convolver.h>
68#include <scimath/Mathematics/InterpolateArray1D.h>
69#include <scimath/Functionals/Polynomial.h>
70
71#include <tables/Tables/Table.h>
72#include <tables/Tables/ScalarColumn.h>
73#include <tables/Tables/ArrayColumn.h>
74#include <tables/Tables/ReadAsciiTable.h>
75
76#include "MathUtils.h"
77#include "SDDefs.h"
78#include "SDContainer.h"
79#include "SDMemTable.h"
80
81#include "SDMath.h"
82
83using namespace casa;
84using namespace asap;
85
86
87SDMath::SDMath()
88{;}
89
90SDMath::SDMath(const SDMath& other)
91{
92
93// No state
94
95}
96
97SDMath& SDMath::operator=(const SDMath& other)
98{
99 if (this != &other) {
100// No state
101 }
102 return *this;
103}
104
105SDMath::~SDMath()
106{;}
107
108
109
110SDMemTable* SDMath::frequencyAlignment (const SDMemTable& in, const String& refTime) const
111{
112
113// Get frame info from Table
114
115 std::vector<std::string> info = in.getCoordInfo();
116
117// Parse frequency system
118
119 String systemStr(info[1]);
120 String baseSystemStr(info[3]);
121 if (baseSystemStr==systemStr) {
122 throw(AipsError("You have not set a frequency frame different from the initial - use function set_freqframe"));
123 }
124//
125 MFrequency::Types freqSystem;
126 MFrequency::getType(freqSystem, systemStr);
127
128// Do it
129
130 return frequencyAlign (in, freqSystem, refTime);
131}
132
133
134
135CountedPtr<SDMemTable> SDMath::average(const Block<CountedPtr<SDMemTable> >& in,
136 const Vector<Bool>& mask, Bool scanAv,
137 const String& weightStr, Bool alignFreq) const
138//
139// Weighted averaging of spectra from one or more Tables.
140//
141{
142
143// Convert weight type
144
145 WeightType wtType = NONE;
146 convertWeightString(wtType, weightStr);
147
148// Create output Table by cloning from the first table
149
150 SDMemTable* pTabOut = new SDMemTable(*in[0],True);
151
152// Setup
153
154 IPosition shp = in[0]->rowAsMaskedArray(0).shape(); // Must not change
155 Array<Float> arr(shp);
156 Array<Bool> barr(shp);
157 const Bool useMask = (mask.nelements() == shp(asap::ChanAxis));
158
159// Columns from Tables
160
161 ROArrayColumn<Float> tSysCol;
162 ROScalarColumn<Double> mjdCol;
163 ROScalarColumn<String> srcNameCol;
164 ROScalarColumn<Double> intCol;
165 ROArrayColumn<uInt> fqIDCol;
166
167// Create accumulation MaskedArray. We accumulate for each channel,if,pol,beam
168// Note that the mask of the accumulation array will ALWAYS remain ALL True.
169// The MA is only used so that when data which is masked Bad is added to it,
170// that data does not contribute.
171
172 Array<Float> zero(shp);
173 zero=0.0;
174 Array<Bool> good(shp);
175 good = True;
176 MaskedArray<Float> sum(zero,good);
177
178// Counter arrays
179
180 Array<Float> nPts(shp); // Number of points
181 nPts = 0.0;
182 Array<Float> nInc(shp); // Increment
183 nInc = 1.0;
184
185// Create accumulation Array for variance. We accumulate for
186// each if,pol,beam, but average over channel. So we need
187// a shape with one less axis dropping channels.
188
189 const uInt nAxesSub = shp.nelements() - 1;
190 IPosition shp2(nAxesSub);
191 for (uInt i=0,j=0; i<(nAxesSub+1); i++) {
192 if (i!=asap::ChanAxis) {
193 shp2(j) = shp(i);
194 j++;
195 }
196 }
197 Array<Float> sumSq(shp2);
198 sumSq = 0.0;
199 IPosition pos2(nAxesSub,0); // For indexing
200
201// Time-related accumulators
202
203 Double time;
204 Double timeSum = 0.0;
205 Double intSum = 0.0;
206 Double interval = 0.0;
207
208// To get the right shape for the Tsys accumulator we need to
209// access a column from the first table. The shape of this
210// array must not change
211
212 Array<Float> tSysSum;
213 {
214 const Table& tabIn = in[0]->table();
215 tSysCol.attach(tabIn,"TSYS");
216 tSysSum.resize(tSysCol.shape(0));
217 }
218 tSysSum =0.0;
219 Array<Float> tSys;
220
221// Scan and row tracking
222
223 Int oldScanID = 0;
224 Int outScanID = 0;
225 Int scanID = 0;
226 Int rowStart = 0;
227 Int nAccum = 0;
228 Int tableStart = 0;
229
230// Source and FreqID
231
232 String sourceName, oldSourceName, sourceNameStart;
233 Vector<uInt> freqID, freqIDStart, oldFreqID;
234
235// Loop over tables
236
237 Float fac = 1.0;
238 const uInt nTables = in.nelements();
239 for (uInt iTab=0; iTab<nTables; iTab++) {
240
241// Should check that the frequency tables don't change if doing FreqAlignment
242
243// Attach columns to Table
244
245 const Table& tabIn = in[iTab]->table();
246 tSysCol.attach(tabIn, "TSYS");
247 mjdCol.attach(tabIn, "TIME");
248 srcNameCol.attach(tabIn, "SRCNAME");
249 intCol.attach(tabIn, "INTERVAL");
250 fqIDCol.attach(tabIn, "FREQID");
251
252// Loop over rows in Table
253
254 const uInt nRows = in[iTab]->nRow();
255 for (uInt iRow=0; iRow<nRows; iRow++) {
256
257// Check conformance
258
259 IPosition shp2 = in[iTab]->rowAsMaskedArray(iRow).shape();
260 if (!shp.isEqual(shp2)) {
261 throw (AipsError("Shapes for all rows must be the same"));
262 }
263
264// If we are not doing scan averages, make checks for source and
265// frequency setup and warn if averaging across them
266
267// Get copy of Scan Container for this row
268
269 SDContainer sc = in[iTab]->getSDContainer(iRow);
270 scanID = sc.scanid;
271
272// Get quantities from columns
273
274 srcNameCol.getScalar(iRow, sourceName);
275 mjdCol.get(iRow, time);
276 tSysCol.get(iRow, tSys);
277 intCol.get(iRow, interval);
278 fqIDCol.get(iRow, freqID);
279
280// Initialize first source and freqID
281
282 if (iRow==0 && iTab==0) {
283 sourceNameStart = sourceName;
284 freqIDStart = freqID;
285 }
286
287// If we are doing scan averages, see if we are at the end of an
288// accumulation period (scan). We must check soutce names too,
289// since we might have two tables with one scan each but different
290// source names; we shouldn't average different sources together
291
292 if (scanAv && ( (scanID != oldScanID) ||
293 (iRow==0 && iTab>0 && sourceName!=oldSourceName))) {
294
295// Normalize data in 'sum' accumulation array according to weighting scheme
296
297 normalize(sum, sumSq, nPts, wtType, asap::ChanAxis, nAxesSub);
298
299// Fill scan container. The source and freqID come from the
300// first row of the first table that went into this average (
301// should be the same for all rows in the scan average)
302
303 Float nR(nAccum);
304 fillSDC(sc, sum.getMask(), sum.getArray(), tSysSum/nR, outScanID,
305 timeSum/nR, intSum, sourceNameStart, freqIDStart);
306
307// Write container out to Table
308
309 pTabOut->putSDContainer(sc);
310
311// Reset accumulators
312
313 sum = 0.0;
314 sumSq = 0.0;
315 nAccum = 0;
316//
317 tSysSum =0.0;
318 timeSum = 0.0;
319 intSum = 0.0;
320 nPts = 0.0;
321
322// Increment
323
324 rowStart = iRow; // First row for next accumulation
325 tableStart = iTab; // First table for next accumulation
326 sourceNameStart = sourceName; // First source name for next accumulation
327 freqIDStart = freqID; // First FreqID for next accumulation
328//
329 oldScanID = scanID;
330 outScanID += 1; // Scan ID for next accumulation period
331 }
332
333// Accumulate
334
335 accumulate(timeSum, intSum, nAccum, sum, sumSq, nPts, tSysSum,
336 tSys, nInc, mask, time, interval, in, iTab, iRow, asap::ChanAxis,
337 nAxesSub, useMask, wtType);
338//
339 oldSourceName = sourceName;
340 oldFreqID = freqID;
341 }
342 }
343
344// OK at this point we have accumulation data which is either
345// - accumulated from all tables into one row
346// or
347// - accumulated from the last scan average
348//
349// Normalize data in 'sum' accumulation array according to weighting scheme
350 normalize(sum, sumSq, nPts, wtType, asap::ChanAxis, nAxesSub);
351
352// Create and fill container. The container we clone will be from
353// the last Table and the first row that went into the current
354// accumulation. It probably doesn't matter that much really...
