source: trunk/src/SDMath.cc @ 480

Last change on this file since 480 was 480, checked in by kil064, 19 years ago

add functions getRowRange and rowInRange
make gain/el correction the inverse of what it was
have gain/el and opacity also correct TSys

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 54.0 KB
RevLine 
[2]1//#---------------------------------------------------------------------------
2//# SDMath.cc: A collection of single dish mathematical operations
3//#---------------------------------------------------------------------------
4//# Copyright (C) 2004
[125]5//# ATNF
[2]6//#
7//# This program is free software; you can redistribute it and/or modify it
8//# under the terms of the GNU General Public License as published by the Free
9//# Software Foundation; either version 2 of the License, or (at your option)
10//# any later version.
11//#
12//# This program is distributed in the hope that it will be useful, but
13//# WITHOUT ANY WARRANTY; without even the implied warranty of
14//# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General
15//# Public License for more details.
16//#
17//# You should have received a copy of the GNU General Public License along
18//# with this program; if not, write to the Free Software Foundation, Inc.,
19//# 675 Massachusetts Ave, Cambridge, MA 02139, USA.
20//#
21//# Correspondence concerning this software should be addressed as follows:
22//#        Internet email: Malte.Marquarding@csiro.au
23//#        Postal address: Malte Marquarding,
24//#                        Australia Telescope National Facility,
25//#                        P.O. Box 76,
26//#                        Epping, NSW, 2121,
27//#                        AUSTRALIA
28//#
29//# $Id:
30//#---------------------------------------------------------------------------
[38]31#include <vector>
32
[81]33#include <casa/aips.h>
[330]34#include <casa/iostream.h>
35#include <casa/iomanip.h>
[81]36#include <casa/BasicSL/String.h>
37#include <casa/Arrays/IPosition.h>
38#include <casa/Arrays/Array.h>
[130]39#include <casa/Arrays/ArrayIter.h>
40#include <casa/Arrays/VectorIter.h>
[81]41#include <casa/Arrays/ArrayMath.h>
42#include <casa/Arrays/ArrayLogical.h>
43#include <casa/Arrays/MaskedArray.h>
44#include <casa/Arrays/MaskArrMath.h>
45#include <casa/Arrays/MaskArrLogi.h>
[330]46#include <casa/Arrays/Matrix.h>
[234]47#include <casa/BasicMath/Math.h>
[221]48#include <casa/Containers/Block.h>
[262]49#include <casa/Exceptions.h>
50#include <casa/Quanta/Quantum.h>
51#include <casa/Quanta/Unit.h>
52#include <casa/Quanta/MVEpoch.h>
[272]53#include <casa/Quanta/MVTime.h>
[177]54#include <casa/Utilities/Assert.h>
[2]55
[262]56#include <coordinates/Coordinates/SpectralCoordinate.h>
57#include <coordinates/Coordinates/CoordinateSystem.h>
58#include <coordinates/Coordinates/CoordinateUtil.h>
[309]59#include <coordinates/Coordinates/FrequencyAligner.h>
[262]60
61#include <lattices/Lattices/LatticeUtilities.h>
62#include <lattices/Lattices/RebinLattice.h>
63
64#include <measures/Measures/MEpoch.h>
65#include <measures/Measures/MDirection.h>
66#include <measures/Measures/MPosition.h>
67
[177]68#include <scimath/Mathematics/VectorKernel.h>
69#include <scimath/Mathematics/Convolver.h>
[227]70#include <scimath/Mathematics/InterpolateArray1D.h>
[234]71#include <scimath/Functionals/Polynomial.h>
[177]72
[81]73#include <tables/Tables/Table.h>
74#include <tables/Tables/ScalarColumn.h>
75#include <tables/Tables/ArrayColumn.h>
[227]76#include <tables/Tables/ReadAsciiTable.h>
[2]77
[38]78#include "MathUtils.h"
[232]79#include "SDDefs.h"
[354]80#include "SDAttr.h"
[2]81#include "SDContainer.h"
82#include "SDMemTable.h"
83
84#include "SDMath.h"
[457]85#include "SDPol.h"
[2]86
[125]87using namespace casa;
[83]88using namespace asap;
[2]89
[170]90
91SDMath::SDMath()
92{;}
93
[185]94SDMath::SDMath(const SDMath& other)
[170]95{
96
97// No state
98
99}
100
101SDMath& SDMath::operator=(const SDMath& other)
102{
103  if (this != &other) {
104// No state
105  }
106  return *this;
107}
108
[183]109SDMath::~SDMath()
110{;}
[170]111
[183]112
[262]113
[397]114SDMemTable* SDMath::frequencyAlignment (const SDMemTable& in, const String& refTime,
115                                         const String& method, Bool perFreqID) const
[262]116{
[309]117// Get frame info from Table
[262]118
119   std::vector<std::string> info = in.getCoordInfo();
[294]120
[309]121// Parse frequency system
[294]122
[309]123   String systemStr(info[1]);
124   String baseSystemStr(info[3]);
125   if (baseSystemStr==systemStr) {
126      throw(AipsError("You have not set a frequency frame different from the initial - use function set_freqframe"));
[262]127   }
[309]128//
129   MFrequency::Types freqSystem;
130   MFrequency::getType(freqSystem, systemStr);
[294]131
[267]132// Do it
[262]133
[397]134   return frequencyAlign (in, freqSystem, refTime, method, perFreqID);
[267]135}
[262]136
137
138
[185]139CountedPtr<SDMemTable> SDMath::average(const Block<CountedPtr<SDMemTable> >& in,
140                                       const Vector<Bool>& mask, Bool scanAv,
[309]141                                       const String& weightStr, Bool alignFreq) const
[130]142//
[144]143// Weighted averaging of spectra from one or more Tables.
[130]144//
145{
[2]146
[163]147// Convert weight type
148 
149  WeightType wtType = NONE;
[185]150  convertWeightString(wtType, weightStr);
[163]151
[144]152// Create output Table by cloning from the first table
[2]153
[144]154  SDMemTable* pTabOut = new SDMemTable(*in[0],True);
[130]155
[144]156// Setup
[130]157
[144]158  IPosition shp = in[0]->rowAsMaskedArray(0).shape();      // Must not change
159  Array<Float> arr(shp);
160  Array<Bool> barr(shp);
[221]161  const Bool useMask = (mask.nelements() == shp(asap::ChanAxis));
[130]162
[144]163// Columns from Tables
[130]164
[144]165  ROArrayColumn<Float> tSysCol;
166  ROScalarColumn<Double> mjdCol;
167  ROScalarColumn<String> srcNameCol;
168  ROScalarColumn<Double> intCol;
169  ROArrayColumn<uInt> fqIDCol;
[410]170  ROScalarColumn<Int> scanIDCol;
[130]171
[144]172// Create accumulation MaskedArray. We accumulate for each channel,if,pol,beam
173// Note that the mask of the accumulation array will ALWAYS remain ALL True.
174// The MA is only used so that when data which is masked Bad is added to it,
175// that data does not contribute.
176
177  Array<Float> zero(shp);
178  zero=0.0;
179  Array<Bool> good(shp);
180  good = True;
181  MaskedArray<Float> sum(zero,good);
182
183// Counter arrays
184
185  Array<Float> nPts(shp);             // Number of points
186  nPts = 0.0;
187  Array<Float> nInc(shp);             // Increment
188  nInc = 1.0;
189
190// Create accumulation Array for variance. We accumulate for
191// each if,pol,beam, but average over channel.  So we need
192// a shape with one less axis dropping channels.
