source: trunk/src/SDMath.cc@ 392

Last change on this file since 392 was 363, checked in by kil064, 20 years ago

gain elevation poly moved to SDAttr

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 51.1 KB
RevLine 
[2]1//#---------------------------------------------------------------------------
2//# SDMath.cc: A collection of single dish mathematical operations
3//#---------------------------------------------------------------------------
4//# Copyright (C) 2004
[125]5//# ATNF
[2]6//#
7//# This program is free software; you can redistribute it and/or modify it
8//# under the terms of the GNU General Public License as published by the Free
9//# Software Foundation; either version 2 of the License, or (at your option)
10//# any later version.
11//#
12//# This program is distributed in the hope that it will be useful, but
13//# WITHOUT ANY WARRANTY; without even the implied warranty of
14//# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
15//# Public License for more details.
16//#
17//# You should have received a copy of the GNU General Public License along
18//# with this program; if not, write to the Free Software Foundation, Inc.,
19//# 675 Massachusetts Ave, Cambridge, MA 02139, USA.
20//#
21//# Correspondence concerning this software should be addressed as follows:
22//# Internet email: Malte.Marquarding@csiro.au
23//# Postal address: Malte Marquarding,
24//# Australia Telescope National Facility,
25//# P.O. Box 76,
26//# Epping, NSW, 2121,
27//# AUSTRALIA
28//#
29//# $Id:
30//#---------------------------------------------------------------------------
[38]31#include <vector>
32
[81]33#include <casa/aips.h>
[330]34#include <casa/iostream.h>
35#include <casa/iomanip.h>
[81]36#include <casa/BasicSL/String.h>
37#include <casa/Arrays/IPosition.h>
38#include <casa/Arrays/Array.h>
[130]39#include <casa/Arrays/ArrayIter.h>
40#include <casa/Arrays/VectorIter.h>
[81]41#include <casa/Arrays/ArrayMath.h>
42#include <casa/Arrays/ArrayLogical.h>
43#include <casa/Arrays/MaskedArray.h>
44#include <casa/Arrays/MaskArrMath.h>
45#include <casa/Arrays/MaskArrLogi.h>
[330]46#include <casa/Arrays/Matrix.h>
[234]47#include <casa/BasicMath/Math.h>
[221]48#include <casa/Containers/Block.h>
[262]49#include <casa/Exceptions.h>
50#include <casa/Quanta/Quantum.h>
51#include <casa/Quanta/Unit.h>
52#include <casa/Quanta/MVEpoch.h>
[272]53#include <casa/Quanta/MVTime.h>
[177]54#include <casa/Utilities/Assert.h>
[2]55
[262]56#include <coordinates/Coordinates/SpectralCoordinate.h>
57#include <coordinates/Coordinates/CoordinateSystem.h>
58#include <coordinates/Coordinates/CoordinateUtil.h>
[309]59#include <coordinates/Coordinates/FrequencyAligner.h>
[262]60
61#include <lattices/Lattices/LatticeUtilities.h>
62#include <lattices/Lattices/RebinLattice.h>
63
64#include <measures/Measures/MEpoch.h>
65#include <measures/Measures/MDirection.h>
66#include <measures/Measures/MPosition.h>
67
[177]68#include <scimath/Mathematics/VectorKernel.h>
69#include <scimath/Mathematics/Convolver.h>
[227]70#include <scimath/Mathematics/InterpolateArray1D.h>
[234]71#include <scimath/Functionals/Polynomial.h>
[177]72
[81]73#include <tables/Tables/Table.h>
74#include <tables/Tables/ScalarColumn.h>
75#include <tables/Tables/ArrayColumn.h>
[227]76#include <tables/Tables/ReadAsciiTable.h>
[2]77
[38]78#include "MathUtils.h"
[232]79#include "SDDefs.h"
[354]80#include "SDAttr.h"
[2]81#include "SDContainer.h"
82#include "SDMemTable.h"
83
84#include "SDMath.h"
85
[125]86using namespace casa;
[83]87using namespace asap;
[2]88
[170]89
90SDMath::SDMath()
91{;}
92
[185]93SDMath::SDMath(const SDMath& other)
[170]94{
95
96// No state
97
98}
99
100SDMath& SDMath::operator=(const SDMath& other)
101{
102 if (this != &other) {
103// No state
104 }
105 return *this;
106}
107
[183]108SDMath::~SDMath()
109{;}
[170]110
[183]111
[262]112
[317]113SDMemTable* SDMath::frequencyAlignment (const SDMemTable& in, const String& refTime, const String& method) const
[262]114{
115
[309]116// Get frame info from Table
[262]117
118 std::vector<std::string> info = in.getCoordInfo();
[294]119
[309]120// Parse frequency system
[294]121
[309]122 String systemStr(info[1]);
123 String baseSystemStr(info[3]);
124 if (baseSystemStr==systemStr) {
125 throw(AipsError("You have not set a frequency frame different from the initial - use function set_freqframe"));
[262]126 }
[309]127//
128 MFrequency::Types freqSystem;
129 MFrequency::getType(freqSystem, systemStr);
[294]130
[267]131// Do it
[262]132
[317]133 return frequencyAlign (in, freqSystem, refTime, method);
[267]134}
[262]135
136
137
[185]138CountedPtr<SDMemTable> SDMath::average(const Block<CountedPtr<SDMemTable> >& in,
139 const Vector<Bool>& mask, Bool scanAv,
[309]140 const String& weightStr, Bool alignFreq) const
[130]141//
[144]142// Weighted averaging of spectra from one or more Tables.
[130]143//
144{
[2]145
[163]146// Convert weight type
147
148 WeightType wtType = NONE;
[185]149 convertWeightString(wtType, weightStr);
[163]150
[144]151// Create output Table by cloning from the first table
[2]152
[144]153 SDMemTable* pTabOut = new SDMemTable(*in[0],True);
[130]154
[144]155// Setup
[130]156
[144]157 IPosition shp = in[0]->rowAsMaskedArray(0).shape(); // Must not change
158 Array<Float> arr(shp);
159 Array<Bool> barr(shp);
[221]160 const Bool useMask = (mask.nelements() == shp(asap::ChanAxis));
[130]161
[144]162// Columns from Tables
[130]163
[144]164 ROArrayColumn<Float> tSysCol;
165 ROScalarColumn<Double> mjdCol;
166 ROScalarColumn<String> srcNameCol;
167 ROScalarColumn<Double> intCol;
168 ROArrayColumn<uInt> fqIDCol;
[130]169
[144]170// Create accumulation MaskedArray. We accumulate for each channel,if,pol,beam
171// Note that the mask of the accumulation array will ALWAYS remain ALL True.
172// The MA is only used so that when data which is masked Bad is added to it,
173// that data does not contribute.
174
175 Array<Float> zero(shp);
176 zero=0.0;
177 Array<Bool> good(shp);
178 good = True;
179 MaskedArray<Float> sum(zero,good);
180
181// Counter arrays
182
183 Array<Float> nPts(shp); // Number of points
184 nPts = 0.0;
185 Array<Float> nInc(shp); // Increment
186 nInc = 1.0;
187
188// Create accumulation Array for variance. We accumulate for
189// each if,pol,beam, but average over channel. So we need
190// a shape with one less axis dropping channels.
