[91] | 1 | //#---------------------------------------------------------------------------
|
---|
| 2 | //# SDFitter.cc: A Fitter class for spectra
|
---|
| 3 | //#--------------------------------------------------------------------------
|
---|
| 4 | //# Copyright (C) 2004
|
---|
| 5 | //# Malte Marquarding, ATNF
|
---|
| 6 | //#
|
---|
| 7 | //# This program is free software; you can redistribute it and/or modify it
|
---|
| 8 | //# under the terms of the GNU General Public License as published by the Free
|
---|
| 9 | //# Software Foundation; either version 2 of the License, or (at your option)
|
---|
| 10 | //# any later version.
|
---|
| 11 | //#
|
---|
| 12 | //# This program is distributed in the hope that it will be useful, but
|
---|
| 13 | //# WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | //# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
|
---|
| 15 | //# Public License for more details.
|
---|
| 16 | //#
|
---|
| 17 | //# You should have received a copy of the GNU General Public License along
|
---|
| 18 | //# with this program; if not, write to the Free Software Foundation, Inc.,
|
---|
| 19 | //# 675 Massachusetts Ave, Cambridge, MA 02139, USA.
|
---|
| 20 | //#
|
---|
| 21 | //# Correspondence concerning this software should be addressed as follows:
|
---|
| 22 | //# Internet email: Malte.Marquarding@csiro.au
|
---|
| 23 | //# Postal address: Malte Marquarding,
|
---|
| 24 | //# Australia Telescope National Facility,
|
---|
| 25 | //# P.O. Box 76,
|
---|
| 26 | //# Epping, NSW, 2121,
|
---|
| 27 | //# AUSTRALIA
|
---|
| 28 | //#
|
---|
| 29 | //# $Id:
|
---|
| 30 | //#---------------------------------------------------------------------------
|
---|
| 31 | #include <casa/Arrays/ArrayMath.h>
|
---|
| 32 | #include <casa/Arrays/ArrayLogical.h>
|
---|
| 33 | #include <scimath/Fitting.h>
|
---|
| 34 | #include <scimath/Fitting/LinearFit.h>
|
---|
| 35 | #include <scimath/Functionals/CompiledFunction.h>
|
---|
| 36 | #include <scimath/Functionals/CompoundFunction.h>
|
---|
| 37 | #include <scimath/Functionals/Gaussian1D.h>
|
---|
| 38 | #include <scimath/Functionals/Polynomial.h>
|
---|
| 39 | #include <scimath/Mathematics/AutoDiff.h>
|
---|
| 40 | #include <scimath/Mathematics/AutoDiffMath.h>
|
---|
| 41 | #include <scimath/Fitting/NonLinearFitLM.h>
|
---|
| 42 | #include <components/SpectralComponents/SpectralEstimate.h>
|
---|
| 43 |
|
---|
| 44 | #include "SDFitter.h"
|
---|
| 45 | using namespace asap;
|
---|
| 46 |
|
---|
| 47 | SDFitter::SDFitter()
|
---|
| 48 | {
|
---|
| 49 | }
|
---|
| 50 |
|
---|
| 51 | SDFitter::~SDFitter()
|
---|
| 52 | {
|
---|
| 53 | reset();
|
---|
| 54 | }
|
---|
| 55 |
|
---|
| 56 | void SDFitter::clear()
|
---|
| 57 | {
|
---|
| 58 | for (uInt i=0;i< funcs_.nelements();++i) {