355
356 Float nR(nAccum);
357 SDContainer sc = in[tableStart]->getSDContainer(rowStart);
358 fillSDC(sc, sum.getMask(), sum.getArray(), tSysSum/nR, outScanID,
359 timeSum/nR, intSum, sourceNameStart, freqIDStart);
360 pTabOut->putSDContainer(sc);
361 pTabOut->resetCursor();
362//
363 return CountedPtr<SDMemTable>(pTabOut);
364}
365
366
367
368CountedPtr<SDMemTable> SDMath::binaryOperate (const CountedPtr<SDMemTable>& left,
369 const CountedPtr<SDMemTable>& right,
370 const String& op, Bool preserve,
371 Bool doTSys) const
372{
373
374// Check operator
375
376 String op2(op);
377 op2.upcase();
378 uInt what = 0;
379 if (op2=="ADD") {
380 what = 0;
381 } else if (op2=="SUB") {
382 what = 1;
383 } else if (op2=="MUL") {
384 what = 2;
385 } else if (op2=="DIV") {
386 what = 3;
387 } else if (op2=="QUOTIENT") {
388 what = 4;
389 doTSys = True;
390 } else {
391 throw( AipsError("Unrecognized operation"));
392 }
393
394// Check rows
395
396 const uInt nRowLeft = left->nRow();
397 const uInt nRowRight = right->nRow();
398 Bool ok = (nRowRight==1&&nRowLeft>0) ||
399 (nRowRight>=1&&nRowLeft==nRowRight);
400 if (!ok) {
401 throw (AipsError("The right Scan Table can have one row or the same number of rows as the left Scan Table"));
402 }
403
404// Input Tables
405
406 const Table& tLeft = left->table();
407 const Table& tRight = right->table();
408
409// TSys columns
410
411 ROArrayColumn<Float> tSysLeftCol, tSysRightCol;
412 if (doTSys) {
413 tSysLeftCol.attach(tLeft, "TSYS");
414 tSysRightCol.attach(tRight, "TSYS");
415 }
416
417// First row for right
418
419 Array<Float> tSysLeftArr, tSysRightArr;
420 if (doTSys) tSysRightCol.get(0, tSysRightArr);
421 MaskedArray<Float>* pMRight = new MaskedArray<Float>(right->rowAsMaskedArray(0));
422 IPosition shpRight = pMRight->shape();
423
424// Output Table cloned from left
425
426 SDMemTable* pTabOut = new SDMemTable(*left, True);
427
428// Loop over rows
429
430 for (uInt i=0; i<nRowLeft; i++) {
431
432// Get data
433
434 MaskedArray<Float> mLeft(left->rowAsMaskedArray(i));
435 IPosition shpLeft = mLeft.shape();
436 if (doTSys) tSysLeftCol.get(i, tSysLeftArr);
437//
438 if (nRowRight>1) {
439 delete pMRight;
440 pMRight = new MaskedArray<Float>(right->rowAsMaskedArray(i));
441 shpRight = pMRight->shape();
442 if (doTSys) tSysRightCol.get(i, tSysRightArr);
443 }
444//
445 if (!shpRight.isEqual(shpLeft)) {
446 throw(AipsError("left and right scan tables are not conformant"));
447 }
448 if (doTSys) {
449 if (!tSysRightArr.shape().isEqual(tSysRightArr.shape())) {
450 throw(AipsError("left and right Tsys data are not conformant"));
451 }
452 if (!shpRight.isEqual(tSysRightArr.shape())) {
453 throw(AipsError("left and right scan tables are not conformant"));
454 }
455 }
456
457// Make container
458
459 SDContainer sc = left->getSDContainer(i);
460
461// Operate on data and TSys
462
463 if (what==0) {
464 MaskedArray<Float> tmp = mLeft + *pMRight;
465 putDataInSDC(sc, tmp.getArray(), tmp.getMask());
466 if (doTSys) sc.putTsys(tSysLeftArr+tSysRightArr);
467 } else if (what==1) {
468 MaskedArray<Float> tmp = mLeft - *pMRight;
469 putDataInSDC(sc, tmp.getArray(), tmp.getMask());
470 if (doTSys) sc.putTsys(tSysLeftArr-tSysRightArr);
471 } else if (what==2) {
472 MaskedArray<Float> tmp = mLeft * *pMRight;
473 putDataInSDC(sc, tmp.getArray(), tmp.getMask());
474 if (doTSys) sc.putTsys(tSysLeftArr*tSysRightArr);
475 } else if (what==3) {
476 MaskedArray<Float> tmp = mLeft / *pMRight;
477 putDataInSDC(sc, tmp.getArray(), tmp.getMask());
478 if (doTSys) sc.putTsys(tSysLeftArr/tSysRightArr);
479 } else if (what==4) {
480 if (preserve) {
481 MaskedArray<Float> tmp = (tSysRightArr * mLeft / *pMRight) - tSysRightArr;
482 putDataInSDC(sc, tmp.getArray(), tmp.getMask());
483 } else {
484 MaskedArray<Float> tmp = (tSysRightArr * mLeft / *pMRight) - tSysLeftArr;
485 putDataInSDC(sc, tmp.getArray(), tmp.getMask());
486 }
487 sc.putTsys(tSysRightArr);
488 }
489
490// Put new row in output Table
491
492 pTabOut->putSDContainer(sc);
493 }
494 if (pMRight) delete pMRight;
495 pTabOut->resetCursor();
496//
497 return CountedPtr<SDMemTable>(pTabOut);
498}
499
500
501
502std::vector<float> SDMath::statistic(const CountedPtr<SDMemTable>& in,
503 const Vector<Bool>& mask,
504 const String& which, Int row) const
505//
506// Perhaps iteration over pol/beam/if should be in here
507// and inside the nrow iteration ?