191
192 const uInt nAxesSub = shp.nelements() - 1;
193 IPosition shp2(nAxesSub);
194 for (uInt i=0,j=0; i<(nAxesSub+1); i++) {
[221]195 if (i!=asap::ChanAxis) {
[144]196 shp2(j) = shp(i);
197 j++;
198 }
[2]199 }
[144]200 Array<Float> sumSq(shp2);
201 sumSq = 0.0;
202 IPosition pos2(nAxesSub,0); // For indexing
[130]203
[144]204// Time-related accumulators
[130]205
[144]206 Double time;
207 Double timeSum = 0.0;
208 Double intSum = 0.0;
209 Double interval = 0.0;
[130]210
[144]211// To get the right shape for the Tsys accumulator we need to
212// access a column from the first table. The shape of this
213// array must not change
[130]214
[144]215 Array<Float> tSysSum;
216 {
217 const Table& tabIn = in[0]->table();
218 tSysCol.attach(tabIn,"TSYS");
219 tSysSum.resize(tSysCol.shape(0));
220 }
221 tSysSum =0.0;
222 Array<Float> tSys;
223
224// Scan and row tracking
225
226 Int oldScanID = 0;
227 Int outScanID = 0;
228 Int scanID = 0;
229 Int rowStart = 0;
230 Int nAccum = 0;
231 Int tableStart = 0;
232
233// Source and FreqID
234
235 String sourceName, oldSourceName, sourceNameStart;
236 Vector<uInt> freqID, freqIDStart, oldFreqID;
237
238// Loop over tables
239
240 Float fac = 1.0;
241 const uInt nTables = in.nelements();
242 for (uInt iTab=0; iTab<nTables; iTab++) {
243
[309]244// Should check that the frequency tables don't change if doing FreqAlignment
[221]245
[144]246// Attach columns to Table
247
248 const Table& tabIn = in[iTab]->table();
249 tSysCol.attach(tabIn, "TSYS");
250 mjdCol.attach(tabIn, "TIME");
251 srcNameCol.attach(tabIn, "SRCNAME");
252 intCol.attach(tabIn, "INTERVAL");
253 fqIDCol.attach(tabIn, "FREQID");
254
255// Loop over rows in Table
256
257 const uInt nRows = in[iTab]->nRow();
258 for (uInt iRow=0; iRow<nRows; iRow++) {
259
260// Check conformance
261
262 IPosition shp2 = in[iTab]->rowAsMaskedArray(iRow).shape();
263 if (!shp.isEqual(shp2)) {
264 throw (AipsError("Shapes for all rows must be the same"));
265 }
266
267// If we are not doing scan averages, make checks for source and
268// frequency setup and warn if averaging across them
269
270// Get copy of Scan Container for this row
271
272 SDContainer sc = in[iTab]->getSDContainer(iRow);
273 scanID = sc.scanid;
274
275// Get quantities from columns
276
277 srcNameCol.getScalar(iRow, sourceName);
278 mjdCol.get(iRow, time);
279 tSysCol.get(iRow, tSys);
280 intCol.get(iRow, interval);
281 fqIDCol.get(iRow, freqID);
282
283// Initialize first source and freqID
284
285 if (iRow==0 && iTab==0) {
286 sourceNameStart = sourceName;
287 freqIDStart = freqID;
288 }
289
290// If we are doing scan averages, see if we are at the end of an
291// accumulation period (scan). We must check soutce names too,
292// since we might have two tables with one scan each but different
293// source names; we shouldn't average different sources together
294
295 if (scanAv && ( (scanID != oldScanID) ||
296 (iRow==0 && iTab>0 && sourceName!=oldSourceName))) {
297
298// Normalize data in 'sum' accumulation array according to weighting scheme
299
[221]300 normalize(sum, sumSq, nPts, wtType, asap::ChanAxis, nAxesSub);
[144]301
302// Fill scan container. The source and freqID come from the
303// first row of the first table that went into this average (
304// should be the same for all rows in the scan average)
305
306 Float nR(nAccum);
[185]307 fillSDC(sc, sum.getMask(), sum.getArray(), tSysSum/nR, outScanID,
[144]308 timeSum/nR, intSum, sourceNameStart, freqIDStart);
309
310// Write container out to Table
311
312 pTabOut->putSDContainer(sc);
313
314// Reset accumulators
315
316 sum = 0.0;
317 sumSq = 0.0;
318 nAccum = 0;
319//
320 tSysSum =0.0;
321 timeSum = 0.0;
322 intSum = 0.0;
[221]323 nPts = 0.0;
[144]324
325// Increment
326
327 rowStart = iRow; // First row for next accumulation
328 tableStart = iTab; // First table for next accumulation
329 sourceNameStart = sourceName; // First source name for next accumulation
330 freqIDStart = freqID; // First FreqID for next accumulation
331//
332 oldScanID = scanID;
333 outScanID += 1; // Scan ID for next accumulation period
[227]334 }
[144]335
[146]336// Accumulate
[144]337
[185]338 accumulate(timeSum, intSum, nAccum, sum, sumSq, nPts, tSysSum,
[221]339 tSys, nInc, mask, time, interval, in, iTab, iRow, asap::ChanAxis,
[146]340 nAxesSub, useMask, wtType);
[144]341//
342 oldSourceName = sourceName;
343 oldFreqID = freqID;
[184]344 }
[144]345 }
346
347// OK at this point we have accumulation data which is either
348// - accumulated from all tables into one row
349// or
350// - accumulated from the last scan average
351//
352// Normalize data in 'sum' accumulation array according to weighting scheme
[221]353 normalize(sum, sumSq, nPts, wtType, asap::ChanAxis, nAxesSub);
[144]354
355// Create and fill container. The container we clone will be from
356// the last Table and the first row that went into the current
357// accumulation. It probably doesn't matter that much really...
358
359 Float nR(nAccum);
360 SDContainer sc = in[tableStart]->getSDContainer(rowStart);
[185]361 fillSDC(sc, sum.getMask(), sum.getArray(), tSysSum/nR, outScanID,
[144]362 timeSum/nR, intSum, sourceNameStart, freqIDStart);
[221]363 pTabOut->putSDContainer(sc);
[304]364 pTabOut->resetCursor();
[144]365//
366 return CountedPtr<SDMemTable>(pTabOut);
[2]367}
[9]368
[144]369
370
[248]371CountedPtr<SDMemTable> SDMath::binaryOperate (const CountedPtr<SDMemTable>& left,
372 const CountedPtr<SDMemTable>& right,
[294]373 const String& op, Bool preserve,
374 Bool doTSys) const
[185]375{
[85]376
[248]377// Check operator
[130]378
[234]379 String op2(op);
380 op2.upcase();
381 uInt what = 0;
382 if (op2=="ADD") {
383 what = 0;
384 } else if (op2=="SUB") {
385 what = 1;
386 } else if (op2=="MUL") {
387 what = 2;
388 } else if (op2=="DIV") {
389 what = 3;
[248]390 } else if (op2=="QUOTIENT") {
391 what = 4;
[294]392 doTSys = True;
[234]393 } else {
[248]394 throw( AipsError("Unrecognized operation"));
[234]395 }
396
397// Check rows
398
[248]399 const uInt nRowLeft = left->nRow();
400 const uInt nRowRight = right->nRow();
401 Bool ok = (nRowRight==1&&nRowLeft>0) ||
402 (nRowRight>=1&&nRowLeft==nRowRight);
403 if (!ok) {
404 throw (AipsError("The right Scan Table can have one row or the same number of rows as the left Scan Table"));
[234]405 }
406
[248]407// Input Tables
[234]408
409 const Table& tLeft = left->table();
410 const Table& tRight = right->table();
[248]411
412// TSys columns
413
[294]414 ROArrayColumn<Float> tSysLeftCol, tSysRightCol;
415 if (doTSys) {
416 tSysLeftCol.attach(tLeft, "TSYS");
417 tSysRightCol.attach(tRight, "TSYS");
418 }
[234]419
[248]420// First row for right
[234]421
[248]422 Array<Float> tSysLeftArr, tSysRightArr;
[294]423 if (doTSys) tSysRightCol.get(0, tSysRightArr);
[248]424 MaskedArray<Float>* pMRight = new MaskedArray<Float>(right->rowAsMaskedArray(0));
425 IPosition shpRight = pMRight->shape();
426
427// Output Table cloned from left
428
[234]429 SDMemTable* pTabOut = new SDMemTable(*left, True);
430
431// Loop over rows
432
[248]433 for (uInt i=0; i<nRowLeft; i++) {
[234]434
435// Get data
[248]436
[234]437 MaskedArray<Float> mLeft(left->rowAsMaskedArray(i));
[248]438 IPosition shpLeft = mLeft.shape();
[294]439 if (doTSys) tSysLeftCol.get(i, tSysLeftArr);
[234]440//
[248]441 if (nRowRight>1) {
442 delete pMRight;
443 pMRight = new MaskedArray<Float>(right->rowAsMaskedArray(i));
444 shpRight = pMRight->shape();
[294]445 if (doTSys) tSysRightCol.get(i, tSysRightArr);
[234]446 }
[248]447//
448 if (!shpRight.isEqual(shpLeft)) {
449 throw(AipsError("left and right scan tables are not conformant"));
450 }
[294]451 if (doTSys) {
452 if (!tSysRightArr.shape().isEqual(tSysRightArr.shape())) {
453 throw(AipsError("left and right Tsys data are not conformant"));
454 }
455 if (!shpRight.isEqual(tSysRightArr.shape())) {
456 throw(AipsError("left and right scan tables are not conformant"));
457 }
[248]458 }
[234]459
460// Make container
461
462 SDContainer sc = left->getSDContainer(i);
463
464// Operate on data and TSys
465
466 if (what==0) {
[248]467 MaskedArray<Float> tmp = mLeft + *pMRight;
[234]468 putDataInSDC(sc, tmp.getArray(), tmp.getMask());
[294]469 if (doTSys) sc.putTsys(tSysLeftArr+tSysRightArr);
[234]470 } else if (what==1) {
[248]471 MaskedArray<Float> tmp = mLeft - *pMRight;
[234]472 putDataInSDC(sc, tmp.getArray(), tmp.getMask());
[294]473 if (doTSys) sc.putTsys(tSysLeftArr-tSysRightArr);
[234]474 } else if (what==2) {
[248]475 MaskedArray<Float> tmp = mLeft * *pMRight;
[234]476 putDataInSDC(sc, tmp.getArray(), tmp.getMask());
[294]477 if (doTSys) sc.putTsys(tSysLeftArr*tSysRightArr);
[234]478 } else if (what==3) {
[248]479 MaskedArray<Float> tmp = mLeft / *pMRight;
[234]480 putDataInSDC(sc, tmp.getArray(), tmp.getMask());
[294]481 if (doTSys) sc.putTsys(tSysLeftArr/tSysRightArr);
[248]482 } else if (what==4) {
483 if (preserve) {
484 MaskedArray<Float> tmp = (tSysRightArr * mLeft / *pMRight) - tSysRightArr;
485 putDataInSDC(sc, tmp.getArray(), tmp.getMask());
486 } else {
487 MaskedArray<Float> tmp = (tSysRightArr * mLeft / *pMRight) - tSysLeftArr;
488 putDataInSDC(sc, tmp.getArray(), tmp.getMask());
489 }
490 sc.putTsys(tSysRightArr);
[234]491 }
492
493// Put new row in output Table
494
[171]495 pTabOut->putSDContainer(sc);
[130]496 }
[248]497 if (pMRight) delete pMRight;
[304]498 pTabOut->resetCursor();
[130]499//
[171]500 return CountedPtr<SDMemTable>(pTabOut);
[9]501}
[48]502
[146]503
504
[185]505std::vector<float> SDMath::statistic(const CountedPtr<SDMemTable>& in,
[234]506 const Vector<Bool>& mask,
507 const String& which, Int row) const
[130]508//
509// Perhaps iteration over pol/beam/if should be in here
510// and inside the nrow iteration ?