193
194  const uInt nAxesSub = shp.nelements() - 1;
195  IPosition shp2(nAxesSub);
196  for (uInt i=0,j=0; i<(nAxesSub+1); i++) {
[221]197     if (i!=asap::ChanAxis) {
[144]198       shp2(j) = shp(i);
199       j++;
200     }
[2]201  }
[144]202  Array<Float> sumSq(shp2);
203  sumSq = 0.0;
204  IPosition pos2(nAxesSub,0);                        // For indexing
[130]205
[144]206// Time-related accumulators
[130]207
[144]208  Double time;
209  Double timeSum = 0.0;
210  Double intSum = 0.0;
211  Double interval = 0.0;
[130]212
[144]213// To get the right shape for the Tsys accumulator we need to
214// access a column from the first table.  The shape of this
215// array must not change
[130]216
[144]217  Array<Float> tSysSum;
218  {
219    const Table& tabIn = in[0]->table();
220    tSysCol.attach(tabIn,"TSYS");
221    tSysSum.resize(tSysCol.shape(0));
222  }
223  tSysSum =0.0;
224  Array<Float> tSys;
225
226// Scan and row tracking
227
228  Int oldScanID = 0;
229  Int outScanID = 0;
230  Int scanID = 0;
231  Int rowStart = 0;
232  Int nAccum = 0;
233  Int tableStart = 0;
234
235// Source and FreqID
236
237  String sourceName, oldSourceName, sourceNameStart;
238  Vector<uInt> freqID, freqIDStart, oldFreqID;
239
240// Loop over tables
241
242  Float fac = 1.0;
243  const uInt nTables = in.nelements();
244  for (uInt iTab=0; iTab<nTables; iTab++) {
245
[309]246// Should check that the frequency tables don't change if doing FreqAlignment
[221]247
[144]248// Attach columns to Table
249
250     const Table& tabIn = in[iTab]->table();
251     tSysCol.attach(tabIn, "TSYS");
252     mjdCol.attach(tabIn, "TIME");
253     srcNameCol.attach(tabIn, "SRCNAME");
254     intCol.attach(tabIn, "INTERVAL");
255     fqIDCol.attach(tabIn, "FREQID");
[410]256     scanIDCol.attach(tabIn, "SCANID");
[144]257
[410]258// Find list of start/end rows for each scan
259
[144]260// Loop over rows in Table
261
262     const uInt nRows = in[iTab]->nRow();
263     for (uInt iRow=0; iRow<nRows; iRow++) {
264
265// Check conformance
266
267        IPosition shp2 = in[iTab]->rowAsMaskedArray(iRow).shape();
268        if (!shp.isEqual(shp2)) {
269           throw (AipsError("Shapes for all rows must be the same"));
270        }
271
272// If we are not doing scan averages, make checks for source and
273// frequency setup and warn if averaging across them
274
[410]275        scanIDCol.getScalar(iRow, scanID);
[144]276
277// Get quantities from columns
278
279        srcNameCol.getScalar(iRow, sourceName);
280        mjdCol.get(iRow, time);
281        tSysCol.get(iRow, tSys);
282        intCol.get(iRow, interval);
283        fqIDCol.get(iRow, freqID);
284
285// Initialize first source and freqID
286
287        if (iRow==0 && iTab==0) {
288          sourceNameStart = sourceName;
289          freqIDStart = freqID;
290        }
291
292// If we are doing scan averages, see if we are at the end of an
293// accumulation period (scan).  We must check soutce names too,
294// since we might have two tables with one scan each but different
295// source names; we shouldn't average different sources together
296
297        if (scanAv && ( (scanID != oldScanID)  ||
298                        (iRow==0 && iTab>0 && sourceName!=oldSourceName))) {
299
300// Normalize data in 'sum' accumulation array according to weighting scheme
301
[221]302           normalize(sum, sumSq, nPts, wtType, asap::ChanAxis, nAxesSub);
[144]303
[410]304// Get ScanContainer for the first row of this averaged Scan
305
306           SDContainer scOut = in[iTab]->getSDContainer(rowStart);
307
[144]308// Fill scan container. The source and freqID come from the
309// first row of the first table that went into this average (
310// should be the same for all rows in the scan average)
311
312           Float nR(nAccum);
[410]313           fillSDC(scOut, sum.getMask(), sum.getArray(), tSysSum/nR, outScanID,
[144]314                    timeSum/nR, intSum, sourceNameStart, freqIDStart);
315
316// Write container out to Table
317
[410]318           pTabOut->putSDContainer(scOut);
[144]319
320// Reset accumulators
321
322           sum = 0.0;
323           sumSq = 0.0;
324           nAccum = 0;
325//
326           tSysSum =0.0;
327           timeSum = 0.0;
328           intSum = 0.0;
[221]329           nPts = 0.0;
[144]330
331// Increment
332
333           rowStart = iRow;              // First row for next accumulation
334           tableStart = iTab;            // First table for next accumulation
335           sourceNameStart = sourceName; // First source name for next accumulation
336           freqIDStart = freqID;         // First FreqID for next accumulation
337//
338           oldScanID = scanID;
339           outScanID += 1;               // Scan ID for next accumulation period
[227]340        }
[144]341
[146]342// Accumulate
[144]343
[185]344        accumulate(timeSum, intSum, nAccum, sum, sumSq, nPts, tSysSum,
[221]345                    tSys, nInc, mask, time, interval, in, iTab, iRow, asap::ChanAxis,
[146]346                    nAxesSub, useMask, wtType);
[144]347//
348       oldSourceName = sourceName;
349       oldFreqID = freqID;
[184]350     }
[144]351  }
352
353// OK at this point we have accumulation data which is either
354//   - accumulated from all tables into one row
355// or
356//   - accumulated from the last scan average
357//
358// Normalize data in 'sum' accumulation array according to weighting scheme
[410]359
[221]360  normalize(sum, sumSq, nPts, wtType, asap::ChanAxis, nAxesSub);
[144]361
362// Create and fill container.  The container we clone will be from
363// the last Table and the first row that went into the current
364// accumulation.  It probably doesn't matter that much really...
365
366  Float nR(nAccum);
[410]367  SDContainer scOut = in[tableStart]->getSDContainer(rowStart);
368  fillSDC(scOut, sum.getMask(), sum.getArray(), tSysSum/nR, outScanID,
[144]369           timeSum/nR, intSum, sourceNameStart, freqIDStart);
[410]370  pTabOut->putSDContainer(scOut);
[304]371  pTabOut->resetCursor();
[144]372//
373  return CountedPtr<SDMemTable>(pTabOut);
[2]374}
[9]375
[144]376
377
[248]378CountedPtr<SDMemTable> SDMath::binaryOperate (const CountedPtr<SDMemTable>& left,
379                                              const CountedPtr<SDMemTable>& right,
[294]380                                              const String& op, Bool preserve,
381                                              Bool doTSys)  const
[185]382{
[85]383
[248]384// Check operator
[130]385
[234]386  String op2(op);
387  op2.upcase();
388  uInt what = 0;
389  if (op2=="ADD") {
390     what = 0;
391  } else if (op2=="SUB") {
392     what = 1;
393  } else if (op2=="MUL") {
394     what = 2;
395  } else if (op2=="DIV") {
396     what = 3;
[248]397  } else if (op2=="QUOTIENT") {
398     what = 4;
[294]399     doTSys = True;
[234]400  } else {
[248]401    throw( AipsError("Unrecognized operation"));
[234]402  }
403
404// Check rows
405
[248]406  const uInt nRowLeft = left->nRow();
407  const uInt nRowRight = right->nRow();
408  Bool ok = (nRowRight==1&&nRowLeft>0) ||
409            (nRowRight>=1&&nRowLeft==nRowRight);
410  if (!ok) {
411     throw (AipsError("The right Scan Table can have one row or the same number of rows as the left Scan Table"));
[234]412  }
413
[248]414// Input Tables
[234]415
416  const Table& tLeft = left->table();
417  const Table& tRight = right->table();
[248]418
419// TSys columns
420
[294]421  ROArrayColumn<Float> tSysLeftCol, tSysRightCol;
422  if (doTSys) {
423     tSysLeftCol.attach(tLeft, "TSYS");
424     tSysRightCol.attach(tRight, "TSYS");
425  }
[234]426
[248]427// First row for right
[234]428
[248]429  Array<Float> tSysLeftArr, tSysRightArr;
[294]430  if (doTSys) tSysRightCol.get(0, tSysRightArr);
[248]431  MaskedArray<Float>* pMRight = new MaskedArray<Float>(right->rowAsMaskedArray(0));
432  IPosition shpRight = pMRight->shape();
433
434// Output Table cloned from left
435
[234]436  SDMemTable* pTabOut = new SDMemTable(*left, True);
437
438// Loop over rows
439
[248]440  for (uInt i=0; i<nRowLeft; i++) {
[234]441
442// Get data
[248]443
[234]444     MaskedArray<Float> mLeft(left->rowAsMaskedArray(i));
[248]445     IPosition shpLeft = mLeft.shape();
[294]446     if (doTSys) tSysLeftCol.get(i, tSysLeftArr);
[234]447//
[248]448     if (nRowRight>1) {
449        delete pMRight;
450        pMRight = new MaskedArray<Float>(right->rowAsMaskedArray(i));
451        shpRight = pMRight->shape();
[294]452        if (doTSys) tSysRightCol.get(i, tSysRightArr);
[234]453     }
[248]454//
455     if (!shpRight.isEqual(shpLeft)) {
456        throw(AipsError("left and right scan tables are not conformant"));
457     }
[294]458     if (doTSys) {
459        if (!tSysRightArr.shape().isEqual(tSysRightArr.shape())) {
460           throw(AipsError("left and right Tsys data are not conformant"));
461        }
462        if (!shpRight.isEqual(tSysRightArr.shape())) {
463           throw(AipsError("left and right scan tables are not conformant"));
464        }
[248]465     }
[234]466
467// Make container
468
469     SDContainer sc = left->getSDContainer(i);
470
471// Operate on data and TSys
472
473     if (what==0) {                               
[248]474        MaskedArray<Float> tmp = mLeft + *pMRight;
[234]475        putDataInSDC(sc, tmp.getArray(), tmp.getMask());
[294]476        if (doTSys) sc.putTsys(tSysLeftArr+tSysRightArr);
[234]477     } else if (what==1) {
[248]478        MaskedArray<Float> tmp = mLeft - *pMRight;
[234]479        putDataInSDC(sc, tmp.getArray(), tmp.getMask());
[294]480        if (doTSys) sc.putTsys(tSysLeftArr-tSysRightArr);
[234]481     } else if (what==2) {
[248]482        MaskedArray<Float> tmp = mLeft * *pMRight;
[234]483        putDataInSDC(sc, tmp.getArray(), tmp.getMask());
[294]484        if (doTSys) sc.putTsys(tSysLeftArr*tSysRightArr);
[234]485     } else if (what==3) {
[248]486        MaskedArray<Float> tmp = mLeft / *pMRight;
[234]487        putDataInSDC(sc, tmp.getArray(), tmp.getMask());
[294]488        if (doTSys) sc.putTsys(tSysLeftArr/tSysRightArr);
[248]489     } else if (what==4) {
490        if (preserve) {     
491           MaskedArray<Float> tmp = (tSysRightArr * mLeft / *pMRight) - tSysRightArr;
492           putDataInSDC(sc, tmp.getArray(), tmp.getMask());
493        } else {
494           MaskedArray<Float> tmp = (tSysRightArr * mLeft / *pMRight) - tSysLeftArr;
495           putDataInSDC(sc, tmp.getArray(), tmp.getMask());
496        }
497        sc.putTsys(tSysRightArr);
[234]498     }
499
500// Put new row in output Table
501
[171]502     pTabOut->putSDContainer(sc);
[130]503  }
[248]504  if (pMRight) delete pMRight;
[304]505  pTabOut->resetCursor();
[130]506//
[171]507  return CountedPtr<SDMemTable>(pTabOut);
[9]508}
[48]509
[146]510
511
[185]512std::vector<float> SDMath::statistic(const CountedPtr<SDMemTable>& in,
[234]513                                     const Vector<Bool>& mask,
514                                     const String& which, Int row) const
[130]515//
516// Perhaps iteration over pol/beam/if should be in here
517// and inside the nrow iteration ?