508//
509{
510 const uInt nRow = in->nRow();
511
512// Specify cursor location
513
514 IPosition start, end;
515 getCursorLocation(start, end, *in);
516
517// Loop over rows
518
519 const uInt nEl = mask.nelements();
520 uInt iStart = 0;
521 uInt iEnd = in->nRow()-1;
522//
523 if (row>=0) {
524 iStart = row;
525 iEnd = row;
526 }
527//
528 std::vector<float> result(iEnd-iStart+1);
529 for (uInt ii=iStart; ii <= iEnd; ++ii) {
530
531// Get row and deconstruct
532
533 MaskedArray<Float> marr(in->rowAsMaskedArray(ii));
534 Array<Float> arr = marr.getArray();
535 Array<Bool> barr = marr.getMask();
536
537// Access desired piece of data
538
539 Array<Float> v((arr(start,end)).nonDegenerate());
540 Array<Bool> m((barr(start,end)).nonDegenerate());
541
542// Apply OTF mask
543
544 MaskedArray<Float> tmp;
545 if (m.nelements()==nEl) {
546 tmp.setData(v,m&&mask);
547 } else {
548 tmp.setData(v,m);
549 }
550
551// Get statistic
552
553 result[ii-iStart] = mathutil::statistics(which, tmp);
554 }
555//
556 return result;
557}
558
559
560SDMemTable* SDMath::bin(const SDMemTable& in, Int width) const
561{
562 SDHeader sh = in.getSDHeader();
563 SDMemTable* pTabOut = new SDMemTable(in, True);
564
565// Bin up SpectralCoordinates
566
567 IPosition factors(1);
568 factors(0) = width;
569 for (uInt j=0; j<in.nCoordinates(); ++j) {
570 CoordinateSystem cSys;
571 cSys.addCoordinate(in.getSpectralCoordinate(j));
572 CoordinateSystem cSysBin =
573 CoordinateUtil::makeBinnedCoordinateSystem(factors, cSys, False);
574//
575 SpectralCoordinate sCBin = cSysBin.spectralCoordinate(0);
576 pTabOut->setCoordinate(sCBin, j);
577 }
578
579// Use RebinLattice to find shape
580
581 IPosition shapeIn(1,sh.nchan);
582 IPosition shapeOut = RebinLattice<Float>::rebinShape(shapeIn, factors);
583 sh.nchan = shapeOut(0);
584 pTabOut->putSDHeader(sh);
585
586// Loop over rows and bin along channel axis
587
588 for (uInt i=0; i < in.nRow(); ++i) {
589 SDContainer sc = in.getSDContainer(i);
590//
591 Array<Float> tSys(sc.getTsys()); // Get it out before sc changes shape
592
593// Bin up spectrum
594
595 MaskedArray<Float> marr(in.rowAsMaskedArray(i));
596 MaskedArray<Float> marrout;
597 LatticeUtilities::bin(marrout, marr, asap::ChanAxis, width);
598
599// Put back the binned data and flags
600
601 IPosition ip2 = marrout.shape();
602 sc.resize(ip2);
603//
604 putDataInSDC(sc, marrout.getArray(), marrout.getMask());
605
606// Bin up Tsys.
607
608 Array<Bool> allGood(tSys.shape(),True);
609 MaskedArray<Float> tSysIn(tSys, allGood, True);
610//
611 MaskedArray<Float> tSysOut;
612 LatticeUtilities::bin(tSysOut, tSysIn, asap::ChanAxis, width);
613 sc.putTsys(tSysOut.getArray());
614//
615 pTabOut->putSDContainer(sc);
616 }
617 return pTabOut;
618}
619
620SDMemTable* SDMath::resample (const SDMemTable& in, const String& methodStr,
621 Float width) const
622//
623// Should add the possibility of width being specified in km/s. This means
624// that for each freqID (SpectralCoordinate) we will need to convert to an
625// average channel width (say at the reference pixel). Then we would need
626// to be careful to make sure each spectrum (of different freqID)
627// is the same length.
628//
629{
630 Bool doVel = False;
631 if (doVel) {
632 for (uInt j=0; j<in.nCoordinates(); ++j) {
633 SpectralCoordinate sC = in.getSpectralCoordinate(j);
634 }
635 }
636
637
638// Interpolation method
639
640 Int interpMethod = 0;
641 convertInterpString(interpMethod, methodStr);
642
643// Make output table
644
645 SDMemTable* pTabOut = new SDMemTable(in, True);
646
647// Resample SpectralCoordinates (one per freqID)
648
649 const uInt nCoord = in.nCoordinates();
650 Vector<Float> offset(1,0.0);
651 Vector<Float> factors(1,1.0/width);
652 Vector<Int> newShape;
653 for (uInt j=0; j<in.nCoordinates(); ++j) {
654 CoordinateSystem cSys;
655 cSys.addCoordinate(in.getSpectralCoordinate(j));
656 CoordinateSystem cSys2 = cSys.subImage(offset, factors, newShape);
657 SpectralCoordinate sC = cSys2.spectralCoordinate(0);
658//
659 pTabOut->setCoordinate(sC, j);
660 }
661
662// Get header
663
664 SDHeader sh = in.getSDHeader();
665
666// Generate resampling vectors
667
668 const uInt nChanIn = sh.nchan;
669 Vector<Float> xIn(nChanIn);
670 indgen(xIn);
671//
672 Int fac = Int(nChanIn/width);
673 Vector<Float> xOut(fac+10); // 10 to be safe - resize later
674 uInt i = 0;
675 Float x = 0.0;
676 Bool more = True;
677 while (more) {
678 xOut(i) = x;
679//
680 i++;
681 x += width;
682 if (x>nChanIn-1) more = False;
683 }
684 const uInt nChanOut = i;
685 xOut.resize(nChanOut,True);
686//
687 IPosition shapeIn(in.rowAsMaskedArray(0).shape());
688 sh.nchan = nChanOut;
689 pTabOut->putSDHeader(sh);
690
691// Loop over rows and resample along channel axis
692
693 Array<Float> valuesOut;
694 Array<Bool> maskOut;
695 Array<Float> tSysOut;
696 Array<Bool> tSysMaskIn(shapeIn,True);
697 Array<Bool> tSysMaskOut;
698 for (uInt i=0; i < in.nRow(); ++i) {
699
700// Get container
701
702 SDContainer sc = in.getSDContainer(i);
703
704// Get data and Tsys
705
706 const Array<Float>& tSysIn = sc.getTsys();
707 const MaskedArray<Float>& dataIn(in.rowAsMaskedArray(i));
708 Array<Float> valuesIn = dataIn.getArray();
709 Array<Bool> maskIn = dataIn.getMask();
710
711// Interpolate data
712
713 InterpolateArray1D<Float,Float>::interpolate(valuesOut, maskOut, xOut,
714 xIn, valuesIn, maskIn,
715 interpMethod, True, True);
716 sc.resize(valuesOut.shape());
717 putDataInSDC(sc, valuesOut, maskOut);
718
719// Interpolate TSys
720
721 InterpolateArray1D<Float,Float>::interpolate(tSysOut, tSysMaskOut, xOut,
722 xIn, tSysIn, tSysMaskIn,
723 interpMethod, True, True);
724 sc.putTsys(tSysOut);
725
726// Put container in output
727
728 pTabOut->putSDContainer(sc);
729 }
730//
731 return pTabOut;
732}
733
734SDMemTable* SDMath::unaryOperate(const SDMemTable& in, Float val, Bool doAll,
735 uInt what, Bool doTSys) const
736//
737// what = 0 Multiply
738// 1 Add
739{
740 SDMemTable* pOut = new SDMemTable(in,False);
741 const Table& tOut = pOut->table();