511//
512{
513 const uInt nRow = in->nRow();
514
515// Specify cursor location
516
[152]517 IPosition start, end;
[185]518 getCursorLocation(start, end, *in);
[130]519
520// Loop over rows
521
[234]522 const uInt nEl = mask.nelements();
523 uInt iStart = 0;
524 uInt iEnd = in->nRow()-1;
525//
526 if (row>=0) {
527 iStart = row;
528 iEnd = row;
529 }
530//
531 std::vector<float> result(iEnd-iStart+1);
532 for (uInt ii=iStart; ii <= iEnd; ++ii) {
[130]533
534// Get row and deconstruct
535
536 MaskedArray<Float> marr(in->rowAsMaskedArray(ii));
537 Array<Float> arr = marr.getArray();
538 Array<Bool> barr = marr.getMask();
539
540// Access desired piece of data
541
542 Array<Float> v((arr(start,end)).nonDegenerate());
543 Array<Bool> m((barr(start,end)).nonDegenerate());
544
545// Apply OTF mask
546
547 MaskedArray<Float> tmp;
548 if (m.nelements()==nEl) {
[234]549 tmp.setData(v,m&&mask);
[130]550 } else {
551 tmp.setData(v,m);
552 }
553
554// Get statistic
555
[234]556 result[ii-iStart] = mathutil::statistics(which, tmp);
[130]557 }
558//
559 return result;
560}
561
[146]562
[234]563SDMemTable* SDMath::bin(const SDMemTable& in, Int width) const
[144]564{
[169]565 SDHeader sh = in.getSDHeader();
566 SDMemTable* pTabOut = new SDMemTable(in, True);
[163]567
[169]568// Bin up SpectralCoordinates
[163]569
[169]570 IPosition factors(1);
571 factors(0) = width;
572 for (uInt j=0; j<in.nCoordinates(); ++j) {
573 CoordinateSystem cSys;
[288]574 cSys.addCoordinate(in.getSpectralCoordinate(j));
[169]575 CoordinateSystem cSysBin =
[185]576 CoordinateUtil::makeBinnedCoordinateSystem(factors, cSys, False);
[169]577//
578 SpectralCoordinate sCBin = cSysBin.spectralCoordinate(0);
579 pTabOut->setCoordinate(sCBin, j);
580 }
[163]581
[169]582// Use RebinLattice to find shape
[130]583
[169]584 IPosition shapeIn(1,sh.nchan);
[185]585 IPosition shapeOut = RebinLattice<Float>::rebinShape(shapeIn, factors);
[169]586 sh.nchan = shapeOut(0);
587 pTabOut->putSDHeader(sh);
[144]588
[169]589// Loop over rows and bin along channel axis
590
591 for (uInt i=0; i < in.nRow(); ++i) {
592 SDContainer sc = in.getSDContainer(i);
[144]593//
[169]594 Array<Float> tSys(sc.getTsys()); // Get it out before sc changes shape
[144]595
[169]596// Bin up spectrum
[144]597
[169]598 MaskedArray<Float> marr(in.rowAsMaskedArray(i));
599 MaskedArray<Float> marrout;
[221]600 LatticeUtilities::bin(marrout, marr, asap::ChanAxis, width);
[144]601
[169]602// Put back the binned data and flags
[144]603
[169]604 IPosition ip2 = marrout.shape();
605 sc.resize(ip2);
[146]606//
[185]607 putDataInSDC(sc, marrout.getArray(), marrout.getMask());
[146]608
[169]609// Bin up Tsys.
[146]610
[169]611 Array<Bool> allGood(tSys.shape(),True);
612 MaskedArray<Float> tSysIn(tSys, allGood, True);
[146]613//
[169]614 MaskedArray<Float> tSysOut;
[221]615 LatticeUtilities::bin(tSysOut, tSysIn, asap::ChanAxis, width);
[169]616 sc.putTsys(tSysOut.getArray());
[146]617//
[169]618 pTabOut->putSDContainer(sc);
619 }
620 return pTabOut;
[146]621}
622
[299]623SDMemTable* SDMath::resample (const SDMemTable& in, const String& methodStr,
624 Float width) const
625//
626// Should add the possibility of width being specified in km/s. This means
627// that for each freqID (SpectralCoordinate) we will need to convert to an
628// average channel width (say at the reference pixel). Then we would need
629// to be careful to make sure each spectrum (of different freqID)
630// is the same length.
631//
632{
633 Bool doVel = False;
[309]634 if (doVel) {
635 for (uInt j=0; j<in.nCoordinates(); ++j) {
636 SpectralCoordinate sC = in.getSpectralCoordinate(j);
637 }
638 }
[299]639
640// Interpolation method
641
[317]642 InterpolateArray1D<Double,Float>::InterpolationMethod interp;
643 convertInterpString(interp, methodStr);
644 Int interpMethod(interp);
[299]645
646// Make output table
647
648 SDMemTable* pTabOut = new SDMemTable(in, True);
649
650// Resample SpectralCoordinates (one per freqID)
651
652 const uInt nCoord = in.nCoordinates();
653 Vector<Float> offset(1,0.0);
654 Vector<Float> factors(1,1.0/width);
655 Vector<Int> newShape;
656 for (uInt j=0; j<in.nCoordinates(); ++j) {
657 CoordinateSystem cSys;
658 cSys.addCoordinate(in.getSpectralCoordinate(j));
659 CoordinateSystem cSys2 = cSys.subImage(offset, factors, newShape);
660 SpectralCoordinate sC = cSys2.spectralCoordinate(0);
661//
662 pTabOut->setCoordinate(sC, j);
663 }
664
665// Get header
666
667 SDHeader sh = in.getSDHeader();
668
669// Generate resampling vectors
670
671 const uInt nChanIn = sh.nchan;
672 Vector<Float> xIn(nChanIn);
673 indgen(xIn);
674//
675 Int fac = Int(nChanIn/width);
676 Vector<Float> xOut(fac+10); // 10 to be safe - resize later
677 uInt i = 0;
678 Float x = 0.0;
679 Bool more = True;
680 while (more) {
681 xOut(i) = x;
682//
683 i++;
684 x += width;
685 if (x>nChanIn-1) more = False;
686 }
687 const uInt nChanOut = i;
688 xOut.resize(nChanOut,True);
689//
690 IPosition shapeIn(in.rowAsMaskedArray(0).shape());
691 sh.nchan = nChanOut;
692 pTabOut->putSDHeader(sh);
693
694// Loop over rows and resample along channel axis
695
696 Array<Float> valuesOut;
697 Array<Bool> maskOut;
698 Array<Float> tSysOut;
699 Array<Bool> tSysMaskIn(shapeIn,True);
700 Array<Bool> tSysMaskOut;
701 for (uInt i=0; i < in.nRow(); ++i) {
702
703// Get container
704
705 SDContainer sc = in.getSDContainer(i);
706
707// Get data and Tsys
708
709 const Array<Float>& tSysIn = sc.getTsys();
710 const MaskedArray<Float>& dataIn(in.rowAsMaskedArray(i));
711 Array<Float> valuesIn = dataIn.getArray();
712 Array<Bool> maskIn = dataIn.getMask();
713