|
---|
| 59 | delete funcs_[i]; funcs_[i] = 0;
|
---|
| 60 | };
|
---|
| 61 | funcs_.resize(0, True);
|
---|
| 62 | parameters_.resize();
|
---|
| 63 | error_.resize();
|
---|
| 64 | thefit_.resize();
|
---|
| 65 | estimate_.resize();
|
---|
| 66 | chisquared_ = 0.0;
|
---|
| 67 | }
|
---|
| 68 | void SDFitter::reset()
|
---|
| 69 | {
|
---|
| 70 | clear();
|
---|
| 71 | x_.resize();
|
---|
| 72 | y_.resize();
|
---|
| 73 | m_.resize();
|
---|
| 74 | }
|
---|
| 75 |
|
---|
| 76 |
|
---|
| 77 | bool SDFitter::computeEstimate() {
|
---|
| 78 | if (x_.nelements() == 0 || y_.nelements() == 0)
|
---|
| 79 | throw (AipsError("No x/y data specified."));
|
---|
| 80 |
|
---|
| 81 | if (dynamic_cast<Gaussian1D<Float>* >(funcs_[0]) == 0)
|
---|
| 82 | return false;
|
---|
| 83 | uInt n = funcs_.nelements();
|
---|
| 84 | SpectralEstimate estimator(n);
|
---|
| 85 | estimator.setQ(5);
|
---|
[108] | 86 | Int mn,mx;
|
---|
| 87 | mn = 0;
|
---|
| 88 | mx = m_.nelements()-1;
|
---|
| 89 | for (uInt i=0; i<m_.nelements();++i) {
|
---|
| 90 | if (m_[i]) {
|
---|
| 91 | mn = i;
|
---|
| 92 | break;
|
---|
| 93 | }
|
---|
| 94 | }
|
---|
| 95 | for (uInt j=m_.nelements()-1; j>=0;--j) {
|
---|
| 96 | if (m_[j]) {
|
---|
| 97 | mx = j;
|
---|
| 98 | break;
|
---|
| 99 | }
|
---|
| 100 | }
|
---|
| 101 | //mn = 0+x_.nelements()/10;
|
---|
| 102 | //mx = x_.nelements()-x_.nelements()/10;
|
---|
| 103 | estimator.setRegion(mn,mx);
|
---|
[91] | 104 | //estimator.setWindowing(True);
|
---|
| 105 | SpectralList listGauss = estimator.estimate(x_, y_);
|
---|
| 106 | Gaussian1D<Float>* g;
|
---|
| 107 | parameters_.resize(n*3);
|
---|
| 108 | uInt count = 0;
|
---|
| 109 | for (uInt i=0; i<n;i++) {
|
---|
| 110 | g = dynamic_cast<Gaussian1D<Float>* >(funcs_[i]);
|
---|
| 111 | if (g) {
|
---|
| 112 | (*g)[0] = listGauss[i].getAmpl();
|
---|
| 113 | (*g)[1] = listGauss[i].getCenter();
|
---|
| 114 | (*g)[2] = listGauss[i].getFWHM();
|
---|
| 115 | ++count;
|
---|
| 116 | }
|
---|
| 117 | }
|
---|
| 118 | estimate_.resize();
|
---|
| 119 | listGauss.evaluate(estimate_,x_);
|
---|
| 120 | return true;
|
---|
| 121 | }
|
---|
| 122 |
|
---|
| 123 | std::vector<float> SDFitter::getEstimate() const
|
---|
| 124 | {
|
---|
| 125 | if (estimate_.nelements() == 0)
|
---|
| 126 | throw (AipsError("No estimate set."));
|
---|
| 127 | std::vector<float> stlout;
|
---|
| 128 | estimate_.tovector(stlout);
|
---|
| 129 | return stlout;
|
---|
| 130 | }
|
---|
| 131 |
|
---|
| 132 |
|
---|
| 133 | bool SDFitter::setExpression(const std::string& expr, int ncomp)
|
---|
| 134 | {
|
---|
| 135 | clear();
|
---|
| 136 | if (expr == "gauss") {
|
---|
| 137 | if (ncomp < 1) throw (AipsError("Need at least one gaussian to fit."));
|
---|
| 138 | funcs_.resize(ncomp);
|
---|