518//
519{
520  const uInt nRow = in->nRow();
521
522// Specify cursor location
523
[152]524  IPosition start, end;
[434]525  Bool doAll = False;
526  setCursorSlice (start, end, doAll, *in);
[130]527
528// Loop over rows
529
[234]530  const uInt nEl = mask.nelements();
531  uInt iStart = 0;
532  uInt iEnd = in->nRow()-1;
533// 
534  if (row>=0) {
535     iStart = row;
536     iEnd = row;
537  }
538//
539  std::vector<float> result(iEnd-iStart+1);
540  for (uInt ii=iStart; ii <= iEnd; ++ii) {
[130]541
542// Get row and deconstruct
543
[434]544     MaskedArray<Float> dataIn = (in->rowAsMaskedArray(ii))(start,end);
545     Array<Float> v = dataIn.getArray().nonDegenerate();
546     Array<Bool>  m = dataIn.getMask().nonDegenerate();
[130]547
548// Access desired piece of data
549
[434]550//     Array<Float> v((arr(start,end)).nonDegenerate());
551//     Array<Bool> m((barr(start,end)).nonDegenerate());
[130]552
553// Apply OTF mask
554
555     MaskedArray<Float> tmp;
556     if (m.nelements()==nEl) {
[234]557       tmp.setData(v,m&&mask);
[130]558     } else {
559       tmp.setData(v,m);
560     }
561
562// Get statistic
563
[234]564     result[ii-iStart] = mathutil::statistics(which, tmp);
[130]565  }
566//
567  return result;
568}
569
[146]570
[234]571SDMemTable* SDMath::bin(const SDMemTable& in, Int width) const
[144]572{
[169]573  SDHeader sh = in.getSDHeader();
574  SDMemTable* pTabOut = new SDMemTable(in, True);
[163]575
[169]576// Bin up SpectralCoordinates
[163]577
[169]578  IPosition factors(1);
579  factors(0) = width;
580  for (uInt j=0; j<in.nCoordinates(); ++j) {
581    CoordinateSystem cSys;
[288]582    cSys.addCoordinate(in.getSpectralCoordinate(j));
[169]583    CoordinateSystem cSysBin =
[185]584      CoordinateUtil::makeBinnedCoordinateSystem(factors, cSys, False);
[169]585//
586    SpectralCoordinate sCBin = cSysBin.spectralCoordinate(0);
587    pTabOut->setCoordinate(sCBin, j);
588  }
[163]589
[169]590// Use RebinLattice to find shape
[130]591
[169]592  IPosition shapeIn(1,sh.nchan);
[185]593  IPosition shapeOut = RebinLattice<Float>::rebinShape(shapeIn, factors);
[169]594  sh.nchan = shapeOut(0);
595  pTabOut->putSDHeader(sh);
[144]596
[169]597// Loop over rows and bin along channel axis
598 
599  for (uInt i=0; i < in.nRow(); ++i) {
600    SDContainer sc = in.getSDContainer(i);
[144]601//
[169]602    Array<Float> tSys(sc.getTsys());                           // Get it out before sc changes shape
[144]603
[169]604// Bin up spectrum
[144]605
[169]606    MaskedArray<Float> marr(in.rowAsMaskedArray(i));
607    MaskedArray<Float> marrout;
[221]608    LatticeUtilities::bin(marrout, marr, asap::ChanAxis, width);
[144]609
[169]610// Put back the binned data and flags
[144]611
[169]612    IPosition ip2 = marrout.shape();
613    sc.resize(ip2);
[146]614//
[185]615    putDataInSDC(sc, marrout.getArray(), marrout.getMask());
[146]616
[169]617// Bin up Tsys. 
[146]618
[169]619    Array<Bool> allGood(tSys.shape(),True);
620    MaskedArray<Float> tSysIn(tSys, allGood, True);
[146]621//
[169]622    MaskedArray<Float> tSysOut;   
[221]623    LatticeUtilities::bin(tSysOut, tSysIn, asap::ChanAxis, width);
[169]624    sc.putTsys(tSysOut.getArray());
[146]625//
[169]626    pTabOut->putSDContainer(sc);
627  }
628  return pTabOut;
[146]629}
630
[299]631SDMemTable* SDMath::resample (const SDMemTable& in, const String& methodStr,
632                              Float width) const
633//
634// Should add the possibility of width being specified in km/s. This means
635// that for each freqID (SpectralCoordinate) we will need to convert to an
636// average channel width (say at the reference pixel).  Then we would need 
637// to be careful to make sure each spectrum (of different freqID)
638// is the same length.
639//
640{
641   Bool doVel = False;
[309]642   if (doVel) {
643      for (uInt j=0; j<in.nCoordinates(); ++j) {
644         SpectralCoordinate sC = in.getSpectralCoordinate(j);
645      }
646   }
[299]647
648// Interpolation method
649
[317]650  InterpolateArray1D<Double,Float>::InterpolationMethod interp;
651  convertInterpString(interp, methodStr);
652  Int interpMethod(interp);
[299]653
654// Make output table
655
656  SDMemTable* pTabOut = new SDMemTable(in, True);
657
658// Resample SpectralCoordinates (one per freqID)
659
660  const uInt nCoord = in.nCoordinates();
661  Vector<Float> offset(1,0.0);
662  Vector<Float> factors(1,1.0/width);
663  Vector<Int> newShape;
664  for (uInt j=0; j<in.nCoordinates(); ++j) {
665    CoordinateSystem cSys;
666    cSys.addCoordinate(in.getSpectralCoordinate(j));
667    CoordinateSystem cSys2 = cSys.subImage(offset, factors, newShape);
668    SpectralCoordinate sC = cSys2.spectralCoordinate(0);
669//
670    pTabOut->setCoordinate(sC, j);
671  }
672
673// Get header
674
675  SDHeader sh = in.getSDHeader();
676
677// Generate resampling vectors
678
679  const uInt nChanIn = sh.nchan;
680  Vector<Float> xIn(nChanIn);
681  indgen(xIn);
682//
683  Int fac =  Int(nChanIn/width);
684  Vector<Float> xOut(fac+10);          // 10 to be safe - resize later
685  uInt i = 0;
686  Float x = 0.0;
687  Bool more = True;
688  while (more) {
689    xOut(i) = x;
690//
691    i++;
692    x += width;
693    if (x>nChanIn-1) more = False;
694  }
695  const uInt nChanOut = i;
696  xOut.resize(nChanOut,True);
697//
698  IPosition shapeIn(in.rowAsMaskedArray(0).shape());
699  sh.nchan = nChanOut;
700  pTabOut->putSDHeader(sh);
701
702// Loop over rows and resample along channel axis
703
704  Array<Float> valuesOut;
705  Array<Bool> maskOut; 
706  Array<Float> tSysOut;
707  Array<Bool> tSysMaskIn(shapeIn,True);
708  Array<Bool> tSysMaskOut;
709  for (uInt i=0; i < in.nRow(); ++i) {
710
711// Get container
712
713     SDContainer sc = in.getSDContainer(i);
714
715// Get data and Tsys
716   
717     const Array<Float>& tSysIn = sc.getTsys();
718     const MaskedArray<Float>& dataIn(in.rowAsMaskedArray(i));
719     Array<Float> valuesIn = dataIn.getArray();
720     Array<Bool> maskIn = dataIn.getMask();
721
722// Interpolate data
723
724     InterpolateArray1D<Float,Float>::interpolate(valuesOut, maskOut, xOut,
725                                                  xIn, valuesIn, maskIn,
726                                                  interpMethod, True, True);
727     sc.resize(valuesOut.shape());
728     putDataInSDC(sc, valuesOut, maskOut);
729
730// Interpolate TSys
731
732     InterpolateArray1D<Float,Float>::interpolate(tSysOut, tSysMaskOut, xOut,
733                                                  xIn, tSysIn, tSysMaskIn,
734                                                  interpMethod, True, True);
735    sc.putTsys(tSysOut);
736
737// Put container in output
738
739    pTabOut->putSDContainer(sc);
740  }
741//
742  return pTabOut;
743}
744
[248]745SDMemTable* SDMath::unaryOperate(const SDMemTable& in, Float val, Bool doAll,
[294]746                                 uInt what, Bool doTSys) const
[152]747//
748// what = 0   Multiply
749//        1   Add
[146]750{
[152]751   SDMemTable* pOut = new SDMemTable(in,False);
752   const Table& tOut = pOut->table();
[294]753   ArrayColumn<Float> specCol(tOut,"SPECTRA"); 
754   ArrayColumn<Float> tSysCol(tOut,"TSYS"); 
755   Array<Float> tSysArr;
[434]756
757// Get data slice bounds
758
759   IPosition start, end;
760   setCursorSlice (start, end, doAll, in);
[146]761//
[434]762   for (uInt i=0; i<tOut.nrow(); i++) {
[294]763
764// Modify data
765
[434]766      MaskedArray<Float> dataIn(pOut->rowAsMaskedArray(i));
767      MaskedArray<Float> dataIn2 = dataIn(start,end);    // Reference
768      if (what==0) {
769         dataIn2 *= val;
770      } else if (what==1) {
771         dataIn2 += val;
772      }
773      specCol.put(i, dataIn.getArray());
[294]774
775// Modify Tsys
776
[434]777      if (doTSys) {
778         tSysCol.get(i, tSysArr);
779         Array<Float> tSysArr2 = tSysArr(start,end);     // Reference
[152]780         if (what==0) {
[434]781            tSysArr2 *= val;
[152]782         } else if (what==1) {
[434]783            tSysArr2 += val;
[152]784         }
[434]785         tSysCol.put(i, tSysArr);
[152]786      }
787   }
788//
[146]789   return pOut;
790}
791
792
[152]793
[315]794SDMemTable* SDMath::averagePol(const SDMemTable& in, const Vector<Bool>& mask,
795                               const String& weightStr) const
[152]796//
[165]797// Average all polarizations together, weighted by variance
798//
799{
[315]800   WeightType wtType = NONE;
801   convertWeightString(wtType, weightStr);