714// Interpolate data
715
716 InterpolateArray1D<Float,Float>::interpolate(valuesOut, maskOut, xOut,
717 xIn, valuesIn, maskIn,
718 interpMethod, True, True);
719 sc.resize(valuesOut.shape());
720 putDataInSDC(sc, valuesOut, maskOut);
721
722// Interpolate TSys
723
724 InterpolateArray1D<Float,Float>::interpolate(tSysOut, tSysMaskOut, xOut,
725 xIn, tSysIn, tSysMaskIn,
726 interpMethod, True, True);
727 sc.putTsys(tSysOut);
728
729// Put container in output
730
731 pTabOut->putSDContainer(sc);
732 }
733//
734 return pTabOut;
735}
736
[248]737SDMemTable* SDMath::unaryOperate(const SDMemTable& in, Float val, Bool doAll,
[294]738 uInt what, Bool doTSys) const
[152]739//
740// what = 0 Multiply
741// 1 Add
[146]742{
[152]743 SDMemTable* pOut = new SDMemTable(in,False);
744 const Table& tOut = pOut->table();
[294]745 ArrayColumn<Float> specCol(tOut,"SPECTRA");
746 ArrayColumn<Float> tSysCol(tOut,"TSYS");
747 Array<Float> tSysArr;
[146]748//
[152]749 if (doAll) {
750 for (uInt i=0; i < tOut.nrow(); i++) {
[294]751
752// Modify data
753
[270]754 MaskedArray<Float> dataIn(pOut->rowAsMaskedArray(i));
[152]755 if (what==0) {
[270]756 dataIn *= val;
[152]757 } else if (what==1) {
[270]758 dataIn += val;
[152]759 }
[294]760 specCol.put(i, dataIn.getArray());
761
762// Modify Tsys
763
764 if (doTSys) {
765 tSysCol.get(i, tSysArr);
766 if (what==0) {
767 tSysArr *= val;
768 } else if (what==1) {
769 tSysArr += val;
770 }
771 tSysCol.put(i, tSysArr);
772 }
[152]773 }
774 } else {
775
776// Get cursor location
777
778 IPosition start, end;
[185]779 getCursorLocation(start, end, in);
[152]780//
781 for (uInt i=0; i < tOut.nrow(); i++) {
[294]782
783// Modify data
784
[152]785 MaskedArray<Float> dataIn(pOut->rowAsMaskedArray(i));
[270]786 MaskedArray<Float> dataIn2 = dataIn(start,end); // Reference
[152]787 if (what==0) {
[270]788 dataIn2 *= val;
[152]789 } else if (what==1) {
[270]790 dataIn2 += val;
[152]791 }
[294]792 specCol.put(i, dataIn.getArray());
793
794// Modify Tsys
795
796 if (doTSys) {
797 tSysCol.get(i, tSysArr);
798 Array<Float> tSysArr2 = tSysArr(start,end); // Reference
799 if (what==0) {
800 tSysArr2 *= val;
801 } else if (what==1) {
802 tSysArr2 += val;
803 }
804 tSysCol.put(i, tSysArr);
805 }
[152]806 }
807 }
808//
[146]809 return pOut;
810}
811
812
[152]813
[315]814SDMemTable* SDMath::averagePol(const SDMemTable& in, const Vector<Bool>& mask,
815 const String& weightStr) const
[152]816//
[165]817// Average all polarizations together, weighted by variance
818//
819{
[315]820 WeightType wtType = NONE;
821 convertWeightString(wtType, weightStr);
[165]822
823 const uInt nRows = in.nRow();
824
825// Create output Table and reshape number of polarizations
826
827 Bool clear=True;
828 SDMemTable* pTabOut = new SDMemTable(in, clear);
829 SDHeader header = pTabOut->getSDHeader();
830 header.npol = 1;
831 pTabOut->putSDHeader(header);
832
833// Shape of input and output data
834
835 const IPosition& shapeIn = in.rowAsMaskedArray(0u, False).shape();
836 IPosition shapeOut(shapeIn);
[262]837 shapeOut(asap::PolAxis) = 1; // Average all polarizations
[315]838 if (shapeIn(asap::PolAxis)==1) {
839 throw(AipsError("The input has only one polarisation"));
840 }
[165]841//
[262]842 const uInt nChan = shapeIn(asap::ChanAxis);
[165]843 const IPosition vecShapeOut(4,1,1,1,nChan); // A multi-dim form of a Vector shape
844 IPosition start(4), end(4);
845
846// Output arrays
847
848 Array<Float> outData(shapeOut, 0.0);
849 Array<Bool> outMask(shapeOut, True);
[262]850 const IPosition axes(2, asap::PolAxis, asap::ChanAxis); // pol-channel plane
[165]851//
[262]852 const Bool useMask = (mask.nelements() == shapeIn(asap::ChanAxis));
[165]853
854// Loop over rows
855
856 for (uInt iRow=0; iRow<nRows; iRow++) {
857
858// Get data for this row
859
860 MaskedArray<Float> marr(in.rowAsMaskedArray(iRow));
861 Array<Float>& arr = marr.getRWArray();
862 const Array<Bool>& barr = marr.getMask();
863
864// Make iterators to iterate by pol-channel planes
865
866 ReadOnlyArrayIterator<Float> itDataPlane(arr, axes);
867 ReadOnlyArrayIterator<Bool> itMaskPlane(barr, axes);
868
869// Accumulations
870
871 Float fac = 1.0;
872 Vector<Float> vecSum(nChan,0.0);
873
874// Iterate through data by pol-channel planes
875
876 while (!itDataPlane.pastEnd()) {
877
878// Iterate through plane by polarization and accumulate Vectors
879
880 Vector<Float> t1(nChan); t1 = 0.0;
881 Vector<Bool> t2(nChan); t2 = True;
882 MaskedArray<Float> vecSum(t1,t2);
[315]883 Float norm = 0.0;
[165]884 {
885 ReadOnlyVectorIterator<Float> itDataVec(itDataPlane.array(), 1);
886 ReadOnlyVectorIterator<Bool> itMaskVec(itMaskPlane.array(), 1);
887 while (!itDataVec.pastEnd()) {
888
[315]889// Create MA of data & mask (optionally including OTF mask) and get variance for this spectrum
[165]890
891 if (useMask) {
892 const MaskedArray<Float> spec(itDataVec.vector(),mask&&itMaskVec.vector());
[315]893 if (wtType==VAR) fac = 1.0 / variance(spec);
[165]894 } else {
895 const MaskedArray<Float> spec(itDataVec.vector(),itMaskVec.vector());
[315]896 if (wtType==VAR) fac = 1.0 / variance(spec);
[165]897 }
898
899// Normalize spectrum (without OTF mask) and accumulate
900
901 const MaskedArray<Float> spec(fac*itDataVec.vector(), itMaskVec.vector());
902 vecSum += spec;
[315]903 norm += fac;
[165]904
905// Next
906
907 itDataVec.next();
908 itMaskVec.next();
909 }
910 }
911
912// Normalize summed spectrum
913
[315]914 vecSum /= norm;
[165]915
916// FInd position in input data array. We are iterating by pol-channel
917// plane so all that will change is beam and IF and that's what we want.