742 ArrayColumn<Float> specCol(tOut,"SPECTRA");
743 ArrayColumn<Float> tSysCol(tOut,"TSYS");
744 Array<Float> tSysArr;
745//
746 if (doAll) {
747 for (uInt i=0; i < tOut.nrow(); i++) {
748
749// Modify data
750
751 MaskedArray<Float> dataIn(pOut->rowAsMaskedArray(i));
752 if (what==0) {
753 dataIn *= val;
754 } else if (what==1) {
755 dataIn += val;
756 }
757 specCol.put(i, dataIn.getArray());
758
759// Modify Tsys
760
761 if (doTSys) {
762 tSysCol.get(i, tSysArr);
763 if (what==0) {
764 tSysArr *= val;
765 } else if (what==1) {
766 tSysArr += val;
767 }
768 tSysCol.put(i, tSysArr);
769 }
770 }
771 } else {
772
773// Get cursor location
774
775 IPosition start, end;
776 getCursorLocation(start, end, in);
777//
778 for (uInt i=0; i < tOut.nrow(); i++) {
779
780// Modify data
781
782 MaskedArray<Float> dataIn(pOut->rowAsMaskedArray(i));
783 MaskedArray<Float> dataIn2 = dataIn(start,end); // Reference
784 if (what==0) {
785 dataIn2 *= val;
786 } else if (what==1) {
787 dataIn2 += val;
788 }
789 specCol.put(i, dataIn.getArray());
790
791// Modify Tsys
792
793 if (doTSys) {
794 tSysCol.get(i, tSysArr);
795 Array<Float> tSysArr2 = tSysArr(start,end); // Reference
796 if (what==0) {
797 tSysArr2 *= val;
798 } else if (what==1) {
799 tSysArr2 += val;
800 }
801 tSysCol.put(i, tSysArr);
802 }
803 }
804 }
805//
806 return pOut;
807}
808
809
810
811SDMemTable* SDMath::averagePol(const SDMemTable& in, const Vector<Bool>& mask) const
812//
813// Average all polarizations together, weighted by variance
814//
815{
816// WeightType wtType = NONE;
817// convertWeightString(wtType, weight);
818
819 const uInt nRows = in.nRow();
820
821// Create output Table and reshape number of polarizations
822
823 Bool clear=True;
824 SDMemTable* pTabOut = new SDMemTable(in, clear);
825 SDHeader header = pTabOut->getSDHeader();
826 header.npol = 1;
827 pTabOut->putSDHeader(header);
828
829// Shape of input and output data
830
831 const IPosition& shapeIn = in.rowAsMaskedArray(0u, False).shape();
832 IPosition shapeOut(shapeIn);
833 shapeOut(asap::PolAxis) = 1; // Average all polarizations
834//
835 const uInt nChan = shapeIn(asap::ChanAxis);
836 const IPosition vecShapeOut(4,1,1,1,nChan); // A multi-dim form of a Vector shape
837 IPosition start(4), end(4);
838
839// Output arrays
840
841 Array<Float> outData(shapeOut, 0.0);
842 Array<Bool> outMask(shapeOut, True);
843 const IPosition axes(2, asap::PolAxis, asap::ChanAxis); // pol-channel plane
844//
845 const Bool useMask = (mask.nelements() == shapeIn(asap::ChanAxis));
846
847// Loop over rows
848
849 for (uInt iRow=0; iRow<nRows; iRow++) {
850
851// Get data for this row
852
853 MaskedArray<Float> marr(in.rowAsMaskedArray(iRow));
854 Array<Float>& arr = marr.getRWArray();
855 const Array<Bool>& barr = marr.getMask();
856
857// Make iterators to iterate by pol-channel planes
858
859 ReadOnlyArrayIterator<Float> itDataPlane(arr, axes);
860 ReadOnlyArrayIterator<Bool> itMaskPlane(barr, axes);
861
862// Accumulations
863
864 Float fac = 1.0;
865 Vector<Float> vecSum(nChan,0.0);
866
867// Iterate through data by pol-channel planes
868
869 while (!itDataPlane.pastEnd()) {
870
871// Iterate through plane by polarization and accumulate Vectors
872
873 Vector<Float> t1(nChan); t1 = 0.0;
874 Vector<Bool> t2(nChan); t2 = True;
875 MaskedArray<Float> vecSum(t1,t2);
876 Float varSum = 0.0;
877 {
878 ReadOnlyVectorIterator<Float> itDataVec(itDataPlane.array(), 1);
879 ReadOnlyVectorIterator<Bool> itMaskVec(itMaskPlane.array(), 1);
880 while (!itDataVec.pastEnd()) {
881
882// Create MA of data & mask (optionally including OTF mask) and get variance
883
884 if (useMask) {
885 const MaskedArray<Float> spec(itDataVec.vector(),mask&&itMaskVec.vector());
886 fac = 1.0 / variance(spec);
887 } else {
888 const MaskedArray<Float> spec(itDataVec.vector(),itMaskVec.vector());
889 fac = 1.0 / variance(spec);
890 }
891
892// Normalize spectrum (without OTF mask) and accumulate
893
894 const MaskedArray<Float> spec(fac*itDataVec.vector(), itMaskVec.vector());
895 vecSum += spec;
896 varSum += fac;
897
898// Next
899
900 itDataVec.next();
901 itMaskVec.next();
902 }
903 }
904
905// Normalize summed spectrum
906
907 vecSum /= varSum;
908
909// FInd position in input data array. We are iterating by pol-channel
910// plane so all that will change is beam and IF and that's what we want.
911
912 IPosition pos = itDataPlane.pos();
913
914// Write out data. This is a bit messy. We have to reform the Vector
915// accumulator into an Array of shape (1,1,1,nChan)
916
917 start = pos;
918 end = pos;
919 end(asap::ChanAxis) = nChan-1;
920 outData(start,end) = vecSum.getArray().reform(vecShapeOut);
921 outMask(start,end) = vecSum.getMask().reform(vecShapeOut);
922
923// Step to next beam/IF combination
924
925 itDataPlane.next();
926 itMaskPlane.next();
927 }
928
929// Generate output container and write it to output table
930
931 SDContainer sc = in.getSDContainer();
932 sc.resize(shapeOut);
933//
934 putDataInSDC(sc, outData, outMask);
935 pTabOut->putSDContainer(sc);
936 }
937
938// Set polarization cursor to 0
939
940 pTabOut->setPol(0);
941//
942 return pTabOut;
943}
944
945
946SDMemTable* SDMath::smooth(const SDMemTable& in,
947 const casa::String& kernelType,
948 casa::Float width, Bool doAll) const
949//
950// Should smooth TSys as well
951//
952{
953
954// Number of channels
955
956 SDHeader sh = in.getSDHeader();
957 const uInt nChan = sh.nchan;
958
959// Generate Kernel
960
961 VectorKernel::KernelTypes type = VectorKernel::toKernelType(kernelType);
962 Vector<Float> kernel = VectorKernel::make(type, width, nChan, True, False);
963
964// Generate Convolver
965
966 IPosition shape(1,nChan);
967 Convolver<Float> conv(kernel, shape);
968
969// New Table
970
971 SDMemTable* pTabOut = new SDMemTable(in,True);
972
973// Get cursor location
974
975 IPosition start, end;
976 getCursorLocation(start, end, in);
977//
978 IPosition shapeOut(4,1);
979
980// Output Vectors
981
982 Vector<Float> valuesOut(nChan);
983 Vector<Bool> maskOut(nChan);
984
985// Loop over rows in Table
986
