[2733] | 1 | //
|
---|
| 2 | // C++ Implementation: PolynomialInterpolator1D
|
---|
| 3 | //
|
---|
| 4 | // Description:
|
---|
| 5 | //
|
---|
| 6 | //
|
---|
| 7 | // Author: Takeshi Nakazato <takeshi.nakazato@nao.ac.jp>, (C) 2012
|
---|
| 8 | //
|
---|
| 9 | // Copyright: See COPYING file that comes with this distribution
|
---|
| 10 | //
|
---|
| 11 | //
|
---|
| 12 | #include <assert.h>
|
---|
| 13 | #include <math.h>
|
---|
| 14 | #include <iostream>
|
---|
| 15 | using namespace std;
|
---|
| 16 |
|
---|
| 17 | #include <casa/Exceptions/Error.h>
|
---|
| 18 |
|
---|
| 19 | #include "PolynomialInterpolator1D.h"
|
---|
| 20 |
|
---|
| 21 | namespace asap {
|
---|
| 22 |
|
---|
| 23 | template <class T, class U>
|
---|
| 24 | PolynomialInterpolator1D<T, U>::PolynomialInterpolator1D()
|
---|
| 25 | : Interpolator1D<T, U>()
|
---|
| 26 | {}
|
---|
| 27 |
|
---|
| 28 | template <class T, class U>
|
---|
| 29 | PolynomialInterpolator1D<T, U>::~PolynomialInterpolator1D()
|
---|
| 30 | {}
|
---|
| 31 |
|
---|
| 32 | template <class T, class U>
|
---|
| 33 | U PolynomialInterpolator1D<T, U>::interpolate(T x)
|
---|
| 34 | {
|
---|
| 35 | assert(this->isready());
|
---|
| 36 | if (this->n_ == 1)
|
---|
| 37 | return this->y_[0];
|
---|
| 38 |
|
---|
| 39 | unsigned int i = this->locator_->locate(x);
|
---|
| 40 |
|
---|
| 41 | // do not perform extrapolation
|
---|
| 42 | if (i == 0) {
|
---|
| 43 | return this->y_[i];
|
---|
| 44 | }
|
---|
| 45 | else if (i == this->n_) {
|
---|
| 46 | return this->y_[i-1];
|
---|
| 47 | }
|
---|
| 48 |
|
---|
| 49 | // polynomial interpolation
|
---|
| 50 | U y;
|
---|
| 51 | if (this->order_ >= this->n_ - 1) {
|
---|
| 52 | // use full region
|
---|
| 53 | y = dopoly(x, 0, this->n_);
|
---|
| 54 | }
|
---|
| 55 | else {
|
---|
| 56 | // use sub-region
|
---|
| 57 | int j = i - 1 - this->order_ / 2;
|
---|
| 58 | unsigned int m = this->n_ - 1 - this->order_;
|
---|
| 59 | unsigned int k = (unsigned int)((j > 0) ? j : 0);
|
---|
| 60 | k = ((k > m) ? m : k);
|
---|
| 61 | y = dopoly(x, k, this->order_ + 1);
|
---|
| 62 | }
|
---|
| 63 |
|
---|
| 64 | return y;
|
---|
| 65 | }
|
---|
| 66 |
|
---|
| 67 | template <class T, class U>
|
---|
| 68 | U PolynomialInterpolator1D<T, U>::dopoly(T x, unsigned int left,
|
---|
| 69 | unsigned int n)
|
---|
| 70 | {
|
---|
| 71 | T *xa = &this->x_[left];
|
---|
| 72 | U *ya = &this->y_[left];
|
---|
| 73 |
|
---|
| 74 | // storage for C and D in Neville's algorithm
|
---|
| 75 | U *c = new U[n];
|
---|
| 76 | U *d = new U[n];
|
---|
| 77 | for (unsigned int i = 0; i < n; i++) {
|
---|
| 78 | c[i] = ya[i];
|
---|
| 79 | d[i] = ya[i];
|
---|
| 80 | }
|
---|
| 81 |
|
---|
| 82 | // Neville's algorithm
|
---|
| 83 | U y = c[0];
|
---|
| 84 | for (unsigned int m = 1; m < n; m++) {
|
---|
| 85 | // Evaluate Cm1, Cm2, Cm3, ... Cm[n-m] and Dm1, Dm2, Dm3, ... Dm[n-m].
|
---|
| 86 | // Those are stored to c[0], c[1], ..., c[n-m-1] and d[0], d[1], ...,
|
---|
| 87 | // d[n-m-1].
|
---|
| 88 | for (unsigned int i = 0; i < n - m; i++) {
|
---|
| 89 | U cd = c[i+1] - d[i];
|
---|
| 90 | T dx = xa[i] - xa[i+m];
|
---|
| 91 | try {
|
---|
| 92 | cd /= (U)dx;
|
---|
| 93 | }
|
---|
| 94 | catch (...) {
|
---|
| 95 | delete[] c;
|
---|
| 96 | delete[] d;
|
---|
| 97 | throw casa::AipsError("x_ has duplicate elements");
|
---|
| 98 | }
|
---|
| 99 | c[i] = (xa[i] - x) * cd;
|
---|
| 100 | d[i] = (xa[i+m] - x) * cd;
|
---|
| 101 | }
|
---|
| 102 |
|
---|
| 103 | // In each step, c[0] holds Cm1 which is a correction between
|
---|
| 104 | // P12...m and P12...[m+1]. Thus, the following repeated update
|
---|
| 105 | // corresponds to the route P1 -> P12 -> P123 ->...-> P123...n.
|
---|
| 106 | y += c[0];
|
---|
| 107 | }
|
---|
| 108 |
|
---|
| 109 | delete[] c;
|
---|
| 110 | delete[] d;
|
---|
| 111 |
|
---|
| 112 | return y;
|
---|
| 113 | }
|
---|
| 114 | }
|
---|