[165]802
803   const uInt nRows = in.nRow();
804
805// Create output Table and reshape number of polarizations
806
807  Bool clear=True;
808  SDMemTable* pTabOut = new SDMemTable(in, clear);
809  SDHeader header = pTabOut->getSDHeader();
810  header.npol = 1;
811  pTabOut->putSDHeader(header);
812
813// Shape of input and output data
814
[448]815  const IPosition& shapeIn = in.rowAsMaskedArray(0).shape();
[165]816  IPosition shapeOut(shapeIn);
[262]817  shapeOut(asap::PolAxis) = 1;                          // Average all polarizations
[315]818  if (shapeIn(asap::PolAxis)==1) {
819     throw(AipsError("The input has only one polarisation"));
820  }
[165]821//
[262]822  const uInt nChan = shapeIn(asap::ChanAxis);
[165]823  const IPosition vecShapeOut(4,1,1,1,nChan);     // A multi-dim form of a Vector shape
824  IPosition start(4), end(4);
825
826// Output arrays
827
828  Array<Float> outData(shapeOut, 0.0);
829  Array<Bool> outMask(shapeOut, True);
[262]830  const IPosition axes(2, asap::PolAxis, asap::ChanAxis);              // pol-channel plane
[165]831//
[262]832  const Bool useMask = (mask.nelements() == shapeIn(asap::ChanAxis));
[165]833
834// Loop over rows
835
836   for (uInt iRow=0; iRow<nRows; iRow++) {
837
838// Get data for this row
839
840      MaskedArray<Float> marr(in.rowAsMaskedArray(iRow));
841      Array<Float>& arr = marr.getRWArray();
842      const Array<Bool>& barr = marr.getMask();
843
844// Make iterators to iterate by pol-channel planes
845
846      ReadOnlyArrayIterator<Float> itDataPlane(arr, axes);
847      ReadOnlyArrayIterator<Bool> itMaskPlane(barr, axes);
848
849// Accumulations
850
851      Float fac = 1.0;
852      Vector<Float> vecSum(nChan,0.0);
853
854// Iterate through data by pol-channel planes
855
856      while (!itDataPlane.pastEnd()) {
857
858// Iterate through plane by polarization  and accumulate Vectors
859
860        Vector<Float> t1(nChan); t1 = 0.0;
861        Vector<Bool> t2(nChan); t2 = True;
862        MaskedArray<Float> vecSum(t1,t2);
[315]863        Float norm = 0.0;
[165]864        {
865           ReadOnlyVectorIterator<Float> itDataVec(itDataPlane.array(), 1);
866           ReadOnlyVectorIterator<Bool> itMaskVec(itMaskPlane.array(), 1);
867           while (!itDataVec.pastEnd()) {     
868
[315]869// Create MA of data & mask (optionally including OTF mask) and  get variance for this spectrum
[165]870
871              if (useMask) {
872                 const MaskedArray<Float> spec(itDataVec.vector(),mask&&itMaskVec.vector());
[315]873                 if (wtType==VAR) fac = 1.0 / variance(spec);
[165]874              } else {
875                 const MaskedArray<Float> spec(itDataVec.vector(),itMaskVec.vector());
[315]876                 if (wtType==VAR) fac = 1.0 / variance(spec);
[165]877              }
878
879// Normalize spectrum (without OTF mask) and accumulate
880
881              const MaskedArray<Float> spec(fac*itDataVec.vector(), itMaskVec.vector());
882              vecSum += spec;
[315]883              norm += fac;
[165]884
885// Next
886
887              itDataVec.next();
888              itMaskVec.next();
889           }
890        }
891
892// Normalize summed spectrum
893
[315]894        vecSum /= norm;
[165]895
896// FInd position in input data array.  We are iterating by pol-channel
897// plane so all that will change is beam and IF and that's what we want.
898
899        IPosition pos = itDataPlane.pos();
900
901// Write out data. This is a bit messy. We have to reform the Vector
902// accumulator into an Array of shape (1,1,1,nChan)
903
904        start = pos;
905        end = pos;
[262]906        end(asap::ChanAxis) = nChan-1;
[165]907        outData(start,end) = vecSum.getArray().reform(vecShapeOut);
908        outMask(start,end) = vecSum.getMask().reform(vecShapeOut);
909
910// Step to next beam/IF combination
911
912        itDataPlane.next();
913        itMaskPlane.next();
914      }
915
916// Generate output container and write it to output table
917
918      SDContainer sc = in.getSDContainer();
919      sc.resize(shapeOut);
920//
[185]921      putDataInSDC(sc, outData, outMask);
[165]922      pTabOut->putSDContainer(sc);
923   }
[304]924
925// Set polarization cursor to 0
926
927  pTabOut->setPol(0);
[165]928//
929  return pTabOut;
930}
[167]931
[169]932
[185]933SDMemTable* SDMath::smooth(const SDMemTable& in,
934                           const casa::String& kernelType,
[234]935                           casa::Float width, Bool doAll) const
[299]936//
937// Should smooth TSys as well
938//
[177]939{
[169]940
[177]941// Number of channels
[169]942
[434]943   const uInt nChan = in.nChan();
[177]944
945// Generate Kernel
946
[185]947   VectorKernel::KernelTypes type = VectorKernel::toKernelType(kernelType);
[177]948   Vector<Float> kernel = VectorKernel::make(type, width, nChan, True, False);
949
950// Generate Convolver
951
952   IPosition shape(1,nChan);
953   Convolver<Float> conv(kernel, shape);
954
955// New Table
956
957   SDMemTable* pTabOut = new SDMemTable(in,True);
958
959// Output Vectors
960
[434]961   Vector<Float> valuesOut(nChan);
962   Vector<Bool> maskOut(nChan);
[177]963
[434]964// Get data slice bounds
965
966   IPosition start, end;
967   setCursorSlice (start, end, doAll, in);
968
[177]969// Loop over rows in Table
970
[434]971   for (uInt ri=0; ri < in.nRow(); ++ri) {
[177]972
[434]973// Get slice of data
[177]974
[434]975      MaskedArray<Float> dataIn = in.rowAsMaskedArray(ri);
[177]976
[434]977// Deconstruct and get slices which reference these arrays
[177]978
[434]979      Array<Float> valuesIn = dataIn.getArray();
980      Array<Bool> maskIn = dataIn.getMask();
[177]981//
[434]982      Array<Float> valuesIn2 = valuesIn(start,end);       // ref to valuesIn
983      Array<Bool> maskIn2 = maskIn(start,end);
[177]984
[434]985// Iterate through by spectra
[177]986
[434]987      VectorIterator<Float> itValues(valuesIn2, asap::ChanAxis);
988      VectorIterator<Bool> itMask(maskIn2, asap::ChanAxis);
989      while (!itValues.pastEnd()) {
990       
[177]991// Smooth
992
[434]993         if (kernelType==VectorKernel::HANNING) {
994            mathutil::hanning(valuesOut, maskOut, itValues.vector(), itMask.vector());
995            itMask.vector() = maskOut;
996         } else {
997            mathutil::replaceMaskByZero(itValues.vector(), itMask.vector());
998            conv.linearConv(valuesOut, itValues.vector());
999         }
1000//   
1001         itValues.vector() = valuesOut;
1002//
1003         itValues.next();
1004         itMask.next();
1005      }
[177]1006
1007// Create and put back
1008
[434]1009      SDContainer sc = in.getSDContainer(ri);
1010      putDataInSDC(sc, valuesIn, maskIn);
[177]1011//
[434]1012      pTabOut->putSDContainer(sc);
1013   }
[177]1014//
1015  return pTabOut;
1016}
1017
1018
[262]1019
[354]1020SDMemTable* SDMath::convertFlux (const SDMemTable& in, Float D, Float etaAp,
1021                                 Float JyPerK, Bool doAll) const
[221]1022//
[478]1023// etaAp = aperture efficiency (-1 means find)
1024// D     = geometric diameter (m)  (-1 means find)
[354]1025// JyPerK
[221]1026//
1027{
1028  SDHeader sh = in.getSDHeader();
1029  SDMemTable* pTabOut = new SDMemTable(in, True);
[177]1030
[354]1031// Find out how to convert values into Jy and K (e.g. units might be mJy or mK)
[221]1032// Also automatically find out what we are converting to according to the
1033// flux unit
[177]1034
[221]1035  Unit fluxUnit(sh.fluxunit);
1036  Unit K(String("K"));
1037  Unit JY(String("Jy"));
1038//
1039  Bool toKelvin = True;
[354]1040  Double cFac = 1.0;   
[221]1041  if (fluxUnit==JY) {
[414]1042     cout << "Converting to K" << endl;
[221]1043//
1044     Quantum<Double> t(1.0,fluxUnit);
1045     Quantum<Double> t2 = t.get(JY);
[354]1046     cFac = (t2 / t).getValue();               // value to Jy
[221]1047//
1048     toKelvin = True;
1049     sh.fluxunit = "K";
1050  } else if (fluxUnit==K) {
[414]1051     cout << "Converting to Jy" << endl;
[221]1052//
1053     Quantum<Double> t(1.0,fluxUnit);
1054     Quantum<Double> t2 = t.get(K);
[354]1055     cFac = (t2 / t).getValue();              // value to K
[221]1056//
1057     toKelvin = False;
1058     sh.fluxunit = "Jy";
1059  } else {
[248]1060     throw(AipsError("Unrecognized brightness units in Table - must be consistent with Jy or K"));
[221]1061  }
1062  pTabOut->putSDHeader(sh);
[177]1063
[354]1064// Make sure input values are converted to either Jy or K first...