987 for (uInt ri=0; ri < in.nRow(); ++ri) {
988
989// Get copy of data
990
991 const MaskedArray<Float>& dataIn(in.rowAsMaskedArray(ri));
992 AlwaysAssert(dataIn.shape()(asap::ChanAxis)==nChan, AipsError);
993//
994 Array<Float> valuesIn = dataIn.getArray();
995 Array<Bool> maskIn = dataIn.getMask();
996
997// Branch depending on whether we smooth all locations or just
998// those pointed at by the current selection cursor
999
1000 if (doAll) {
1001 VectorIterator<Float> itValues(valuesIn, asap::ChanAxis);
1002 VectorIterator<Bool> itMask(maskIn, asap::ChanAxis);
1003 while (!itValues.pastEnd()) {
1004
1005// Smooth
1006 if (kernelType==VectorKernel::HANNING) {
1007 mathutil::hanning(valuesOut, maskOut, itValues.vector(), itMask.vector());
1008 itMask.vector() = maskOut;
1009 } else {
1010 mathutil::replaceMaskByZero(itValues.vector(), itMask.vector());
1011 conv.linearConv(valuesOut, itValues.vector());
1012 }
1013//
1014 itValues.vector() = valuesOut;
1015//
1016 itValues.next();
1017 itMask.next();
1018 }
1019 } else {
1020
1021// Set multi-dim Vector shape
1022
1023 shapeOut(asap::ChanAxis) = valuesIn.shape()(asap::ChanAxis);
1024
1025// Stuff about with shapes so that we don't have conformance run-time errors
1026
1027 Vector<Float> valuesIn2 = valuesIn(start,end).nonDegenerate();
1028 Vector<Bool> maskIn2 = maskIn(start,end).nonDegenerate();
1029
1030// Smooth
1031
1032 if (kernelType==VectorKernel::HANNING) {
1033 mathutil::hanning(valuesOut, maskOut, valuesIn2, maskIn2);
1034 maskIn(start,end) = maskOut.reform(shapeOut);
1035 } else {
1036 mathutil::replaceMaskByZero(valuesIn2, maskIn2);
1037 conv.linearConv(valuesOut, valuesIn2);
1038 }
1039//
1040 valuesIn(start,end) = valuesOut.reform(shapeOut);
1041 }
1042
1043// Create and put back
1044
1045 SDContainer sc = in.getSDContainer(ri);
1046 putDataInSDC(sc, valuesIn, maskIn);
1047//
1048 pTabOut->putSDContainer(sc);
1049 }
1050//
1051 return pTabOut;
1052}
1053
1054
1055
1056SDMemTable* SDMath::convertFlux (const SDMemTable& in, Float a, Float eta, Bool doAll) const
1057//
1058// As it is, this function could be implemented with 'simpleOperate'
1059// However, I anticipate that eventually we will look the conversion
1060// values up in a Table and apply them in a frequency dependent way,
1061// so I have implemented it fully here
1062//
1063{
1064 SDHeader sh = in.getSDHeader();
1065 SDMemTable* pTabOut = new SDMemTable(in, True);
1066
1067// FInd out how to convert values into Jy and K (e.g. units might be mJy or mK)
1068// Also automatically find out what we are converting to according to the
1069// flux unit
1070
1071 Unit fluxUnit(sh.fluxunit);
1072 Unit K(String("K"));
1073 Unit JY(String("Jy"));
1074//
1075 Bool toKelvin = True;
1076 Double inFac = 1.0;
1077 if (fluxUnit==JY) {
1078 cerr << "Converting to K" << endl;
1079//
1080 Quantum<Double> t(1.0,fluxUnit);
1081 Quantum<Double> t2 = t.get(JY);
1082 inFac = (t2 / t).getValue();
1083//
1084 toKelvin = True;
1085 sh.fluxunit = "K";
1086 } else if (fluxUnit==K) {
1087 cerr << "Converting to Jy" << endl;
1088//
1089 Quantum<Double> t(1.0,fluxUnit);
1090 Quantum<Double> t2 = t.get(K);
1091 inFac = (t2 / t).getValue();
1092//
1093 toKelvin = False;
1094 sh.fluxunit = "Jy";
1095 } else {
1096 throw(AipsError("Unrecognized brightness units in Table - must be consistent with Jy or K"));
1097 }
1098 pTabOut->putSDHeader(sh);
1099
1100// Compute conversion factor. 'a' and 'eta' are really frequency, time and
1101// telescope dependent and should be looked// up in a table
1102
1103 Float factor = 2.0 * inFac * 1.0e-7 * 1.0e26 *
1104 QC::k.getValue(Unit(String("erg/K"))) / a / eta;
1105 if (toKelvin) {
1106 factor = 1.0 / factor;
1107 }
1108 cerr << "Applying conversion factor = " << factor << endl;
1109
1110// Generate correction vector. Apply same factor regardless
1111// of beam/pol/IF. This will need to change somewhen.
1112
1113 Vector<Float> factors(in.nRow(), factor);
1114
1115// Correct
1116
1117 correctFromVector (pTabOut, in, doAll, factors);
1118//
1119 return pTabOut;
1120}
1121
1122
1123SDMemTable* SDMath::gainElevation (const SDMemTable& in, const Vector<Float>& coeffs,
1124 const String& fileName,
1125 const String& methodStr, Bool doAll) const
1126{
1127
1128// Get header and clone output table
1129
1130 SDHeader sh = in.getSDHeader();
1131 SDMemTable* pTabOut = new SDMemTable(in, True);
1132
1133// Get elevation data from SDMemTable and convert to degrees
1134
1135 const Table& tab = in.table();
1136 ROScalarColumn<Float> elev(tab, "ELEVATION");
1137 Vector<Float> x = elev.getColumn();
1138 x *= Float(180 / C::pi);
1139//
1140 const uInt nC = coeffs.nelements();
1141 if (fileName.length()>0 && nC>0) {
1142 throw(AipsError("You must choose either polynomial coefficients or an ascii file, not both"));
1143 }
1144
1145// Correct
1146
1147 if (nC>0 || fileName.length()==0) {
1148
1149// Find instrument
1150
1151 Bool throwIt = True;
1152 Instrument inst = SDMemTable::convertInstrument (sh.antennaname, throwIt);
1153
1154// Set polynomial
1155
1156 Polynomial<Float>* pPoly = 0;
1157 Vector<Float> coeff;
1158 String msg;
1159 if (nC>0) {
1160 pPoly = new Polynomial<Float>(nC);
1161 coeff = coeffs;
1162 msg = String("user");
1163 } else {
1164 if (inst==ATPKSMB) {
1165 } else if (inst==ATPKSHOH) {
1166 } else if (inst==TIDBINBILLA) {
1167 pPoly = new Polynomial<Float>(3);
1168 coeff.resize(3);
1169 coeff(0) = 3.58788e-1;
1170 coeff(1) = 2.87243e-2;
1171 coeff(2) = -3.219093e-4;
1172 } else if (inst==ATMOPRA) {
1173 } else {
1174 }
1175 msg = String("built in");
1176 }
1177//
1178 if (coeff.nelements()>0) {
1179 pPoly->setCoefficients(coeff);
1180 } else {
1181 throw(AipsError("There is no known gain-el polynomial known for this instrument"));
1182 }
1183//
1184 cerr << "Making polynomial correction with " << msg << " coefficients" << endl;
1185 const uInt nRow = in.nRow();
1186 Vector<Float> factor(nRow);
1187 for (uInt i=0; i<nRow; i++) {
1188 factor[i] = (*pPoly)(x[i]);
1189 }
1190 delete pPoly;
1191//
1192 correctFromVector (pTabOut, in, doAll, factor);