| 139 | for (Int k=0; k<ncomp; ++k) {
|
---|
| 140 | funcs_[k] = new Gaussian1D<Float>();
|
---|
| 141 | }
|
---|
| 142 | } else if (expr == "poly") {
|
---|
| 143 | funcs_.resize(1);
|
---|
| 144 | funcs_[0] = new Polynomial<Float>(ncomp);
|
---|
| 145 | } else {
|
---|
| 146 | cerr << " compiled functions not yet implemented" << endl;
|
---|
| 147 | //funcs_.resize(1);
|
---|
| 148 | //funcs_[0] = new CompiledFunction<Float>();
|
---|
| 149 | //funcs_[0]->setFunction(String(expr));
|
---|
| 150 | return false;
|
---|
| 151 | };
|
---|
| 152 | return true;
|
---|
| 153 | }
|
---|
| 154 |
|
---|
| 155 | bool SDFitter::setData(std::vector<float> absc, std::vector<float> spec,
|
---|
| 156 | std::vector<bool> mask)
|
---|
| 157 | {
|
---|
| 158 | x_.resize();
|
---|
| 159 | y_.resize();
|
---|
| 160 | m_.resize();
|
---|
| 161 | // convert std::vector to casa Vector
|
---|
| 162 | Vector<Float> tmpx(absc);
|
---|
| 163 | Vector<Float> tmpy(spec);
|
---|
| 164 | Vector<Bool> tmpm(mask);
|
---|
| 165 | AlwaysAssert(tmpx.nelements() == tmpy.nelements(), AipsError);
|
---|
| 166 | x_ = tmpx;
|
---|
| 167 | y_ = tmpy;
|
---|
| 168 | m_ = tmpm;
|
---|
| 169 | return true;
|
---|
| 170 | }
|
---|
| 171 |
|
---|
| 172 | std::vector<float> SDFitter::getResidual() const
|
---|
| 173 | {
|
---|
| 174 | if (residual_.nelements() == 0)
|
---|
| 175 | throw (AipsError("Function not yet fitted."));
|
---|
| 176 | std::vector<float> stlout;
|
---|
| 177 | residual_.tovector(stlout);
|
---|
| 178 | return stlout;
|
---|
| 179 | }
|
---|
| 180 |
|
---|
| 181 | std::vector<float> SDFitter::getFit() const
|
---|
| 182 | {
|
---|
| 183 | Vector<Float> out = thefit_;
|
---|
| 184 | std::vector<float> stlout;
|
---|
| 185 | out.tovector(stlout);
|
---|
| 186 | return stlout;
|
---|
| 187 |
|
---|
| 188 | }
|
---|
| 189 |
|
---|
| 190 | std::vector<float> SDFitter::getErrors() const
|
---|
| 191 | {
|
---|
| 192 | Vector<Float> out = error_;
|
---|
| 193 | std::vector<float> stlout;
|
---|
| 194 | out.tovector(stlout);
|
---|
| 195 | return stlout;
|
---|
| 196 | }
|
---|
| 197 |
|
---|
| 198 | bool SDFitter::setParameters(std::vector<float> params)
|
---|
| 199 | {
|
---|
| 200 | Vector<Float> tmppar(params);
|
---|
| 201 | if (funcs_.nelements() == 0)
|
---|
| 202 | throw (AipsError("Function not yet set."));
|
---|
| 203 | if (parameters_.nelements() > 0 && tmppar.nelements() != parameters_.nelements())
|
---|
| 204 | throw (AipsError("Number of parameters inconsistent with function."));
|
---|
| 205 | if (parameters_.nelements() == 0)
|
---|
| 206 | parameters_.resize(tmppar.nelements());
|
---|
| 207 | fixedpar_.resize(tmppar.nelements());
|
---|
| 208 | fixedpar_ = False;
|
---|
| 209 | if (dynamic_cast<Gaussian1D<Float>* >(funcs_[0]) != 0) {
|
---|
