1 | //
|
---|
2 | // C++ Implementation: PolynomialInterpolator1D
|
---|
3 | //
|
---|
4 | // Description:
|
---|
5 | //
|
---|
6 | //
|
---|
7 | // Author: Takeshi Nakazato <takeshi.nakazato@nao.ac.jp>, (C) 2012
|
---|
8 | //
|
---|
9 | // Copyright: See COPYING file that comes with this distribution
|
---|
10 | //
|
---|
11 | //
|
---|
12 | #include <assert.h>
|
---|
13 | #include <math.h>
|
---|
14 | #include <iostream>
|
---|
15 | using namespace std;
|
---|
16 |
|
---|
17 | #include <casa/Exceptions/Error.h>
|
---|
18 |
|
---|
19 | #include "PolynomialInterpolator1D.h"
|
---|
20 |
|
---|
21 | namespace asap {
|
---|
22 |
|
---|
23 | template <class T, class U>
|
---|
24 | PolynomialInterpolator1D<T, U>::PolynomialInterpolator1D()
|
---|
25 | : Interpolator1D<T, U>()
|
---|
26 | {}
|
---|
27 |
|
---|
28 | template <class T, class U>
|
---|
29 | PolynomialInterpolator1D<T, U>::~PolynomialInterpolator1D()
|
---|
30 | {}
|
---|
31 |
|
---|
32 | template <class T, class U>
|
---|
33 | U PolynomialInterpolator1D<T, U>::interpolate(T x)
|
---|
34 | {
|
---|
35 | assert(this->isready());
|
---|
36 | if (this->n_ == 1)
|
---|
37 | return this->y_[0];
|
---|
38 |
|
---|
39 | unsigned int i = this->locator_->locate(x);
|
---|
40 |
|
---|
41 | // do not perform extrapolation
|
---|
42 | if (i == 0) {
|
---|
43 | return this->y_[i];
|
---|
44 | }
|
---|
45 | else if (i == this->n_) {
|
---|
46 | return this->y_[i-1];
|
---|
47 | }
|
---|
48 |
|
---|
49 | // polynomial interpolation
|
---|
50 | U y;
|
---|
51 | if (this->order_ >= this->n_ - 1) {
|
---|
52 | // use full region
|
---|
53 | y = dopoly(x, 0, this->n_);
|
---|
54 | }
|
---|
55 | else {
|
---|
56 | // use sub-region
|
---|
57 | int j = i - 1 - this->order_ / 2;
|
---|
58 | unsigned int m = this->n_ - 1 - this->order_;
|
---|
59 | unsigned int k = (unsigned int)((j > 0) ? j : 0);
|
---|
60 | k = ((k > m) ? m : k);
|
---|
61 | y = dopoly(x, k, this->order_ + 1);
|
---|
62 | }
|
---|
63 |
|
---|
64 | return y;
|
---|
65 | }
|
---|
66 |
|
---|
67 | template <class T, class U>
|
---|
68 | U PolynomialInterpolator1D<T, U>::dopoly(T x, unsigned int left,
|
---|
69 | unsigned int n)
|
---|
70 | {
|
---|
71 | T *xa = &this->x_[left];
|
---|
72 | U *ya = &this->y_[left];
|
---|
73 |
|
---|
74 | // storage for C and D in Neville's algorithm
|
---|
75 | U *c = new U[n];
|
---|
76 | U *d = new U[n];
|
---|
77 | for (unsigned int i = 0; i < n; i++) {
|
---|
78 | c[i] = ya[i];
|
---|
79 | d[i] = ya[i];
|
---|
80 | }
|
---|
81 |
|
---|
82 | // Neville's algorithm
|
---|
83 | U y = c[0];
|
---|
84 | for (unsigned int m = 1; m < n; m++) {
|
---|
85 | // Evaluate Cm1, Cm2, Cm3, ... Cm[n-m] and Dm1, Dm2, Dm3, ... Dm[n-m].
|
---|
86 | // Those are stored to c[0], c[1], ..., c[n-m-1] and d[0], d[1], ...,
|
---|
87 | // d[n-m-1].
|
---|
88 | for (unsigned int i = 0; i < n - m; i++) {
|
---|
89 | U cd = c[i+1] - d[i];
|
---|
90 | T dx = xa[i] - xa[i+m];
|
---|
91 | try {
|
---|
92 | cd /= (U)dx;
|
---|
93 | }
|
---|
94 | catch (...) {
|
---|
95 | delete[] c;
|
---|
96 | delete[] d;
|
---|
97 | throw casa::AipsError("x_ has duplicate elements");
|
---|
98 | }
|
---|
99 | c[i] = (xa[i] - x) * cd;
|
---|
100 | d[i] = (xa[i+m] - x) * cd;
|
---|
101 | }
|
---|
102 |
|
---|
103 | // In each step, c[0] holds Cm1 which is a correction between
|
---|
104 | // P12...m and P12...[m+1]. Thus, the following repeated update
|
---|
105 | // corresponds to the route P1 -> P12 -> P123 ->...-> P123...n.
|
---|
106 | y += c[0];
|
---|
107 | }
|
---|
108 |
|
---|
109 | delete[] c;
|
---|
110 | delete[] d;
|
---|
111 |
|
---|
112 | return y;
|
---|
113 | }
|
---|
114 | }
|
---|