918
919 IPosition pos = itDataPlane.pos();
920
921// Write out data. This is a bit messy. We have to reform the Vector
922// accumulator into an Array of shape (1,1,1,nChan)
923
924 start = pos;
925 end = pos;
[262]926 end(asap::ChanAxis) = nChan-1;
[165]927 outData(start,end) = vecSum.getArray().reform(vecShapeOut);
928 outMask(start,end) = vecSum.getMask().reform(vecShapeOut);
929
930// Step to next beam/IF combination
931
932 itDataPlane.next();
933 itMaskPlane.next();
934 }
935
936// Generate output container and write it to output table
937
938 SDContainer sc = in.getSDContainer();
939 sc.resize(shapeOut);
940//
[185]941 putDataInSDC(sc, outData, outMask);
[165]942 pTabOut->putSDContainer(sc);
943 }
[304]944
945// Set polarization cursor to 0
946
947 pTabOut->setPol(0);
[165]948//
949 return pTabOut;
950}
[167]951
[169]952
[185]953SDMemTable* SDMath::smooth(const SDMemTable& in,
954 const casa::String& kernelType,
[234]955 casa::Float width, Bool doAll) const
[299]956//
957// Should smooth TSys as well
958//
[177]959{
[169]960
[177]961// Number of channels
[169]962
[177]963 SDHeader sh = in.getSDHeader();
964 const uInt nChan = sh.nchan;
965
966// Generate Kernel
967
[185]968 VectorKernel::KernelTypes type = VectorKernel::toKernelType(kernelType);
[177]969 Vector<Float> kernel = VectorKernel::make(type, width, nChan, True, False);
970
971// Generate Convolver
972
973 IPosition shape(1,nChan);
974 Convolver<Float> conv(kernel, shape);
975
976// New Table
977
978 SDMemTable* pTabOut = new SDMemTable(in,True);
979
980// Get cursor location
981
982 IPosition start, end;
[185]983 getCursorLocation(start, end, in);
[177]984//
985 IPosition shapeOut(4,1);
986
987// Output Vectors
988
989 Vector<Float> valuesOut(nChan);
990 Vector<Bool> maskOut(nChan);
991
992// Loop over rows in Table
993
994 for (uInt ri=0; ri < in.nRow(); ++ri) {
995
996// Get copy of data
997
998 const MaskedArray<Float>& dataIn(in.rowAsMaskedArray(ri));
[262]999 AlwaysAssert(dataIn.shape()(asap::ChanAxis)==nChan, AipsError);
[177]1000//
1001 Array<Float> valuesIn = dataIn.getArray();
1002 Array<Bool> maskIn = dataIn.getMask();
1003
1004// Branch depending on whether we smooth all locations or just
1005// those pointed at by the current selection cursor
1006
1007 if (doAll) {
[299]1008 VectorIterator<Float> itValues(valuesIn, asap::ChanAxis);
1009 VectorIterator<Bool> itMask(maskIn, asap::ChanAxis);
[177]1010 while (!itValues.pastEnd()) {
1011
1012// Smooth
1013 if (kernelType==VectorKernel::HANNING) {
1014 mathutil::hanning(valuesOut, maskOut, itValues.vector(), itMask.vector());
1015 itMask.vector() = maskOut;
1016 } else {
1017 mathutil::replaceMaskByZero(itValues.vector(), itMask.vector());
1018 conv.linearConv(valuesOut, itValues.vector());
1019 }
1020//
1021 itValues.vector() = valuesOut;
1022//
1023 itValues.next();
1024 itMask.next();
1025 }
1026 } else {
1027
1028// Set multi-dim Vector shape
1029
[299]1030 shapeOut(asap::ChanAxis) = valuesIn.shape()(asap::ChanAxis);
[177]1031
1032// Stuff about with shapes so that we don't have conformance run-time errors
1033
1034 Vector<Float> valuesIn2 = valuesIn(start,end).nonDegenerate();
1035 Vector<Bool> maskIn2 = maskIn(start,end).nonDegenerate();
1036
1037// Smooth
1038
1039 if (kernelType==VectorKernel::HANNING) {
1040 mathutil::hanning(valuesOut, maskOut, valuesIn2, maskIn2);
1041 maskIn(start,end) = maskOut.reform(shapeOut);
1042 } else {
1043 mathutil::replaceMaskByZero(valuesIn2, maskIn2);
1044 conv.linearConv(valuesOut, valuesIn2);
1045 }
1046//
1047 valuesIn(start,end) = valuesOut.reform(shapeOut);
1048 }
1049
1050// Create and put back
1051
1052 SDContainer sc = in.getSDContainer(ri);
[185]1053 putDataInSDC(sc, valuesIn, maskIn);
[177]1054//
1055 pTabOut->putSDContainer(sc);
1056 }
1057//
1058 return pTabOut;
1059}
1060
1061
[262]1062
[354]1063SDMemTable* SDMath::convertFlux (const SDMemTable& in, Float D, Float etaAp,
1064 Float JyPerK, Bool doAll) const
[221]1065//
[354]1066// etaAp = aperture efficiency
1067// D = geometric diameter (m)
1068// JyPerK
[221]1069//
1070{
1071 SDHeader sh = in.getSDHeader();
1072 SDMemTable* pTabOut = new SDMemTable(in, True);
[177]1073
[354]1074// Find out how to convert values into Jy and K (e.g. units might be mJy or mK)
[221]1075// Also automatically find out what we are converting to according to the
1076// flux unit
[177]1077
[221]1078 Unit fluxUnit(sh.fluxunit);
1079 Unit K(String("K"));
1080 Unit JY(String("Jy"));
1081//
1082 Bool toKelvin = True;
[354]1083 Double cFac = 1.0;
[221]1084 if (fluxUnit==JY) {
1085 cerr << "Converting to K" << endl;
1086//
1087 Quantum<Double> t(1.0,fluxUnit);
1088 Quantum<Double> t2 = t.get(JY);
[354]1089 cFac = (t2 / t).getValue(); // value to Jy
[221]1090//
1091 toKelvin = True;
1092 sh.fluxunit = "K";
1093 } else if (fluxUnit==K) {
1094 cerr << "Converting to Jy" << endl;
1095//
1096 Quantum<Double> t(1.0,fluxUnit);
1097 Quantum<Double> t2 = t.get(K);
[354]1098 cFac = (t2 / t).getValue(); // value to K
[221]1099//
1100 toKelvin = False;
1101 sh.fluxunit = "Jy";
1102 } else {
[248]1103 throw(AipsError("Unrecognized brightness units in Table - must be consistent with Jy or K"));
[221]1104 }
1105 pTabOut->putSDHeader(sh);
[177]1106
[354]1107// Make sure input values are converted to either Jy or K first...
[221]1108
[354]1109 Float factor = cFac;
[221]1110
[354]1111// Select method
[221]1112
[354]1113 if (JyPerK>0.0) {
1114 factor *= JyPerK;
1115 if (toKelvin) factor = 1.0 / JyPerK;
1116//
1117 cerr << "Applying supplied conversion factor = " << factor << endl;
1118 Vector<Float> factors(in.nRow(), factor);
1119 correctFromVector (pTabOut, in, doAll, factors);
1120 } else if (etaAp>0.0) {
1121 factor *= SDAttr::findJyPerKFac (etaAp, D);
1122 if (toKelvin) {
1123 factor = 1.0 / factor;
1124 }
1125//
1126 cerr << "Applying supplied conversion factor = " << factor << endl;
1127 Vector<Float> factors(in.nRow(), factor);
1128 correctFromVector (pTabOut, in, doAll, factors);
1129 } else {
[221]1130
[354]1131// OK now we must deal with automatic look up of values.
1132// We must also deal with the fact that the factors need
1133// to be computed per IF and may be different and may
1134// change per integration.