| 210 | uInt count = 0;
|
---|
| 211 | for (uInt j=0; j < funcs_.nelements(); ++j) {
|
---|
| 212 | for (uInt i=0; i < funcs_[j]->nparameters(); ++i) {
|
---|
| 213 | (funcs_[j]->parameters())[i] = tmppar[count];
|
---|
| 214 | parameters_[count] = tmppar[count];
|
---|
| 215 | ++count;
|
---|
| 216 | }
|
---|
| 217 | }
|
---|
| 218 | } else if (dynamic_cast<Polynomial<Float>* >(funcs_[0]) != 0) {
|
---|
| 219 | for (uInt i=0; i < funcs_[0]->nparameters(); ++i) {
|
---|
| 220 | parameters_[i] = tmppar[i];
|
---|
| 221 | (funcs_[0]->parameters())[i] = tmppar[i];
|
---|
| 222 | }
|
---|
| 223 | }
|
---|
| 224 | return true;
|
---|
| 225 | }
|
---|
| 226 |
|
---|
| 227 | bool SDFitter::setFixedParameters(std::vector<bool> fixed)
|
---|
| 228 | {
|
---|
| 229 | Vector<Bool> tmp(fixed);
|
---|
| 230 | if (funcs_.nelements() == 0)
|
---|
| 231 | throw (AipsError("Function not yet set."));
|
---|
| 232 | if (fixedpar_.nelements() > 0 && tmp.nelements() != fixedpar_.nelements())
|
---|
| 233 | throw (AipsError("Number of mask elements inconsistent with function."));
|
---|
| 234 | if (dynamic_cast<Gaussian1D<Float>* >(funcs_[0]) != 0) {
|
---|
| 235 | uInt count = 0;
|
---|
| 236 | for (uInt j=0; j < funcs_.nelements(); ++j) {
|
---|
| 237 | for (uInt i=0; i < funcs_[j]->nparameters(); ++i) {
|
---|
| 238 | funcs_[j]->mask(i) = !tmp[count];
|
---|
| 239 | fixedpar_[count] = !tmp[count];
|
---|
| 240 | ++count;
|
---|
| 241 | }
|
---|
| 242 | }
|
---|
| 243 | } else if (dynamic_cast<Polynomial<Float>* >(funcs_[0]) != 0) {
|
---|
| 244 | for (uInt i=0; i < funcs_[0]->nparameters(); ++i) {
|
---|
| 245 | fixedpar_[i] = tmp[i];
|
---|
| 246 | funcs_[0]->mask(i) = tmp[i];
|
---|
| 247 | }
|
---|
| 248 | }
|
---|
| 249 | //fixedpar_ = !tmpmsk;
|
---|
| 250 | return true;
|
---|
| 251 | }
|
---|
| 252 |
|
---|
| 253 | std::vector<float> SDFitter::getParameters() const {
|
---|
| 254 | Vector<Float> out = parameters_;
|
---|
| 255 | std::vector<float> stlout;
|
---|
| 256 | out.tovector(stlout);
|
---|
| 257 | return stlout;
|
---|
| 258 | }
|
---|
| 259 |
|
---|
| 260 | std::vector<bool> SDFitter::getFixedParameters() const {
|
---|
[108] | 261 | Vector<Bool> out(parameters_.nelements());
|
---|
| 262 | if (fixedpar_.nelements() == 0) {
|
---|
| 263 | out = False;
|
---|
| 264 | //throw (AipsError("No parameter mask set."));
|
---|
| 265 | } else {
|
---|
| 266 | out = fixedpar_;
|
---|
| 267 | }
|
---|
| 268 | std::vector<bool> stlout;
|
---|
| 269 | out.tovector(stlout);
|
---|
| 270 | return stlout;
|
---|
[91] | 271 | }
|
---|
| 272 |
|
---|
| 273 | float SDFitter::getChisquared() const {
|
---|
| 274 | return chisquared_;
|
---|
| 275 | }
|
---|
| 276 |
|
---|
| 277 | bool SDFitter::fit() {
|
---|
| 278 | NonLinearFitLM<Float> fitter;
|