[221]1065
[354]1066  Float factor = cFac;
[221]1067
[354]1068// Select method
[221]1069
[354]1070  if (JyPerK>0.0) {
1071     factor *= JyPerK;
1072     if (toKelvin) factor = 1.0 / JyPerK;
1073//
[478]1074     cout << "Jy/K = " << JyPerK << endl;
[354]1075     Vector<Float> factors(in.nRow(), factor);
[480]1076     scaleByVector(pTabOut, in, doAll, factors, False);
[354]1077  } else if (etaAp>0.0) {
[478]1078     Bool throwIt = True;
1079     Instrument inst = SDAttr::convertInstrument (sh.antennaname, throwIt);
1080     SDAttr sda;
1081     if (D < 0) D = sda.diameter(inst);
1082     Float JyPerK = SDAttr::findJyPerK (etaAp,D);
1083     cout << "Jy/K = " << JyPerK << endl;
1084     factor *= JyPerK;
[354]1085     if (toKelvin) {
1086        factor = 1.0 / factor;
1087     }
1088//
1089     Vector<Float> factors(in.nRow(), factor);
[480]1090     scaleByVector(pTabOut, in, doAll, factors, False);
[354]1091  } else {
[221]1092
[354]1093// OK now we must deal with automatic look up of values.
1094// We must also deal with the fact that the factors need
1095// to be computed per IF and may be different and may
1096// change per integration.
[221]1097
[414]1098     cout << "Looking up conversion factors" << endl;
[354]1099     convertBrightnessUnits (pTabOut, in, toKelvin, cFac, doAll);
1100  }
[221]1101//
1102  return pTabOut;
1103}
1104
1105
[354]1106
1107
1108
[234]1109SDMemTable* SDMath::gainElevation (const SDMemTable& in, const Vector<Float>& coeffs,
1110                                   const String& fileName,
1111                                   const String& methodStr, Bool doAll) const
[227]1112{
[234]1113
1114// Get header and clone output table
1115
[227]1116  SDHeader sh = in.getSDHeader();
1117  SDMemTable* pTabOut = new SDMemTable(in, True);
1118
[234]1119// Get elevation data from SDMemTable and convert to degrees
[227]1120
1121  const Table& tab = in.table();
1122  ROScalarColumn<Float> elev(tab, "ELEVATION");
[234]1123  Vector<Float> x = elev.getColumn();
[363]1124  x *= Float(180 / C::pi);                        // Degrees
[227]1125//
[234]1126  const uInt nC = coeffs.nelements();
1127  if (fileName.length()>0 && nC>0) {
[248]1128     throw(AipsError("You must choose either polynomial coefficients or an ascii file, not both"));
[234]1129  }
1130
1131// Correct
1132
1133  if (nC>0 || fileName.length()==0) {
1134
1135// Find instrument
1136
1137     Bool throwIt = True;
[478]1138     Instrument inst = SDAttr::convertInstrument (sh.antennaname, throwIt);
[234]1139     
1140// Set polynomial
1141
1142     Polynomial<Float>* pPoly = 0;
1143     Vector<Float> coeff;
1144     String msg;
1145     if (nC>0) {
1146        pPoly = new Polynomial<Float>(nC);
1147        coeff = coeffs;
1148        msg = String("user");
1149     } else {
[363]1150        SDAttr sdAttr;
1151        coeff = sdAttr.gainElevationPoly(inst);
1152        pPoly = new Polynomial<Float>(3);
[234]1153        msg = String("built in");
1154     }
[227]1155//
[234]1156     if (coeff.nelements()>0) {
1157        pPoly->setCoefficients(coeff);
1158     } else {
[363]1159        throw(AipsError("There is no known gain-elevation polynomial known for this instrument"));
[234]1160     }
1161//
[414]1162     cout << "Making polynomial correction with " << msg << " coefficients" << endl;
[234]1163     const uInt nRow = in.nRow();
1164     Vector<Float> factor(nRow);
1165     for (uInt i=0; i<nRow; i++) {
[480]1166        factor[i] = 1.0 / (*pPoly)(x[i]);
[234]1167     }
1168     delete pPoly;
1169//
[480]1170     scaleByVector (pTabOut, in, doAll, factor, True);
[234]1171  } else {
1172
1173// Indicate which columns to read from ascii file
1174
1175     String col0("ELEVATION");
1176     String col1("FACTOR");
1177
1178// Read and correct
1179
[414]1180     cout << "Making correction from ascii Table" << endl;
[480]1181     scaleFromAsciiTable (pTabOut, in, fileName, col0, col1,
1182                          methodStr, doAll, x, True);
[234]1183   }
1184//
1185   return pTabOut;
[230]1186}
[227]1187
[230]1188 
[227]1189
[234]1190SDMemTable* SDMath::opacity (const SDMemTable& in, Float tau, Bool doAll) const
1191{
[227]1192
[234]1193// Get header and clone output table
[227]1194
[234]1195  SDHeader sh = in.getSDHeader();
1196  SDMemTable* pTabOut = new SDMemTable(in, True);
1197
1198// Get elevation data from SDMemTable and convert to degrees
1199
1200  const Table& tab = in.table();
1201  ROScalarColumn<Float> elev(tab, "ELEVATION");
1202  Vector<Float> zDist = elev.getColumn();
1203  zDist = Float(C::pi_2) - zDist;
1204
1205// Generate correction factor
1206
1207  const uInt nRow = in.nRow();
1208  Vector<Float> factor(nRow);
1209  Vector<Float> factor2(nRow);
1210  for (uInt i=0; i<nRow; i++) {
1211     factor[i] = exp(tau)/cos(zDist[i]);
1212  }
1213
1214// Correct
1215
[480]1216  scaleByVector (pTabOut, in, doAll, factor, True);
[234]1217//
1218  return pTabOut;
1219}
1220
1221
[457]1222void SDMath::rotateXYPhase (SDMemTable& in, Float value, Bool doAll)
1223//
1224// phase in degrees
1225// Applies to all Beams and IFs
1226// Might want to optionally select on Beam/IF
1227//
1228{
1229   if (in.nPol() != 4) {
1230      throw(AipsError("You must have 4 polarizations to run this function"));
1231   }
1232//   
1233   const Table& tabIn = in.table();
1234   ArrayColumn<Float> specCol(tabIn,"SPECTRA"); 
1235   IPosition start(asap::nAxes,0);
1236   IPosition end(asap::nAxes);
[234]1237
[457]1238// Set cursor slice. Assumes shape the same for all rows
1239 
1240   setCursorSlice (start, end, doAll, in);
1241   IPosition start3(start);
1242   start3(asap::PolAxis) = 2;                 // Real(XY)
1243   IPosition end3(end);
1244   end3(asap::PolAxis) = 2;   
1245//
1246   IPosition start4(start);
1247   start4(asap::PolAxis) = 3;                 // Imag (XY)
1248   IPosition end4(end);
1249   end4(asap::PolAxis) = 3;
1250// 
1251   uInt nRow = in.nRow();
1252   Array<Float> data;
1253   for (uInt i=0; i<nRow;++i) {
1254      specCol.get(i,data);
1255      IPosition shape = data.shape();
1256 
1257// Get polarization slice references
1258 
1259      Array<Float> C3 = data(start3,end3);
1260      Array<Float> C4 = data(start4,end4);
1261   
1262// Rotate
1263 
1264      SDPolUtil::rotateXYPhase(C3, C4, value);
1265   
1266// Put
1267   
1268      specCol.put(i,data);
1269   }
1270}     
[234]1271
[457]1272
1273
[169]1274// 'private' functions
1275
[354]1276void SDMath::convertBrightnessUnits (SDMemTable* pTabOut, const SDMemTable& in,
1277                                     Bool toKelvin, Float cFac, Bool doAll) const
1278{
[309]1279
[354]1280// Get header
1281
1282   SDHeader sh = in.getSDHeader();
1283   const uInt nChan = sh.nchan;
1284
1285// Get instrument
1286
1287   Bool throwIt = True;
[478]1288   Instrument inst = SDAttr::convertInstrument (sh.antennaname, throwIt);
[354]1289
1290// Get Diameter (m)
1291
1292   SDAttr sdAtt;
1293
1294// Get epoch of first row
1295
1296   MEpoch dateObs = in.getEpoch(0);
1297
1298// Generate a Vector of correction factors. One per FreqID
1299
1300   SDFrequencyTable sdft = in.getSDFreqTable();
1301   Vector<uInt> freqIDs;
1302//
1303   Vector<Float> freqs(sdft.length());