[221]1135
[354]1136 cerr << "Looking up conversion factors" << endl;
1137 convertBrightnessUnits (pTabOut, in, toKelvin, cFac, doAll);
1138 }
[221]1139//
1140 return pTabOut;
1141}
1142
1143
[354]1144
1145
1146
[234]1147SDMemTable* SDMath::gainElevation (const SDMemTable& in, const Vector<Float>& coeffs,
1148 const String& fileName,
1149 const String& methodStr, Bool doAll) const
[227]1150{
[234]1151
1152// Get header and clone output table
1153
[227]1154 SDHeader sh = in.getSDHeader();
1155 SDMemTable* pTabOut = new SDMemTable(in, True);
1156
[234]1157// Get elevation data from SDMemTable and convert to degrees
[227]1158
1159 const Table& tab = in.table();
1160 ROScalarColumn<Float> elev(tab, "ELEVATION");
[234]1161 Vector<Float> x = elev.getColumn();
[363]1162 x *= Float(180 / C::pi); // Degrees
[227]1163//
[234]1164 const uInt nC = coeffs.nelements();
1165 if (fileName.length()>0 && nC>0) {
[248]1166 throw(AipsError("You must choose either polynomial coefficients or an ascii file, not both"));
[234]1167 }
1168
1169// Correct
1170
1171 if (nC>0 || fileName.length()==0) {
1172
1173// Find instrument
1174
1175 Bool throwIt = True;
1176 Instrument inst = SDMemTable::convertInstrument (sh.antennaname, throwIt);
1177
1178// Set polynomial
1179
1180 Polynomial<Float>* pPoly = 0;
1181 Vector<Float> coeff;
1182 String msg;
1183 if (nC>0) {
1184 pPoly = new Polynomial<Float>(nC);
1185 coeff = coeffs;
1186 msg = String("user");
1187 } else {
[363]1188 SDAttr sdAttr;
1189 coeff = sdAttr.gainElevationPoly(inst);
1190 pPoly = new Polynomial<Float>(3);
[234]1191 msg = String("built in");
1192 }
[227]1193//
[234]1194 if (coeff.nelements()>0) {
1195 pPoly->setCoefficients(coeff);
1196 } else {
[363]1197 throw(AipsError("There is no known gain-elevation polynomial known for this instrument"));
[234]1198 }
1199//
1200 cerr << "Making polynomial correction with " << msg << " coefficients" << endl;
1201 const uInt nRow = in.nRow();
1202 Vector<Float> factor(nRow);
1203 for (uInt i=0; i<nRow; i++) {
1204 factor[i] = (*pPoly)(x[i]);
1205 }
1206 delete pPoly;
1207//
1208 correctFromVector (pTabOut, in, doAll, factor);
1209 } else {
1210
1211// Indicate which columns to read from ascii file
1212
1213 String col0("ELEVATION");
1214 String col1("FACTOR");
1215
1216// Read and correct
1217
1218 cerr << "Making correction from ascii Table" << endl;
1219 correctFromAsciiTable (pTabOut, in, fileName, col0, col1,
1220 methodStr, doAll, x);
1221 }
1222//
1223 return pTabOut;
[230]1224}
[227]1225
[230]1226
[227]1227
[234]1228SDMemTable* SDMath::opacity (const SDMemTable& in, Float tau, Bool doAll) const
1229{
[227]1230
[234]1231// Get header and clone output table
[227]1232
[234]1233 SDHeader sh = in.getSDHeader();
1234 SDMemTable* pTabOut = new SDMemTable(in, True);
1235
1236// Get elevation data from SDMemTable and convert to degrees
1237
1238 const Table& tab = in.table();
1239 ROScalarColumn<Float> elev(tab, "ELEVATION");
1240 Vector<Float> zDist = elev.getColumn();
1241 zDist = Float(C::pi_2) - zDist;
1242
1243// Generate correction factor
1244
1245 const uInt nRow = in.nRow();
1246 Vector<Float> factor(nRow);
1247 Vector<Float> factor2(nRow);
1248 for (uInt i=0; i<nRow; i++) {
1249 factor[i] = exp(tau)/cos(zDist[i]);
1250 }
1251
1252// Correct
1253
1254 correctFromVector (pTabOut, in, doAll, factor);
1255//
1256 return pTabOut;
1257}
1258
1259
1260
1261
[169]1262// 'private' functions
1263
[354]1264void SDMath::convertBrightnessUnits (SDMemTable* pTabOut, const SDMemTable& in,
1265 Bool toKelvin, Float cFac, Bool doAll) const
1266{
[309]1267
[354]1268// Get header
1269
1270 SDHeader sh = in.getSDHeader();
1271 const uInt nChan = sh.nchan;
1272
1273// Get instrument
1274
1275 Bool throwIt = True;
1276 Instrument inst = SDMemTable::convertInstrument (sh.antennaname, throwIt);
1277
1278// Get Diameter (m)
1279
1280 SDAttr sdAtt;
1281
1282// Get epoch of first row
1283
1284 MEpoch dateObs = in.getEpoch(0);
1285
1286// Generate a Vector of correction factors. One per FreqID
1287
1288 SDFrequencyTable sdft = in.getSDFreqTable();
1289 Vector<uInt> freqIDs;
1290//
1291 Vector<Float> freqs(sdft.length());
1292 for (uInt i=0; i<sdft.length(); i++) {
1293 freqs(i) = (nChan/2 - sdft.referencePixel(i))*sdft.increment(i) + sdft.referenceValue(i);
1294 }
1295//
1296 Vector<Float> JyPerK = sdAtt.JyPerK(inst, dateObs, freqs);
[363]1297 cerr << "Jy/K = " << JyPerK << endl;
[354]1298 Vector<Float> factors = cFac * JyPerK;
1299 if (toKelvin) factors = Float(1.0) / factors;
1300
1301// For operations only on specified cursor location
1302
1303 IPosition start, end;
1304 getCursorLocation(start, end, in);
1305 const uInt ifAxis = in.getIF();
1306
1307// Iteration axes
1308
1309 IPosition axes(asap::nAxes-1,0);
1310 for (uInt i=0,j=0; i<asap::nAxes; i++) {
1311 if (i!=asap::IFAxis) {
1312 axes(j++) = i;
1313 }
1314 }
1315
1316// Loop over rows and apply correction factor
1317
1318 Float factor = 1.0;
1319 const uInt axis = asap::ChanAxis;
1320 for (uInt i=0; i < in.nRow(); ++i) {
1321
1322// Get data
1323
1324 MaskedArray<Float> dataIn(in.rowAsMaskedArray(i));
1325 Array<Float>& values = dataIn.getRWArray();
1326
1327// Get SDCOntainer
1328
1329 SDContainer sc = in.getSDContainer(i);
1330
1331// Get FreqIDs
1332
1333 freqIDs = sc.getFreqMap();
1334
1335// Now the conversion factor depends only upon frequency
1336// So we need to iterate through by IF only giving
1337// us BEAM/POL/CHAN cubes
1338
1339 if (doAll) {
1340 ArrayIterator<Float> itIn(values, axes);
1341 uInt ax = 0;
1342 while (!itIn.pastEnd()) {
1343 itIn.array() *= factors(freqIDs(ax)); // Writes back to dataIn
1344 itIn.next();
1345 }
1346 } else {
1347 MaskedArray<Float> dataIn2 = dataIn(start,end); // reference
1348 dataIn2 *= factors(freqIDs(ifAxis));
1349 }
1350
1351// Write out
1352
1353 putDataInSDC(sc, dataIn.getArray(), dataIn.getMask());
1354//
1355 pTabOut->putSDContainer(sc);
1356 }
1357}
1358
1359
1360
[309]1361SDMemTable* SDMath::frequencyAlign (const SDMemTable& in,
1362 MFrequency::Types freqSystem,
[317]1363 const String& refTime, const String& methodStr) const
[267]1364{
1365// Get Header
1366
1367 SDHeader sh = in.getSDHeader();
1368 const uInt nChan = sh.nchan;
1369 const uInt nRows = in.nRow();
[330]1370 const uInt nIF = sh.nif;
[267]1371
1372// Get Table reference
1373
1374 const Table& tabIn = in.table();
1375
1376// Get Columns from Table
1377
[294]1378 ROScalarColumn<Double> mjdCol(tabIn, "TIME");
1379 ROScalarColumn<String> srcCol(tabIn, "SRCNAME");
1380 ROArrayColumn<uInt> fqIDCol(tabIn, "FREQID");
1381 Vector<Double> times = mjdCol.getColumn();
[267]1382
[330]1383// Generate DataDesc table
1384
1385 Matrix<uInt> ddIdx;
1386 SDDataDesc dDesc;
1387 generateDataDescTable (ddIdx, dDesc, nIF, in, tabIn, srcCol, fqIDCol);
[267]1388
[294]1389// Get reference Epoch to time of first row or given String
[267]1390
1391 Unit DAY(String("d"));
[272]1392 MEpoch::Ref epochRef(in.getTimeReference());
1393 MEpoch refEpoch;
1394 if (refTime.length()>0) {
1395 refEpoch = epochFromString(refTime, in.getTimeReference());
1396 } else {
[288]1397 refEpoch = in.getEpoch(0);
[272]1398 }
[309]1399 cerr << "Aligning at reference Epoch " << formatEpoch(refEpoch) <<
1400 " in frame " << MFrequency::showType(freqSystem) << endl;
[267]1401
[294]1402// Get Reference Position
[267]1403
[288]1404 MPosition refPos = in.getAntennaPosition();
[267]1405
[309]1406// Create FrequencyAligner Block. One VA for each possible
[267]1407// source/freqID combination
1408
[330]1409 PtrBlock<FrequencyAligner<Float>* > a(dDesc.length());
1410 generateFrequencyAligners (a, dDesc, in, nChan, freqSystem, refPos, refEpoch);
[267]1411
[330]1412// Generate and fill output Frequency Tabke
1413
1414 SDFrequencyTable freqTabOut = in.getSDFreqTable();
1415 freqTabOut.setLength(0);
1416 Vector<String> units(1);
1417 units = String("Hz");
1418 Bool linear=True;
1419//
1420 for (uInt i=0; i<dDesc.length(); i++) {
1421
1422// Get Aligned SC in Hz
1423
1424 SpectralCoordinate sC = a[i]->alignedSpectralCoordinate(linear);
1425 sC.setWorldAxisUnits(units);
1426
1427// Add FreqID
1428
1429 freqTabOut.addFrequency(sC.referencePixel()[0],
1430 sC.referenceValue()[0],
1431 sC.increment()[0]);
1432 }
1433
[317]1434// Interpolation method
1435
1436 InterpolateArray1D<Double,Float>::InterpolationMethod interp;
1437 convertInterpString(interp, methodStr);
1438
[267]1439// New output Table
1440
1441 SDMemTable* pTabOut = new SDMemTable(in,True);
[330]1442 pTabOut->putSDFreqTable(freqTabOut);
[267]1443
1444// Loop over rows in Table
1445
[330]1446 Bool extrapolate=False;
[294]1447 const IPosition polChanAxes(2, asap::PolAxis, asap::ChanAxis);
1448 Bool useCachedAbcissa = False;
1449 Bool first = True;
1450 Bool ok;
1451 Vector<Float> yOut;
1452 Vector<Bool> maskOut;
[330]1453 Vector<uInt> freqID(nIF);
[309]1454 uInt ifIdx, faIdx;
[267]1455//
[294]1456 for (uInt iRow=0; iRow<nRows; ++iRow) {
1457 if (iRow%10==0) {
1458 cerr << "Processing row " << iRow << endl;
1459 }
[267]1460
1461// Get EPoch
1462
[294]1463 Quantum<Double> tQ2(times[iRow],DAY);
1464 MVEpoch mv2(tQ2);
1465 MEpoch epoch(mv2, epochRef);
[267]1466
1467// Get copy of data
1468
[294]1469 const MaskedArray<Float>& mArrIn(in.rowAsMaskedArray(iRow));
1470 Array<Float> values = mArrIn.getArray();
1471 Array<Bool> mask = mArrIn.getMask();
[267]1472
1473// cerr << "values in = " << values(IPosition(4,0,0,0,0),IPosition(4,0,0,0,9)) << endl;
1474
[309]1475// For each row, the Frequency abcissa will be the same regardless
[267]1476// of polarization. For all other axes (IF and BEAM) the abcissa
1477// will change. So we iterate through the data by pol-chan planes
[330]1478// to mimimize the work. Probably won't work for multiple beams
1479// at this point.