1193 } else {
1194
1195// Indicate which columns to read from ascii file
1196
1197 String col0("ELEVATION");
1198 String col1("FACTOR");
1199
1200// Read and correct
1201
1202 cerr << "Making correction from ascii Table" << endl;
1203 correctFromAsciiTable (pTabOut, in, fileName, col0, col1,
1204 methodStr, doAll, x);
1205 }
1206//
1207 return pTabOut;
1208}
1209
1210
1211
1212SDMemTable* SDMath::opacity (const SDMemTable& in, Float tau, Bool doAll) const
1213{
1214
1215// Get header and clone output table
1216
1217 SDHeader sh = in.getSDHeader();
1218 SDMemTable* pTabOut = new SDMemTable(in, True);
1219
1220// Get elevation data from SDMemTable and convert to degrees
1221
1222 const Table& tab = in.table();
1223 ROScalarColumn<Float> elev(tab, "ELEVATION");
1224 Vector<Float> zDist = elev.getColumn();
1225 zDist = Float(C::pi_2) - zDist;
1226
1227// Generate correction factor
1228
1229 const uInt nRow = in.nRow();
1230 Vector<Float> factor(nRow);
1231 Vector<Float> factor2(nRow);
1232 for (uInt i=0; i<nRow; i++) {
1233 factor[i] = exp(tau)/cos(zDist[i]);
1234 }
1235
1236// Correct
1237
1238 correctFromVector (pTabOut, in, doAll, factor);
1239//
1240 return pTabOut;
1241}
1242
1243
1244
1245
1246// 'private' functions
1247
1248
1249SDMemTable* SDMath::frequencyAlign (const SDMemTable& in,
1250 MFrequency::Types freqSystem,
1251 const String& refTime) const
1252{
1253// Get Header
1254
1255 SDHeader sh = in.getSDHeader();
1256 const uInt nChan = sh.nchan;
1257 const uInt nRows = in.nRow();
1258
1259// Get Table reference
1260
1261 const Table& tabIn = in.table();
1262
1263// Get Columns from Table
1264
1265 ROScalarColumn<Double> mjdCol(tabIn, "TIME");
1266 ROScalarColumn<String> srcCol(tabIn, "SRCNAME");
1267 ROArrayColumn<uInt> fqIDCol(tabIn, "FREQID");
1268//
1269 Vector<Double> times = mjdCol.getColumn();
1270 Vector<String> srcNames = srcCol.getColumn();
1271 Vector<uInt> freqID;
1272
1273// Generate Source table
1274
1275 Vector<String> srcTab;
1276 Vector<uInt> srcIdx, firstRow;
1277 generateSourceTable (srcTab, srcIdx, firstRow, srcNames);
1278 const uInt nSrcTab = srcTab.nelements();
1279 cerr << "Found " << srcTab.nelements() << " sources to align " << endl;
1280
1281// Get reference Epoch to time of first row or given String
1282
1283 Unit DAY(String("d"));
1284 MEpoch::Ref epochRef(in.getTimeReference());
1285 MEpoch refEpoch;
1286 if (refTime.length()>0) {
1287 refEpoch = epochFromString(refTime, in.getTimeReference());
1288 } else {
1289 refEpoch = in.getEpoch(0);
1290 }
1291 cerr << "Aligning at reference Epoch " << formatEpoch(refEpoch) <<
1292 " in frame " << MFrequency::showType(freqSystem) << endl;
1293
1294// Get Reference Position
1295
1296 MPosition refPos = in.getAntennaPosition();
1297
1298// Get Frequency Table
1299
1300 SDFrequencyTable fTab = in.getSDFreqTable();
1301 const uInt nFreqIDs = fTab.length();
1302
1303// Create FrequencyAligner Block. One VA for each possible
1304// source/freqID combination
1305
1306 PtrBlock<FrequencyAligner<Float>* > a(nFreqIDs*nSrcTab);
1307 generateFrequencyAligners (a, in, nChan, nFreqIDs, nSrcTab, firstRow,
1308 freqSystem, refPos, refEpoch);
1309
1310// New output Table
1311
1312 SDMemTable* pTabOut = new SDMemTable(in,True);
1313
1314// Loop over rows in Table
1315
1316 const IPosition polChanAxes(2, asap::PolAxis, asap::ChanAxis);
1317 FrequencyAligner<Float>::Method method = FrequencyAligner<Float>::LINEAR;
1318 Bool extrapolate=False;
1319 Bool useCachedAbcissa = False;
1320 Bool first = True;
1321 Bool ok;
1322 Vector<Float> yOut;
1323 Vector<Bool> maskOut;
1324 uInt ifIdx, faIdx;
1325//
1326 for (uInt iRow=0; iRow<nRows; ++iRow) {
1327 if (iRow%10==0) {
1328 cerr << "Processing row " << iRow << endl;
1329 }
1330
1331// Get EPoch
1332
1333 Quantum<Double> tQ2(times[iRow],DAY);
1334 MVEpoch mv2(tQ2);
1335 MEpoch epoch(mv2, epochRef);
1336
1337// Get FreqID vector. One freqID per IF
1338
1339 fqIDCol.get(iRow, freqID);
1340
1341// Get copy of data
1342
1343 const MaskedArray<Float>& mArrIn(in.rowAsMaskedArray(iRow));
1344 Array<Float> values = mArrIn.getArray();
1345 Array<Bool> mask = mArrIn.getMask();
1346
1347// cerr << "values in = " << values(IPosition(4,0,0,0,0),IPosition(4,0,0,0,9)) << endl;
1348
1349// For each row, the Frequency abcissa will be the same regardless
1350// of polarization. For all other axes (IF and BEAM) the abcissa
1351// will change. So we iterate through the data by pol-chan planes
1352// to mimimize the work. At this point, I think the Direction
1353// is stored as the same for each beam. DOn't know where the
1354// offsets are or what to do about them right now. For now
1355// all beams get same position and velocoity abcissa.
1356
1357 ArrayIterator<Float> itValuesPlane(values, polChanAxes);
1358 ArrayIterator<Bool> itMaskPlane(mask, polChanAxes);
1359 while (!itValuesPlane.pastEnd()) {
1360
1361// Find the IF index and then the FA PtrBlock index
1362
1363 const IPosition& pos = itValuesPlane.pos();
1364 ifIdx = pos(asap::IFAxis);
1365 faIdx = (srcIdx[iRow]*nFreqIDs) + freqID[ifIdx];
1366//
1367 VectorIterator<Float> itValuesVec(itValuesPlane.array(), 1);
1368 VectorIterator<Bool> itMaskVec(itMaskPlane.array(), 1);
1369//
1370 first = True;
1371 useCachedAbcissa=False;
1372 while (!itValuesVec.pastEnd()) {
1373 ok = a[faIdx]->align (yOut, maskOut, itValuesVec.vector(),
1374 itMaskVec.vector(), epoch, useCachedAbcissa,
1375 method, extrapolate);
1376 itValuesVec.vector() = yOut;
1377 itMaskVec.vector() = maskOut;
1378//
1379 itValuesVec.next();
1380 itMaskVec.next();
1381//
1382 if (first) {
1383 useCachedAbcissa = True;
1384 first = False;
1385 }
1386 }
1387//
1388 itValuesPlane.next();
1389 itMaskPlane.next();
1390 }
1391
1392// cerr << "values out = " << values(IPosition(4,0,0,0,0),IPosition(4,0,0,0,9)) << endl;
1393
1394// Create and put back
1395
1396 SDContainer sc = in.getSDContainer(iRow);
1397 putDataInSDC(sc, values, mask);
1398//
1399 pTabOut->putSDContainer(sc);
1400 }
1401
1402
1403// Write out correct frequency table information for output.