1304   for (uInt i=0; i<sdft.length(); i++) {
1305      freqs(i) = (nChan/2 - sdft.referencePixel(i))*sdft.increment(i) + sdft.referenceValue(i);
1306   }
1307//
1308   Vector<Float> JyPerK = sdAtt.JyPerK(inst, dateObs, freqs);
[414]1309   cout << "Jy/K = " << JyPerK << endl;
[354]1310   Vector<Float> factors = cFac * JyPerK;
1311   if (toKelvin) factors = Float(1.0) / factors;
1312
[434]1313// Get data slice bounds
[354]1314
1315   IPosition start, end;
[434]1316   setCursorSlice (start, end, doAll, in);
[354]1317   const uInt ifAxis = in.getIF();
1318
1319// Iteration axes
1320
1321   IPosition axes(asap::nAxes-1,0);
1322   for (uInt i=0,j=0; i<asap::nAxes; i++) {
1323      if (i!=asap::IFAxis) {
1324         axes(j++) = i;
1325      }
1326   }
1327
1328// Loop over rows and apply correction factor
1329
1330   Float factor = 1.0; 
1331   const uInt axis = asap::ChanAxis;
1332   for (uInt i=0; i < in.nRow(); ++i) {
1333
1334// Get data
1335
[434]1336      MaskedArray<Float> dataIn = in.rowAsMaskedArray(i);
1337      Array<Float>& values = dataIn.getRWArray();           // Ref to dataIn
1338      Array<Float> values2 = values(start,end);             // Ref to values to dataIn
[354]1339
1340// Get SDCOntainer
1341
1342      SDContainer sc = in.getSDContainer(i);
1343
1344// Get FreqIDs
1345
1346      freqIDs = sc.getFreqMap();
1347
1348// Now the conversion factor depends only upon frequency
1349// So we need to iterate through by IF only giving
1350// us BEAM/POL/CHAN cubes
1351
[434]1352      ArrayIterator<Float> itIn(values2, axes);
1353      uInt ax = 0;
1354      while (!itIn.pastEnd()) {
1355        itIn.array() *= factors(freqIDs(ax));         // Writes back to dataIn
1356        itIn.next();
[354]1357      }
1358
1359// Write out
1360
1361      putDataInSDC(sc, dataIn.getArray(), dataIn.getMask());
1362//
1363      pTabOut->putSDContainer(sc);
1364   }
1365}
1366
1367
1368
[309]1369SDMemTable* SDMath::frequencyAlign (const SDMemTable& in,
1370                                   MFrequency::Types freqSystem,
[397]1371                                   const String& refTime,
1372                                   const String& methodStr,
1373                                   Bool perFreqID) const
[267]1374{
1375// Get Header
1376
1377   SDHeader sh = in.getSDHeader();
1378   const uInt nChan = sh.nchan;
1379   const uInt nRows = in.nRow();
[330]1380   const uInt nIF = sh.nif;
[267]1381
1382// Get Table reference
1383
1384   const Table& tabIn = in.table();
1385
1386// Get Columns from Table
1387
[294]1388   ROScalarColumn<Double> mjdCol(tabIn, "TIME");
1389   ROScalarColumn<String> srcCol(tabIn, "SRCNAME");
1390   ROArrayColumn<uInt> fqIDCol(tabIn, "FREQID");
1391   Vector<Double> times = mjdCol.getColumn();
[267]1392
[397]1393// Generate DataDesc table
[330]1394 
1395   Matrix<uInt> ddIdx;
1396   SDDataDesc dDesc;
[397]1397   generateDataDescTable (ddIdx, dDesc, nIF, in, tabIn, srcCol, fqIDCol, perFreqID);
[267]1398
[294]1399// Get reference Epoch to time of first row or given String
[267]1400
1401   Unit DAY(String("d"));
[272]1402   MEpoch::Ref epochRef(in.getTimeReference());
1403   MEpoch refEpoch;
1404   if (refTime.length()>0) {
1405      refEpoch = epochFromString(refTime, in.getTimeReference());
1406   } else {
[288]1407      refEpoch = in.getEpoch(0);
[272]1408   }
[414]1409   cout << "Aligning at reference Epoch " << formatEpoch(refEpoch)
1410        << " in frame " << MFrequency::showType(freqSystem) << endl;
1411   
[294]1412// Get Reference Position
[267]1413
[288]1414   MPosition refPos = in.getAntennaPosition();
[267]1415
[397]1416// Create FrequencyAligner Block. One FA for each possible
1417// source/freqID (perFreqID=True) or source/IF (perFreqID=False) combination
[267]1418
[330]1419   PtrBlock<FrequencyAligner<Float>* > a(dDesc.length());
[397]1420   generateFrequencyAligners (a, dDesc, in, nChan, freqSystem, refPos,
1421                              refEpoch, perFreqID);
[267]1422
[397]1423// Generate and fill output Frequency Table.  WHen perFreqID=True, there is one output FreqID
1424// for each entry in the SDDataDesc table.  However, in perFreqID=False mode, there may be
1425// some degeneracy, so we need a little translation map
[330]1426
1427   SDFrequencyTable freqTabOut = in.getSDFreqTable();
1428   freqTabOut.setLength(0);
1429   Vector<String> units(1);
1430   units = String("Hz");
1431   Bool linear=True;
1432//
[397]1433   Vector<uInt> ddFQTrans(dDesc.length(),0);
[330]1434   for (uInt i=0; i<dDesc.length(); i++) {
1435
1436// Get Aligned SC in Hz
1437
1438      SpectralCoordinate sC = a[i]->alignedSpectralCoordinate(linear);
1439      sC.setWorldAxisUnits(units);
1440
1441// Add FreqID
1442
[397]1443      uInt idx = freqTabOut.addFrequency(sC.referencePixel()[0],
1444                                         sC.referenceValue()[0],
1445                                         sC.increment()[0]);
1446      ddFQTrans(i) = idx;                                       // output FreqID = ddFQTrans(ddIdx)
[330]1447   }
1448
[317]1449// Interpolation method
1450
1451   InterpolateArray1D<Double,Float>::InterpolationMethod interp;
1452   convertInterpString(interp, methodStr);
1453
[267]1454// New output Table
1455
[414]1456   cout << "Create output table" << endl;
[267]1457   SDMemTable* pTabOut = new SDMemTable(in,True);
[330]1458   pTabOut->putSDFreqTable(freqTabOut);
[267]1459
1460// Loop over rows in Table
1461
[330]1462   Bool extrapolate=False;
[294]1463   const IPosition polChanAxes(2, asap::PolAxis, asap::ChanAxis);
1464   Bool useCachedAbcissa = False;
1465   Bool first = True;
1466   Bool ok;
1467   Vector<Float> yOut;
1468   Vector<Bool> maskOut;
[330]1469   Vector<uInt> freqID(nIF);
[309]1470   uInt ifIdx, faIdx;
[397]1471   Vector<Double> xIn;
[267]1472//
[294]1473   for (uInt iRow=0; iRow<nRows; ++iRow) {
1474      if (iRow%10==0) {
[414]1475         cout << "Processing row " << iRow << endl;
[294]1476      }
[267]1477
1478// Get EPoch
1479
[294]1480     Quantum<Double> tQ2(times[iRow],DAY);
1481     MVEpoch mv2(tQ2);
1482     MEpoch epoch(mv2, epochRef);
[267]1483
1484// Get copy of data
1485   
[294]1486     const MaskedArray<Float>& mArrIn(in.rowAsMaskedArray(iRow));
1487     Array<Float> values = mArrIn.getArray();
1488     Array<Bool> mask = mArrIn.getMask();
[267]1489
[309]1490// For each row, the Frequency abcissa will be the same regardless
[267]1491// of polarization.  For all other axes (IF and BEAM) the abcissa
1492// will change.  So we iterate through the data by pol-chan planes
[330]1493// to mimimize the work.  Probably won't work for multiple beams
1494// at this point.
[267]1495
[294]1496     ArrayIterator<Float> itValuesPlane(values, polChanAxes);
1497     ArrayIterator<Bool> itMaskPlane(mask, polChanAxes);
1498     while (!itValuesPlane.pastEnd()) {
[267]1499
[309]1500// Find the IF index and then the FA PtrBlock index
[267]1501
[294]1502        const IPosition& pos = itValuesPlane.pos();
1503        ifIdx = pos(asap::IFAxis);
[330]1504        faIdx = ddIdx(iRow,ifIdx);
[397]1505
1506// Generate abcissa for perIF.  Could cache this in a Matrix
1507// on a per scan basis.   Pretty expensive doing it for every row.