[267]1480
[294]1481 ArrayIterator<Float> itValuesPlane(values, polChanAxes);
1482 ArrayIterator<Bool> itMaskPlane(mask, polChanAxes);
1483 while (!itValuesPlane.pastEnd()) {
[267]1484
[309]1485// Find the IF index and then the FA PtrBlock index
[267]1486
[294]1487 const IPosition& pos = itValuesPlane.pos();
1488 ifIdx = pos(asap::IFAxis);
[330]1489 faIdx = ddIdx(iRow,ifIdx);
[267]1490//
[294]1491 VectorIterator<Float> itValuesVec(itValuesPlane.array(), 1);
1492 VectorIterator<Bool> itMaskVec(itMaskPlane.array(), 1);
[330]1493
1494// Iterate through the plane by vector and align
1495
[294]1496 first = True;
1497 useCachedAbcissa=False;
1498 while (!itValuesVec.pastEnd()) {
[309]1499 ok = a[faIdx]->align (yOut, maskOut, itValuesVec.vector(),
[317]1500 itMaskVec.vector(), epoch, useCachedAbcissa,
1501 interp, extrapolate);
[330]1502//
[294]1503 itValuesVec.vector() = yOut;
1504 itMaskVec.vector() = maskOut;
[267]1505//
[294]1506 itValuesVec.next();
1507 itMaskVec.next();
[267]1508//
[294]1509 if (first) {
1510 useCachedAbcissa = True;
1511 first = False;
1512 }
1513 }
[267]1514//
1515 itValuesPlane.next();
1516 itMaskPlane.next();
[294]1517 }
[267]1518
1519// cerr << "values out = " << values(IPosition(4,0,0,0,0),IPosition(4,0,0,0,9)) << endl;
1520
[330]1521// Create SDContainer and put back
[267]1522
1523 SDContainer sc = in.getSDContainer(iRow);
1524 putDataInSDC(sc, values, mask);
[330]1525 for (uInt i=0; i<nIF; i++) {
1526 uInt idx = ddIdx(iRow,i);
1527 freqID(i) = dDesc.freqID(idx);
1528 }
1529 sc.putFreqMap(freqID);
[267]1530//
1531 pTabOut->putSDContainer(sc);
[294]1532 }
[267]1533
[309]1534// Now we must set the base and extra frames to the
1535// input frame
1536
1537 std::vector<string> info = pTabOut->getCoordInfo();
1538 info[1] = MFrequency::showType(freqSystem); // Conversion frame
1539 info[3] = info[1]; // Base frame
1540 pTabOut->setCoordInfo(info);
1541
[267]1542// Clean up PointerBlock
1543
[309]1544 for (uInt i=0; i<a.nelements(); i++) delete a[i];
[267]1545//
[309]1546 return pTabOut;
[267]1547}
1548
1549
[185]1550void SDMath::fillSDC(SDContainer& sc,
1551 const Array<Bool>& mask,
1552 const Array<Float>& data,
1553 const Array<Float>& tSys,
1554 Int scanID, Double timeStamp,
1555 Double interval, const String& sourceName,
[227]1556 const Vector<uInt>& freqID) const
[167]1557{
[169]1558// Data and mask
[167]1559
[185]1560 putDataInSDC(sc, data, mask);
[167]1561
[169]1562// TSys
1563
1564 sc.putTsys(tSys);
1565
1566// Time things
1567
1568 sc.timestamp = timeStamp;
1569 sc.interval = interval;
1570 sc.scanid = scanID;
[167]1571//
[169]1572 sc.sourcename = sourceName;
1573 sc.putFreqMap(freqID);
1574}
[167]1575
[185]1576void SDMath::normalize(MaskedArray<Float>& sum,
[169]1577 const Array<Float>& sumSq,
1578 const Array<Float>& nPts,
1579 WeightType wtType, Int axis,
[227]1580 Int nAxesSub) const
[169]1581{
1582 IPosition pos2(nAxesSub,0);
1583//
1584 if (wtType==NONE) {
[167]1585
[169]1586// We just average by the number of points accumulated.
1587// We need to make a MA out of nPts so that no divide by
1588// zeros occur
[167]1589
[169]1590 MaskedArray<Float> t(nPts, (nPts>Float(0.0)));
1591 sum /= t;
1592 } else if (wtType==VAR) {
[167]1593
[169]1594// Normalize each spectrum by sum(1/var) where the variance
1595// is worked out for each spectrum
1596
1597 Array<Float>& data = sum.getRWArray();
1598 VectorIterator<Float> itData(data, axis);
1599 while (!itData.pastEnd()) {
1600 pos2 = itData.pos().getFirst(nAxesSub);
1601 itData.vector() /= sumSq(pos2);
1602 itData.next();
1603 }
1604 } else if (wtType==TSYS) {
1605 }
1606}
1607
1608
[185]1609void SDMath::accumulate(Double& timeSum, Double& intSum, Int& nAccum,
1610 MaskedArray<Float>& sum, Array<Float>& sumSq,
1611 Array<Float>& nPts, Array<Float>& tSysSum,
1612 const Array<Float>& tSys, const Array<Float>& nInc,
1613 const Vector<Bool>& mask, Double time, Double interval,
1614 const Block<CountedPtr<SDMemTable> >& in,
1615 uInt iTab, uInt iRow, uInt axis,
1616 uInt nAxesSub, Bool useMask,
[227]1617 WeightType wtType) const
[169]1618{
1619
1620// Get data
1621
1622 MaskedArray<Float> dataIn(in[iTab]->rowAsMaskedArray(iRow));
1623 Array<Float>& valuesIn = dataIn.getRWArray(); // writable reference
1624 const Array<Bool>& maskIn = dataIn.getMask(); // RO reference
[167]1625//
[169]1626 if (wtType==NONE) {
1627 const MaskedArray<Float> n(nInc,dataIn.getMask());
1628 nPts += n; // Only accumulates where mask==T
1629 } else if (wtType==VAR) {
[167]1630
[169]1631// We are going to average the data, weighted by the noise for each pol, beam and IF.