1404// CLone from input and overwrite
1405
1406 SDFrequencyTable freqTab = in.getSDFreqTable();
1407 freqTab.setLength(0);
1408
1409// Note that we don't have anyway to hold frequency table information
1410// in the SDMemTable which is source dependent. Each FrequencyAligner
1411// is generated for an freqID/Source combination. Don't know what to
1412// do about this apart from to pick the aligned SC from the first source
1413// at the moment. ASAP really needs to handle data description id
1414// like in aips++ which is a combination of source and freqid. Otherwise
1415// all else I can do in this function is disallow multiple sources
1416
1417 Bool linear=True;
1418 Vector<String> units(1);
1419 units = String("Hz");
1420 for (uInt fqID=0; fqID<nFreqIDs; fqID++) {
1421 for (uInt iSrc=0; iSrc<nSrcTab; iSrc++) {
1422 uInt idx = (iSrc*nFreqIDs) + fqID;
1423
1424// Get Aligned SC in Hz
1425
1426 if (iSrc==0) {
1427 SpectralCoordinate sC = a[idx]->alignedSpectralCoordinate(linear);
1428 sC.setWorldAxisUnits(units);
1429
1430// Write out frequency table information to SDMemTable
1431
1432 Int idx = freqTab.addFrequency(sC.referencePixel()[0],
1433 sC.referenceValue()[0],
1434 sC.increment()[0]);
1435 }
1436 }
1437 }
1438 pTabOut->putSDFreqTable(freqTab);
1439
1440// Now we must set the base and extra frames to the
1441// input frame
1442
1443 std::vector<string> info = pTabOut->getCoordInfo();
1444 info[1] = MFrequency::showType(freqSystem); // Conversion frame
1445 info[3] = info[1]; // Base frame
1446 pTabOut->setCoordInfo(info);
1447
1448// Clean up PointerBlock
1449
1450 for (uInt i=0; i<a.nelements(); i++) delete a[i];
1451//
1452 return pTabOut;
1453}
1454
1455
1456void SDMath::fillSDC(SDContainer& sc,
1457 const Array<Bool>& mask,
1458 const Array<Float>& data,
1459 const Array<Float>& tSys,
1460 Int scanID, Double timeStamp,
1461 Double interval, const String& sourceName,
1462 const Vector<uInt>& freqID) const
1463{
1464// Data and mask
1465
1466 putDataInSDC(sc, data, mask);
1467
1468// TSys
1469
1470 sc.putTsys(tSys);
1471
1472// Time things
1473
1474 sc.timestamp = timeStamp;
1475 sc.interval = interval;
1476 sc.scanid = scanID;
1477//
1478 sc.sourcename = sourceName;
1479 sc.putFreqMap(freqID);
1480}
1481
1482void SDMath::normalize(MaskedArray<Float>& sum,
1483 const Array<Float>& sumSq,
1484 const Array<Float>& nPts,
1485 WeightType wtType, Int axis,
1486 Int nAxesSub) const
1487{
1488 IPosition pos2(nAxesSub,0);
1489//
1490 if (wtType==NONE) {
1491
1492// We just average by the number of points accumulated.
1493// We need to make a MA out of nPts so that no divide by
1494// zeros occur
1495
1496 MaskedArray<Float> t(nPts, (nPts>Float(0.0)));
1497 sum /= t;
1498 } else if (wtType==VAR) {
1499
1500// Normalize each spectrum by sum(1/var) where the variance
1501// is worked out for each spectrum
1502
1503 Array<Float>& data = sum.getRWArray();
1504 VectorIterator<Float> itData(data, axis);
1505 while (!itData.pastEnd()) {
1506 pos2 = itData.pos().getFirst(nAxesSub);
1507 itData.vector() /= sumSq(pos2);
1508 itData.next();
1509 }
1510 } else if (wtType==TSYS) {
1511 }
1512}
1513
1514
1515void SDMath::accumulate(Double& timeSum, Double& intSum, Int& nAccum,
1516 MaskedArray<Float>& sum, Array<Float>& sumSq,
1517 Array<Float>& nPts, Array<Float>& tSysSum,
1518 const Array<Float>& tSys, const Array<Float>& nInc,
1519 const Vector<Bool>& mask, Double time, Double interval,
1520 const Block<CountedPtr<SDMemTable> >& in,
1521 uInt iTab, uInt iRow, uInt axis,
1522 uInt nAxesSub, Bool useMask,
1523 WeightType wtType) const
1524{
1525
1526// Get data
1527
1528 MaskedArray<Float> dataIn(in[iTab]->rowAsMaskedArray(iRow));
1529 Array<Float>& valuesIn = dataIn.getRWArray(); // writable reference
1530 const Array<Bool>& maskIn = dataIn.getMask(); // RO reference
1531//
1532 if (wtType==NONE) {
1533 const MaskedArray<Float> n(nInc,dataIn.getMask());
1534 nPts += n; // Only accumulates where mask==T
1535 } else if (wtType==VAR) {
1536
1537// We are going to average the data, weighted by the noise for each pol, beam and IF.
1538// So therefore we need to iterate through by spectrum (axis 3)
1539
1540 VectorIterator<Float> itData(valuesIn, axis);
1541 ReadOnlyVectorIterator<Bool> itMask(maskIn, axis);
1542 Float fac = 1.0;
1543 IPosition pos(nAxesSub,0);
1544//
1545 while (!itData.pastEnd()) {
1546
1547// Make MaskedArray of Vector, optionally apply OTF mask, and find scaling factor
1548
1549 if (useMask) {
1550 MaskedArray<Float> tmp(itData.vector(),mask&&itMask.vector());
1551 fac = 1.0/variance(tmp);
1552 } else {
1553 MaskedArray<Float> tmp(itData.vector(),itMask.vector());
1554 fac = 1.0/variance(tmp);
1555 }
1556
1557// Scale data
1558
1559 itData.vector() *= fac; // Writes back into 'dataIn'
1560//
1561// Accumulate variance per if/pol/beam averaged over spectrum
1562// This method to get pos2 from itData.pos() is only valid
1563// because the spectral axis is the last one (so we can just
1564// copy the first nAXesSub positions out)
1565
1566 pos = itData.pos().getFirst(nAxesSub);
1567 sumSq(pos) += fac;
1568//
1569 itData.next();
1570 itMask.next();
1571 }
1572 } else if (wtType==TSYS) {
1573 }
1574
1575// Accumulate sum of (possibly scaled) data
1576
1577 sum += dataIn;
1578
1579// Accumulate Tsys, time, and interval
1580
1581 tSysSum += tSys;
1582 timeSum += time;
1583 intSum += interval;
1584 nAccum += 1;
1585}
1586
1587
1588
1589
1590void SDMath::getCursorLocation(IPosition& start, IPosition& end,
1591 const SDMemTable& in) const
1592{
1593 const uInt nDim = 4;
1594 const uInt i = in.getBeam();
1595 const uInt j = in.getIF();
1596 const uInt k = in.getPol();
1597 const uInt n = in.nChan();
1598//
1599 start.resize(nDim);
1600 start(0) = i;
1601 start(1) = j;
1602 start(2) = k;
1603 start(3) = 0;
1604//
1605 end.resize(nDim);
1606 end(0) = i;
1607 end(1) = j;
1608 end(2) = k;
1609 end(3) = n-1;
1610}
1611
1612
1613void SDMath::convertWeightString(WeightType& wtType, const String& weightStr) const
1614{
1615 String tStr(weightStr);
1616 tStr.upcase();
1617 if (tStr.contains(String("NONE"))) {
1618 wtType = NONE;
1619 } else if (tStr.contains(String("VAR"))) {
1620 wtType = VAR;
1621 } else if (tStr.contains(String("TSYS"))) {
1622 wtType = TSYS;
1623 throw(AipsError("T_sys weighting not yet implemented"));
1624 } else {
1625 throw(AipsError("Unrecognized weighting type"));
1626 }
1627}
1628
1629void SDMath::convertInterpString(Int& type, const String& interp) const
1630{
1631 String tStr(interp);
1632 tStr.upcase();
1633 if (tStr.contains(String("NEAR"))) {
1634 type = InterpolateArray1D<Float,Float>::nearestNeighbour;
1635 } else if (tStr.contains(String("LIN"))) {
1636 type = InterpolateArray1D<Float,Float>::linear;
1637 } else if (tStr.contains(String("CUB"))) {
1638 type = InterpolateArray1D<Float,Float>::cubic;
1639 } else if (tStr.contains(String("SPL"))) {
1640 type = InterpolateArray1D<Float,Float>::spline;
1641 } else {
1642 throw(AipsError("Unrecognized interpolation type"));
1643 }
1644}
1645
1646void SDMath::putDataInSDC(SDContainer& sc, const Array<Float>& data,
1647 const Array<Bool>& mask) const
1648{
1649 sc.putSpectrum(data);
1650//
1651 Array<uChar> outflags(data.shape());
1652 convertArray(outflags,!mask);
1653 sc.putFlags(outflags);
1654}
1655
1656Table SDMath::readAsciiFile (const String& fileName) const
1657{
1658 String formatString;
1659 Table tbl = readAsciiTable (formatString, Table::Memory, fileName, "", "", False);
1660 return tbl;
1661}
1662
1663
1664
1665void SDMath::correctFromAsciiTable(SDMemTable* pTabOut,
1666 const SDMemTable& in, const String& fileName,
1667 const String& col0, const String& col1,
1668 const String& methodStr, Bool doAll,
1669 const Vector<Float>& xOut) const
1670{
1671
1672// Read gain-elevation ascii file data into a Table.