1508
1509        if (!perFreqID) {
1510           xIn.resize(nChan);
1511           uInt fqID = dDesc.secID(ddIdx(iRow,ifIdx));
1512           SpectralCoordinate sC = in.getSpectralCoordinate(fqID);
1513           Double w;
1514           for (uInt i=0; i<nChan; i++) {
1515              sC.toWorld(w,Double(i));
1516              xIn[i] = w;
1517           }
1518        }
[267]1519//
[294]1520        VectorIterator<Float> itValuesVec(itValuesPlane.array(), 1);
1521        VectorIterator<Bool> itMaskVec(itMaskPlane.array(), 1);
[330]1522
1523// Iterate through the plane by vector and align
1524
[294]1525        first = True;
1526        useCachedAbcissa=False;
1527        while (!itValuesVec.pastEnd()) {     
[397]1528           if (perFreqID) {
1529              ok = a[faIdx]->align (yOut, maskOut, itValuesVec.vector(),
1530                                    itMaskVec.vector(), epoch, useCachedAbcissa,
1531                                    interp, extrapolate);
1532           } else {
1533              ok = a[faIdx]->align (yOut, maskOut, xIn, itValuesVec.vector(),
1534                                    itMaskVec.vector(), epoch, useCachedAbcissa,
1535                                    interp, extrapolate);
1536           }
[330]1537//
[294]1538           itValuesVec.vector() = yOut;
1539           itMaskVec.vector() = maskOut;
[267]1540//
[294]1541           itValuesVec.next();
1542           itMaskVec.next();
[267]1543//
[294]1544           if (first) {
1545              useCachedAbcissa = True;
1546              first = False;
1547           }
1548        }
[267]1549//
1550       itValuesPlane.next();
1551       itMaskPlane.next();
[294]1552     }
[267]1553
[330]1554// Create SDContainer and put back
[267]1555
1556    SDContainer sc = in.getSDContainer(iRow);
1557    putDataInSDC(sc, values, mask);
[397]1558
1559// Set output FreqIDs
1560
[330]1561    for (uInt i=0; i<nIF; i++) {
[397]1562       uInt idx = ddIdx(iRow,i);               // Index into SDDataDesc table
1563       freqID(i) = ddFQTrans(idx);             // FreqID in output FQ table
[330]1564    }
1565    sc.putFreqMap(freqID);
[267]1566//
1567    pTabOut->putSDContainer(sc);
[294]1568   }
[267]1569
[309]1570// Now we must set the base and extra frames to the
1571// input frame
1572
1573   std::vector<string> info = pTabOut->getCoordInfo();
1574   info[1] = MFrequency::showType(freqSystem);   // Conversion frame
1575   info[3] = info[1];                            // Base frame
1576   pTabOut->setCoordInfo(info);
1577
[267]1578// Clean up PointerBlock
1579
[309]1580   for (uInt i=0; i<a.nelements(); i++) delete a[i];
[267]1581//
[309]1582   return pTabOut;
[267]1583}
1584
1585
[185]1586void SDMath::fillSDC(SDContainer& sc,
1587                     const Array<Bool>& mask,
1588                     const Array<Float>& data,
1589                     const Array<Float>& tSys,
1590                     Int scanID, Double timeStamp,
1591                     Double interval, const String& sourceName,
[227]1592                     const Vector<uInt>& freqID) const
[167]1593{
[169]1594// Data and mask
[167]1595
[185]1596  putDataInSDC(sc, data, mask);
[167]1597
[169]1598// TSys
1599
1600  sc.putTsys(tSys);
1601
1602// Time things
1603
1604  sc.timestamp = timeStamp;
1605  sc.interval = interval;
1606  sc.scanid = scanID;
[167]1607//
[169]1608  sc.sourcename = sourceName;
1609  sc.putFreqMap(freqID);
1610}
[167]1611
[185]1612void SDMath::normalize(MaskedArray<Float>& sum,
[169]1613                        const Array<Float>& sumSq,
1614                        const Array<Float>& nPts,
1615                        WeightType wtType, Int axis,
[227]1616                        Int nAxesSub) const
[169]1617{
1618   IPosition pos2(nAxesSub,0);
1619//
1620   if (wtType==NONE) {
[167]1621
[169]1622// We just average by the number of points accumulated.
1623// We need to make a MA out of nPts so that no divide by
1624// zeros occur
[167]1625
[169]1626      MaskedArray<Float> t(nPts, (nPts>Float(0.0)));
1627      sum /= t;
1628   } else if (wtType==VAR) {
[167]1629
[169]1630// Normalize each spectrum by sum(1/var) where the variance
1631// is worked out for each spectrum
1632
1633      Array<Float>& data = sum.getRWArray();
1634      VectorIterator<Float> itData(data, axis);
1635      while (!itData.pastEnd()) {
1636         pos2 = itData.pos().getFirst(nAxesSub);
1637         itData.vector() /= sumSq(pos2);
1638         itData.next();
1639      }
1640   } else if (wtType==TSYS) {
1641   }
1642}
1643
1644
[185]1645void SDMath::accumulate(Double& timeSum, Double& intSum, Int& nAccum,
1646                        MaskedArray<Float>& sum, Array<Float>& sumSq,
1647                        Array<Float>& nPts, Array<Float>& tSysSum,
1648                        const Array<Float>& tSys, const Array<Float>& nInc,
1649                        const Vector<Bool>& mask, Double time, Double interval,
1650                        const Block<CountedPtr<SDMemTable> >& in,
1651                        uInt iTab, uInt iRow, uInt axis,
1652                        uInt nAxesSub, Bool useMask,
[227]1653                        WeightType wtType) const
[169]1654{
1655
1656// Get data
1657
1658   MaskedArray<Float> dataIn(in[iTab]->rowAsMaskedArray(iRow));
1659   Array<Float>& valuesIn = dataIn.getRWArray();           // writable reference
1660   const Array<Bool>& maskIn = dataIn.getMask();          // RO reference
[167]1661//
[169]1662   if (wtType==NONE) {
1663      const MaskedArray<Float> n(nInc,dataIn.getMask());
1664      nPts += n;                               // Only accumulates where mask==T
1665   } else if (wtType==VAR) {
[167]1666
[169]1667// We are going to average the data, weighted by the noise for each pol, beam and IF.
1668// So therefore we need to iterate through by spectrum (axis 3)
[167]1669
[169]1670      VectorIterator<Float> itData(valuesIn, axis);
1671      ReadOnlyVectorIterator<Bool> itMask(maskIn, axis);
1672      Float fac = 1.0;
1673      IPosition pos(nAxesSub,0); 
1674//
1675      while (!itData.pastEnd()) {
[167]1676
[169]1677// Make MaskedArray of Vector, optionally apply OTF mask, and find scaling factor
[167]1678
[169]1679        if (useMask) {
1680           MaskedArray<Float> tmp(itData.vector(),mask&&itMask.vector());
1681           fac = 1.0/variance(tmp);
1682        } else {
1683           MaskedArray<Float> tmp(itData.vector(),itMask.vector());
1684           fac = 1.0/variance(tmp);
1685        }
1686
1687// Scale data
1688
1689        itData.vector() *= fac;     // Writes back into 'dataIn'
[167]1690//
[169]1691// Accumulate variance per if/pol/beam averaged over spectrum
1692// This method to get pos2 from itData.pos() is only valid
1693// because the spectral axis is the last one (so we can just
1694// copy the first nAXesSub positions out)
[167]1695
[169]1696        pos = itData.pos().getFirst(nAxesSub);
1697        sumSq(pos) += fac;
1698//
1699        itData.next();
1700        itMask.next();
1701      }
1702   } else if (wtType==TSYS) {
1703   }
[167]1704
[169]1705// Accumulate sum of (possibly scaled) data
1706
1707   sum += dataIn;
1708
1709// Accumulate Tsys, time, and interval
1710
1711   tSysSum += tSys;
1712   timeSum += time;
1713   intSum += interval;
1714   nAccum += 1;
1715}
1716
1717
[434]1718void SDMath::setCursorSlice (IPosition& start, IPosition& end, Bool doAll, const SDMemTable& in) const
[169]1719{
[434]1720  const uInt nDim = asap::nAxes;
1721  DebugAssert(nDim==4,AipsError);
[167]1722//
[169]1723  start.resize(nDim);
[434]1724  end.resize(nDim);
1725  if (doAll) {
1726     start = 0;
1727     end(0) = in.nBeam()-1;
1728     end(1) = in.nIF()-1;
1729     end(2) = in.nPol()-1;
1730     end(3) = in.nChan()-1;
1731  } else {
1732     start(0) = in.getBeam();
1733     end(0) = start(0);
[167]1734//
[434]1735     start(1) = in.getIF();
1736     end(1) = start(1);
1737//
1738     start(2) = in.getPol();
1739     end(2) = start(2);
1740//
1741     start(3) = 0;
1742     end(3) = in.nChan()-1;
1743   }
[169]1744}
1745
1746
[227]1747void SDMath::convertWeightString(WeightType& wtType, const String& weightStr) const
[169]1748{
1749  String tStr(weightStr);
1750  tStr.upcase();
1751  if (tStr.contains(String("NONE"))) {
1752     wtType = NONE;
1753  } else if (tStr.contains(String("VAR"))) {
1754     wtType = VAR;
1755  } else if (tStr.contains(String("TSYS"))) {
1756     wtType = TSYS;
[185]1757     throw(AipsError("T_sys weighting not yet implemented"));
[169]1758  } else {
[185]1759    throw(AipsError("Unrecognized weighting type"));
[167]1760  }
1761}
1762
[317]1763
1764void SDMath::convertInterpString(casa::InterpolateArray1D<Double,Float>::InterpolationMethod& type, 
1765                                 const casa::String& interp) const
[227]1766{
1767  String tStr(interp);
1768  tStr.upcase();
1769  if (tStr.contains(String("NEAR"))) {
[317]1770     type = InterpolateArray1D<Double,Float>::nearestNeighbour;
[227]1771  } else if (tStr.contains(String("LIN"))) {
[317]1772     type = InterpolateArray1D<Double,Float>::linear;
[227]1773  } else if (tStr.contains(String("CUB"))) {
[317]1774     type = InterpolateArray1D<Double,Float>::cubic;
[227]1775  } else if (tStr.contains(String("SPL"))) {
[317]1776     type = InterpolateArray1D<Double,Float>::spline;
[227]1777  } else {
1778    throw(AipsError("Unrecognized interpolation type"));
1779  }
1780}
1781
[185]1782void SDMath::putDataInSDC(SDContainer& sc, const Array<Float>& data,
[227]1783                          const Array<Bool>& mask) const
[169]1784{
1785    sc.putSpectrum(data);
1786//
1787    Array<uChar> outflags(data.shape());
1788    convertArray(outflags,!mask);
1789    sc.putFlags(outflags);
1790}
[227]1791
1792Table SDMath::readAsciiFile (const String& fileName) const
1793{
[230]1794   String formatString;
1795   Table tbl = readAsciiTable (formatString, Table::Memory, fileName, "", "", False);
[227]1796   return tbl;
1797}
[230]1798
1799
[234]1800
[480]1801void SDMath::scaleFromAsciiTable(SDMemTable* pTabOut,
1802                                 const SDMemTable& in, const String& fileName,
1803                                 const String& col0, const String& col1,
1804                                 const String& methodStr, Bool doAll,
1805                                 const Vector<Float>& xOut, Bool doTSys) const
[230]1806{
1807
1808// Read gain-elevation ascii file data into a Table.