---|
| 279 | //CompiledFunction<AutoDiff<Float> > comp;
|
---|
| 280 | //Polynomial<AutoDiff<Float> > poly;
|
---|
| 281 | CompoundFunction<AutoDiff<Float> > func;
|
---|
| 282 | if (dynamic_cast<Gaussian1D<Float>* >(funcs_[0]) != 0) {
|
---|
| 283 | //computeEstimates();
|
---|
| 284 | for (uInt i=0; i<funcs_.nelements(); i++) {
|
---|
| 285 | Gaussian1D<AutoDiff<Float> > gauss;
|
---|
| 286 | for (uInt j=0; j<funcs_[i]->nparameters(); j++) {
|
---|
| 287 | gauss[j] = AutoDiff<Float>((*funcs_[i])[j], gauss.nparameters(), j);
|
---|
| 288 | gauss.mask(j) = funcs_[i]->mask(j);
|
---|
| 289 | }
|
---|
| 290 | func.addFunction(gauss);
|
---|
| 291 | }
|
---|
| 292 | } else if (dynamic_cast<Polynomial<Float>* >(funcs_[0]) != 0) {
|
---|
| 293 | Polynomial<AutoDiff<Float> > poly(funcs_[0]->nparameters()-1);
|
---|
| 294 | for (uInt j=0; j<funcs_[0]->nparameters(); j++) {
|
---|
| 295 | poly[j] = AutoDiff<Float>(0, poly.nparameters(), j);
|
---|
| 296 | poly.mask(j) = funcs_[0]->mask(j);
|
---|
| 297 | }
|
---|
| 298 | func.addFunction(poly);
|
---|
| 299 | } else if (dynamic_cast<CompiledFunction<Float>* >(funcs_[0]) != 0) {
|
---|
| 300 |
|
---|
| 301 | // CompiledFunction<AutoDiff<Float> > comp;
|
---|
| 302 | // for (uInt j=0; j<funcs_[0]->nparameters(); j++) {
|
---|
| 303 | // comp[j] = AutoDiff<Float>(0, comp.nparameters(), j);
|
---|
| 304 | // comp.mask(j) = funcs_[0]->mask(j);
|
---|
| 305 | // }
|
---|
| 306 | // func.addFunction(comp);
|
---|
| 307 |
|
---|
| 308 | cout << "NYI." << endl;
|
---|
| 309 | } else {
|
---|
| 310 | throw (AipsError("Fitter not set up correctly."));
|
---|
| 311 | }
|
---|
| 312 | fitter.setFunction(func);
|
---|
| 313 | fitter.setMaxIter(50+funcs_.nelements()*10);
|
---|
| 314 | // Convergence criterium
|
---|
| 315 | fitter.setCriteria(0.001);
|
---|
| 316 | // Fit
|
---|
| 317 | Vector<Float> sigma(x_.nelements());
|
---|
| 318 | sigma = 1.0;
|
---|
| 319 | //Vector<Float> sol;
|
---|
| 320 | parameters_.resize();
|
---|
| 321 | //Vector<Float> err;
|
---|
| 322 | error_.resize();
|
---|
| 323 | parameters_ = fitter.fit(x_, y_, sigma, &m_);
|
---|
| 324 | /*
|
---|
| 325 | CompoundFunction<Float> f;
|
---|
| 326 | for (uInt i=0; i<funcs_.nelements(); i++) {
|
---|
| 327 | f.addFunction(*funcs_[i]);
|
---|
| 328 | }
|
---|
| 329 | f.parameters().setParameters(parameters_);
|
---|
| 330 | */
|
---|
| 331 | error_ = fitter.errors();
|
---|
| 332 | chisquared_ = fitter.getChi2();
|
---|
| 333 | residual_.resize();
|
---|
| 334 | residual_ = y_;
|
---|
| 335 | fitter.residual(residual_,x_);
|
---|
| 336 | // use fitter.residual(model=True) to get the model
|
---|
| 337 | thefit_.resize(x_.nelements());
|
---|
| 338 | fitter.residual(thefit_,x_,True);
|
---|
| 339 | return true;
|
---|
| 340 | }
|
---|