1632// So therefore we need to iterate through by spectrum (axis 3)
[167]1633
[169]1634 VectorIterator<Float> itData(valuesIn, axis);
1635 ReadOnlyVectorIterator<Bool> itMask(maskIn, axis);
1636 Float fac = 1.0;
1637 IPosition pos(nAxesSub,0);
1638//
1639 while (!itData.pastEnd()) {
[167]1640
[169]1641// Make MaskedArray of Vector, optionally apply OTF mask, and find scaling factor
[167]1642
[169]1643 if (useMask) {
1644 MaskedArray<Float> tmp(itData.vector(),mask&&itMask.vector());
1645 fac = 1.0/variance(tmp);
1646 } else {
1647 MaskedArray<Float> tmp(itData.vector(),itMask.vector());
1648 fac = 1.0/variance(tmp);
1649 }
1650
1651// Scale data
1652
1653 itData.vector() *= fac; // Writes back into 'dataIn'
[167]1654//
[169]1655// Accumulate variance per if/pol/beam averaged over spectrum
1656// This method to get pos2 from itData.pos() is only valid
1657// because the spectral axis is the last one (so we can just
1658// copy the first nAXesSub positions out)
[167]1659
[169]1660 pos = itData.pos().getFirst(nAxesSub);
1661 sumSq(pos) += fac;
1662//
1663 itData.next();
1664 itMask.next();
1665 }
1666 } else if (wtType==TSYS) {
1667 }
[167]1668
[169]1669// Accumulate sum of (possibly scaled) data
1670
1671 sum += dataIn;
1672
1673// Accumulate Tsys, time, and interval
1674
1675 tSysSum += tSys;
1676 timeSum += time;
1677 intSum += interval;
1678 nAccum += 1;
1679}
1680
1681
1682
1683
[185]1684void SDMath::getCursorLocation(IPosition& start, IPosition& end,
[227]1685 const SDMemTable& in) const
[169]1686{
1687 const uInt nDim = 4;
1688 const uInt i = in.getBeam();
1689 const uInt j = in.getIF();
1690 const uInt k = in.getPol();
1691 const uInt n = in.nChan();
[167]1692//
[169]1693 start.resize(nDim);
1694 start(0) = i;
1695 start(1) = j;
1696 start(2) = k;
1697 start(3) = 0;
[167]1698//
[169]1699 end.resize(nDim);
1700 end(0) = i;
1701 end(1) = j;
1702 end(2) = k;
1703 end(3) = n-1;
1704}
1705
1706
[227]1707void SDMath::convertWeightString(WeightType& wtType, const String& weightStr) const
[169]1708{
1709 String tStr(weightStr);
1710 tStr.upcase();
1711 if (tStr.contains(String("NONE"))) {
1712 wtType = NONE;
1713 } else if (tStr.contains(String("VAR"))) {
1714 wtType = VAR;
1715 } else if (tStr.contains(String("TSYS"))) {
1716 wtType = TSYS;
[185]1717 throw(AipsError("T_sys weighting not yet implemented"));
[169]1718 } else {
[185]1719 throw(AipsError("Unrecognized weighting type"));
[167]1720 }
1721}
1722
[317]1723
1724void SDMath::convertInterpString(casa::InterpolateArray1D<Double,Float>::InterpolationMethod& type,
1725 const casa::String& interp) const
[227]1726{
1727 String tStr(interp);
1728 tStr.upcase();
1729 if (tStr.contains(String("NEAR"))) {
[317]1730 type = InterpolateArray1D<Double,Float>::nearestNeighbour;
[227]1731 } else if (tStr.contains(String("LIN"))) {
[317]1732 type = InterpolateArray1D<Double,Float>::linear;
[227]1733 } else if (tStr.contains(String("CUB"))) {
[317]1734 type = InterpolateArray1D<Double,Float>::cubic;
[227]1735 } else if (tStr.contains(String("SPL"))) {
[317]1736 type = InterpolateArray1D<Double,Float>::spline;
[227]1737 } else {
1738 throw(AipsError("Unrecognized interpolation type"));
1739 }
1740}
1741
[185]1742void SDMath::putDataInSDC(SDContainer& sc, const Array<Float>& data,
[227]1743 const Array<Bool>& mask) const
[169]1744{
1745 sc.putSpectrum(data);
1746//
1747 Array<uChar> outflags(data.shape());
1748 convertArray(outflags,!mask);
1749 sc.putFlags(outflags);
1750}
[227]1751
1752Table SDMath::readAsciiFile (const String& fileName) const
1753{
[230]1754 String formatString;
1755 Table tbl = readAsciiTable (formatString, Table::Memory, fileName, "", "", False);
[227]1756 return tbl;
1757}
[230]1758
1759
[234]1760
1761void SDMath::correctFromAsciiTable(SDMemTable* pTabOut,
1762 const SDMemTable& in, const String& fileName,
1763 const String& col0, const String& col1,
1764 const String& methodStr, Bool doAll,
1765 const Vector<Float>& xOut) const
[230]1766{
1767
1768// Read gain-elevation ascii file data into a Table.
1769
[234]1770 Table geTable = readAsciiFile (fileName);
[230]1771//
[234]1772 correctFromTable (pTabOut, in, geTable, col0, col1, methodStr, doAll, xOut);
[230]1773}
1774
[234]1775void SDMath::correctFromTable(SDMemTable* pTabOut, const SDMemTable& in,
1776 const Table& tTable, const String& col0,
1777 const String& col1,
1778 const String& methodStr, Bool doAll,
1779 const Vector<Float>& xOut) const
[230]1780{
1781
1782// Get data from Table
1783
1784 ROScalarColumn<Float> geElCol(tTable, col0);
1785 ROScalarColumn<Float> geFacCol(tTable, col1);
1786 Vector<Float> xIn = geElCol.getColumn();
1787 Vector<Float> yIn = geFacCol.getColumn();
1788 Vector<Bool> maskIn(xIn.nelements(),True);
1789
1790// Interpolate (and extrapolate) with desired method
1791
[317]1792 InterpolateArray1D<Double,Float>::InterpolationMethod method;
[230]1793 convertInterpString(method, methodStr);
[317]1794 Int intMethod(method);
[230]1795//
1796 Vector<Float> yOut;
1797 Vector<Bool> maskOut;
1798 InterpolateArray1D<Float,Float>::interpolate(yOut, maskOut, xOut,
[317]1799 xIn, yIn, maskIn, intMethod,
[230]1800 True, True);
[234]1801// Apply
[230]1802
[234]1803 correctFromVector (pTabOut, in, doAll, yOut);
1804}
1805
1806
1807void SDMath::correctFromVector (SDMemTable* pTabOut, const SDMemTable& in,
1808 Bool doAll, const Vector<Float>& factor) const
1809{
[270]1810
[230]1811// For operations only on specified cursor location
1812
1813 IPosition start, end;
1814 getCursorLocation(start, end, in);
1815
[270]1816// Loop over rows and apply correction factor
[230]1817
1818 const uInt axis = asap::ChanAxis;
1819 for (uInt i=0; i < in.nRow(); ++i) {
1820
1821// Get data
1822
1823 MaskedArray<Float> dataIn(in.rowAsMaskedArray(i));
1824
1825// Apply factor
1826
1827 if (doAll) {
[270]1828 dataIn *= factor[i];
[230]1829 } else {
[270]1830 MaskedArray<Float> dataIn2 = dataIn(start,end); // reference
1831 dataIn2 *= factor[i];
[230]1832 }
1833
1834// Write out
1835
1836 SDContainer sc = in.getSDContainer(i);
[270]1837 putDataInSDC(sc, dataIn.getArray(), dataIn.getMask());
[230]1838//
1839 pTabOut->putSDContainer(sc);
1840 }
1841}
1842
[234]1843
[262]1844
1845
[330]1846void SDMath::generateDataDescTable (Matrix<uInt>& ddIdx,
1847 SDDataDesc& dDesc,
1848 uInt nIF,
1849 const SDMemTable& in,
1850 const Table& tabIn,
1851 const ROScalarColumn<String>& srcCol,
1852 const ROArrayColumn<uInt>& fqIDCol) const
1853{
1854 const uInt nRows = tabIn.nrow();
1855 ddIdx.resize(nRows,nIF);
[262]1856//
[330]1857 String srcName;
1858 Vector<uInt> freqIDs;
1859 for (uInt iRow=0; iRow<nRows; iRow++) {
1860 srcCol.get(iRow, srcName);
1861 fqIDCol.get(iRow, freqIDs);
1862 const MDirection& dir = in.getDirection(iRow);
1863//
1864 for (uInt iIF=0; iIF<nIF; iIF++) {
1865 uInt idx = dDesc.addEntry(srcName, freqIDs[iIF], dir);
1866 ddIdx(iRow,iIF) = idx;
[262]1867 }
1868 }
1869}
[272]1870
1871MEpoch SDMath::epochFromString (const String& str, MEpoch::Types timeRef) const
1872{
1873 Quantum<Double> qt;
1874 if (MVTime::read(qt,str)) {
1875 MVEpoch mv(qt);
1876 MEpoch me(mv, timeRef);
1877 return me;
1878 } else {
1879 throw(AipsError("Invalid format for Epoch string"));
1880 }
1881}
1882
1883
1884String SDMath::formatEpoch(const MEpoch& epoch) const
1885{
1886 MVTime mvt(epoch.getValue());
1887 return mvt.string(MVTime::YMD) + String(" (") + epoch.getRefString() + String(")");
1888}
1889
[294]1890
[309]1891
1892void SDMath::generateFrequencyAligners (PtrBlock<FrequencyAligner<Float>* >& a,
[330]1893 const SDDataDesc& dDesc,
1894 const SDMemTable& in, uInt nChan,
1895 MFrequency::Types system,
1896 const MPosition& refPos,
1897 const MEpoch& refEpoch) const
[294]1898{
[330]1899 for (uInt i=0; i<dDesc.length(); i++) {
1900 uInt freqID = dDesc.freqID(i);
1901 const MDirection& refDir = dDesc.direction(i);
1902//
1903 SpectralCoordinate sC = in.getSpectralCoordinate(freqID);
1904 a[i] = new FrequencyAligner<Float>(sC, nChan, refEpoch, refDir, refPos, system);
[294]1905 }
1906}
Note: See TracBrowser for help on using the repository browser.