1809
[234]1810  Table geTable = readAsciiFile (fileName);
[230]1811//
[480]1812  scaleFromTable (pTabOut, in, geTable, col0, col1, methodStr, doAll, xOut, doTSys);
[230]1813}
1814
[480]1815void SDMath::scaleFromTable(SDMemTable* pTabOut, const SDMemTable& in,
1816                            const Table& tTable, const String& col0,
1817                            const String& col1,
1818                            const String& methodStr, Bool doAll,
1819                            const Vector<Float>& xOut, Bool doTsys) const
[230]1820{
1821
1822// Get data from Table
1823
1824  ROScalarColumn<Float> geElCol(tTable, col0);
1825  ROScalarColumn<Float> geFacCol(tTable, col1);
1826  Vector<Float> xIn = geElCol.getColumn();
1827  Vector<Float> yIn = geFacCol.getColumn();
1828  Vector<Bool> maskIn(xIn.nelements(),True);
1829
1830// Interpolate (and extrapolate) with desired method
1831
[317]1832   InterpolateArray1D<Double,Float>::InterpolationMethod method;
[230]1833   convertInterpString(method, methodStr);
[317]1834   Int intMethod(method);
[230]1835//
1836   Vector<Float> yOut;
1837   Vector<Bool> maskOut;
1838   InterpolateArray1D<Float,Float>::interpolate(yOut, maskOut, xOut,
[317]1839                                                xIn, yIn, maskIn, intMethod,
[230]1840                                                True, True);
[234]1841// Apply
[230]1842
[480]1843   scaleByVector(pTabOut, in, doAll, Float(1.0)/yOut, doTsys);
[234]1844}
1845
1846
[480]1847void SDMath::scaleByVector(SDMemTable* pTabOut, const SDMemTable& in,
1848                           Bool doAll, const Vector<Float>& factor,
1849                           Bool doTSys) const
[234]1850{
[270]1851
[434]1852// Set up data slice
[230]1853
1854  IPosition start, end;
[434]1855  setCursorSlice (start, end, doAll, in);
[230]1856
[480]1857// Get Tsys column
1858
1859  const Table& tIn = in.table();
1860  ArrayColumn<Float> tSysCol(tIn, "TSYS");
1861  Array<Float> tSys;
1862
[270]1863// Loop over rows and apply correction factor
[230]1864 
1865  const uInt axis = asap::ChanAxis;
1866  for (uInt i=0; i < in.nRow(); ++i) {
1867
1868// Get data
1869
[434]1870     MaskedArray<Float> dataIn(in.rowAsMaskedArray(i));
1871     MaskedArray<Float> dataIn2 = dataIn(start,end);  // reference to dataIn
[480]1872//
1873     if (doTSys) {
1874        tSysCol.get(i, tSys);
1875        Array<Float> tSys2 = tSys(start,end) * factor[i];
1876        tSysCol.put(i, tSys);
1877     }
[230]1878
1879// Apply factor
1880
[434]1881     dataIn2 *= factor[i];
[230]1882
1883// Write out
1884
[434]1885     SDContainer sc = in.getSDContainer(i);
1886     putDataInSDC(sc, dataIn.getArray(), dataIn.getMask());
[230]1887//
[434]1888     pTabOut->putSDContainer(sc);
[230]1889  }
1890}
1891
[234]1892
[262]1893
1894
[330]1895void SDMath::generateDataDescTable (Matrix<uInt>& ddIdx,
1896                                    SDDataDesc& dDesc,
1897                                    uInt nIF,
1898                                    const SDMemTable& in,
1899                                    const Table& tabIn,
1900                                    const ROScalarColumn<String>& srcCol,
[397]1901                                    const ROArrayColumn<uInt>& fqIDCol,
1902                                    Bool perFreqID) const
[330]1903{
1904   const uInt nRows = tabIn.nrow();
1905   ddIdx.resize(nRows,nIF);
[262]1906//
[330]1907   String srcName;
1908   Vector<uInt> freqIDs;
1909   for (uInt iRow=0; iRow<nRows; iRow++) {
1910      srcCol.get(iRow, srcName);
1911      fqIDCol.get(iRow, freqIDs);
1912      const MDirection& dir = in.getDirection(iRow);
1913//
[397]1914      if (perFreqID) {
1915
1916// One entry per source/freqID pair
1917
1918         for (uInt iIF=0; iIF<nIF; iIF++) {
1919            ddIdx(iRow,iIF) = dDesc.addEntry(srcName, freqIDs[iIF], dir, 0);
1920         }
1921      } else {
1922
1923// One entry per source/IF pair.  Hang onto the FreqID as well
1924
1925         for (uInt iIF=0; iIF<nIF; iIF++) {
1926            ddIdx(iRow,iIF) = dDesc.addEntry(srcName, iIF, dir, freqIDs[iIF]);
1927         }
[262]1928      }
1929   }
1930}
[272]1931
[397]1932
1933
1934
1935
[272]1936MEpoch SDMath::epochFromString (const String& str, MEpoch::Types timeRef) const
1937{
1938   Quantum<Double> qt;
1939   if (MVTime::read(qt,str)) {
1940      MVEpoch mv(qt);
1941      MEpoch me(mv, timeRef);
1942      return me;
1943   } else {
1944      throw(AipsError("Invalid format for Epoch string"));
1945   }
1946}
1947
1948
1949String SDMath::formatEpoch(const MEpoch& epoch)  const
1950{
1951   MVTime mvt(epoch.getValue());
1952   return mvt.string(MVTime::YMD) + String(" (") + epoch.getRefString() + String(")");
1953}
1954
[294]1955
[309]1956
1957void SDMath::generateFrequencyAligners (PtrBlock<FrequencyAligner<Float>* >& a,
[330]1958                                        const SDDataDesc& dDesc,
1959                                        const SDMemTable& in, uInt nChan,
1960                                        MFrequency::Types system,
1961                                        const MPosition& refPos,
[397]1962                                        const MEpoch& refEpoch,
1963                                        Bool perFreqID) const
[294]1964{
[330]1965   for (uInt i=0; i<dDesc.length(); i++) {
[397]1966      uInt ID = dDesc.ID(i);
1967      uInt secID = dDesc.secID(i);
1968      const MDirection& refDir = dDesc.secDir(i);
[330]1969//
[397]1970      if (perFreqID) {
1971
1972// One aligner per source/FreqID pair. 
1973
1974         SpectralCoordinate sC = in.getSpectralCoordinate(ID);
1975         a[i] = new FrequencyAligner<Float>(sC, nChan, refEpoch, refDir, refPos, system);
1976      } else {
1977
1978// One aligner per source/IF pair.  But we still need the FreqID to
1979// get the right SC.  Hence the messing about with the secondary ID
1980
1981         SpectralCoordinate sC = in.getSpectralCoordinate(secID);
1982         a[i] = new FrequencyAligner<Float>(sC, nChan, refEpoch, refDir, refPos, system);
1983      }
[294]1984   }
1985}
[480]1986
1987Vector<uInt> SDMath::getRowRange (const SDMemTable& in) const
1988{
1989   Vector<uInt> range(2);
1990   range[0] = 0;
1991   range[1] = in.nRow()-1;
1992   return range;
1993}
1994   
1995
1996Bool SDMath::rowInRange (uInt i, const Vector<uInt>& range) const
1997{
1998   return (i>=range[0] && i<=range[1]);
1999}
Note: See TracBrowser for help on using the repository browser.