1673
1674 Table geTable = readAsciiFile (fileName);
1675//
1676 correctFromTable (pTabOut, in, geTable, col0, col1, methodStr, doAll, xOut);
1677}
1678
1679void SDMath::correctFromTable(SDMemTable* pTabOut, const SDMemTable& in,
1680 const Table& tTable, const String& col0,
1681 const String& col1,
1682 const String& methodStr, Bool doAll,
1683 const Vector<Float>& xOut) const
1684{
1685
1686// Get data from Table
1687
1688 ROScalarColumn<Float> geElCol(tTable, col0);
1689 ROScalarColumn<Float> geFacCol(tTable, col1);
1690 Vector<Float> xIn = geElCol.getColumn();
1691 Vector<Float> yIn = geFacCol.getColumn();
1692 Vector<Bool> maskIn(xIn.nelements(),True);
1693
1694// Interpolate (and extrapolate) with desired method
1695
1696 Int method = 0;
1697 convertInterpString(method, methodStr);
1698//
1699 Vector<Float> yOut;
1700 Vector<Bool> maskOut;
1701 InterpolateArray1D<Float,Float>::interpolate(yOut, maskOut, xOut,
1702 xIn, yIn, maskIn, method,
1703 True, True);
1704// Apply
1705
1706 correctFromVector (pTabOut, in, doAll, yOut);
1707}
1708
1709
1710void SDMath::correctFromVector (SDMemTable* pTabOut, const SDMemTable& in,
1711 Bool doAll, const Vector<Float>& factor) const
1712{
1713
1714// For operations only on specified cursor location
1715
1716 IPosition start, end;
1717 getCursorLocation(start, end, in);
1718
1719// Loop over rows and apply correction factor
1720
1721 const uInt axis = asap::ChanAxis;
1722 for (uInt i=0; i < in.nRow(); ++i) {
1723
1724// Get data
1725
1726 MaskedArray<Float> dataIn(in.rowAsMaskedArray(i));
1727
1728// Apply factor
1729
1730 if (doAll) {
1731 dataIn *= factor[i];
1732 } else {
1733 MaskedArray<Float> dataIn2 = dataIn(start,end); // reference
1734 dataIn2 *= factor[i];
1735 }
1736
1737// Write out
1738
1739 SDContainer sc = in.getSDContainer(i);
1740 putDataInSDC(sc, dataIn.getArray(), dataIn.getMask());
1741//
1742 pTabOut->putSDContainer(sc);
1743 }
1744}
1745
1746
1747void SDMath::generateSourceTable (Vector<String>& srcTab,
1748 Vector<uInt>& srcIdx,
1749 Vector<uInt>& firstRow,
1750 const Vector<String>& srcNames) const
1751//
1752// This algorithm assumes that if there are multiple beams
1753// that the source names are diffent. Oterwise we would need
1754// to look atthe direction for each beam...
1755//
1756{
1757 const uInt nRow = srcNames.nelements();
1758 srcTab.resize(0);
1759 srcIdx.resize(nRow);
1760 firstRow.resize(0);
1761//
1762 uInt nSrc = 0;
1763 for (uInt i=0; i<nRow; i++) {
1764 String srcName = srcNames[i];
1765
1766// Do we have this source already ?
1767
1768 Int idx = -1;
1769 if (nSrc>0) {
1770 for (uInt j=0; j<nSrc; j++) {
1771 if (srcName==srcTab[j]) {
1772 idx = j;
1773 break;
1774 }
1775 }
1776 }
1777
1778// Add new entry if not found
1779
1780 if (idx==-1) {
1781 nSrc++;
1782 srcTab.resize(nSrc,True);
1783 srcTab(nSrc-1) = srcName;
1784 idx = nSrc-1;
1785//
1786 firstRow.resize(nSrc,True);
1787 firstRow(nSrc-1) = i; // First row for which this source occurs
1788 }
1789
1790// Set index for this row
1791
1792 srcIdx[i] = idx;
1793 }
1794}
1795
1796MEpoch SDMath::epochFromString (const String& str, MEpoch::Types timeRef) const
1797{
1798 Quantum<Double> qt;
1799 if (MVTime::read(qt,str)) {
1800 MVEpoch mv(qt);
1801 MEpoch me(mv, timeRef);
1802 return me;
1803 } else {
1804 throw(AipsError("Invalid format for Epoch string"));
1805 }
1806}
1807
1808
1809String SDMath::formatEpoch(const MEpoch& epoch) const
1810{
1811 MVTime mvt(epoch.getValue());
1812 return mvt.string(MVTime::YMD) + String(" (") + epoch.getRefString() + String(")");
1813}
1814
1815
1816
1817void SDMath::generateFrequencyAligners (PtrBlock<FrequencyAligner<Float>* >& a,
1818 const SDMemTable& in, uInt nChan,
1819 uInt nFreqIDs, uInt nSrcTab,
1820 const Vector<uInt>& firstRow,
1821 MFrequency::Types system,
1822 const MPosition& refPos,
1823 const MEpoch& refEpoch) const
1824{
1825 for (uInt fqID=0; fqID<nFreqIDs; fqID++) {
1826 SpectralCoordinate sC = in.getSpectralCoordinate(fqID);
1827 for (uInt iSrc=0; iSrc<nSrcTab; iSrc++) {
1828 MDirection refDir = in.getDirection(firstRow[iSrc]);
1829 uInt idx = (iSrc*nFreqIDs) + fqID;
1830 a[idx] = new FrequencyAligner<Float>(sC, nChan, refEpoch, refDir, refPos, system);
1831 }
1832 }
1833}
1834
1835
Note: See TracBrowser for help on using the repository browser.