[1706] | 1 | //# Lorentzian1D2.cc: One dimensional Lorentzian class specialized for AutoDiff
|
---|
| 2 | //# Copyright (C) 2001,2002
|
---|
| 3 | //# Associated Universities, Inc. Washington DC, USA.
|
---|
| 4 | //#
|
---|
| 5 | //# This library is free software; you can redistribute it and/or modify it
|
---|
| 6 | //# under the terms of the GNU Library General Public License as published by
|
---|
| 7 | //# the Free Software Foundation; either version 2 of the License, or (at your
|
---|
| 8 | //# option) any later version.
|
---|
| 9 | //#
|
---|
| 10 | //# This library is distributed in the hope that it will be useful, but WITHOUT
|
---|
| 11 | //# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
---|
| 12 | //# FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public
|
---|
| 13 | //# License for more details.
|
---|
| 14 | //#
|
---|
| 15 | //# You should have received a copy of the GNU Library General Public License
|
---|
| 16 | //# along with this library; if not, write to the Free Software Foundation,
|
---|
| 17 | //# Inc., 675 Massachusetts Ave, Cambridge, MA 02139, USA.
|
---|
| 18 | //#
|
---|
| 19 | //# Correspondence concerning AIPS++ should be addressed as follows:
|
---|
| 20 | //# Internet email: aips2-request@nrao.edu.
|
---|
| 21 | //# Postal address: AIPS++ Project Office
|
---|
| 22 | //# National Radio Astronomy Observatory
|
---|
| 23 | //# 520 Edgemont Road
|
---|
| 24 | //# Charlottesville, VA 22903-2475 USA
|
---|
| 25 | //#
|
---|
| 26 | //# $Id: Lorentzian1D2.tcc 20253 2008-02-23 15:15:00Z gervandiepen $
|
---|
| 27 |
|
---|
| 28 | //# Includes
|
---|
| 29 | #include "Lorentzian1D.h"
|
---|
| 30 | #include <casa/BasicMath/Math.h>
|
---|
| 31 |
|
---|
| 32 | namespace casa { //# NAMESPACE CASA - BEGIN
|
---|
| 33 |
|
---|
| 34 | //# Constructors
|
---|
| 35 |
|
---|
| 36 | //# Operators
|
---|
| 37 | template<class T>
|
---|
| 38 | AutoDiff<T> Lorentzian1D<AutoDiff<T> >::
|
---|
| 39 | eval(typename Function<AutoDiff<T> >::FunctionArg x) const {
|
---|
| 40 | AutoDiff<T> tmp;
|
---|
| 41 | if (this->param_p[this->HEIGHT].nDerivatives() > 0) tmp = this->param_p[this->HEIGHT];
|
---|
| 42 | else if (this->param_p[this->CENTER].nDerivatives() > 0) tmp = this->param_p[this->CENTER];
|
---|
| 43 | else if (this->param_p[this->WIDTH].nDerivatives() > 0) tmp = this->param_p[this->WIDTH];
|
---|
| 44 | T x_norm = (x[0] - this->param_p[this->CENTER].value())/
|
---|
| 45 | this->param_p[this->WIDTH].value()/this->fwhm2int.value();
|
---|
| 46 | T exponential = T(1.0)/(T(1.0) + x_norm*x_norm);
|
---|
| 47 | // function value
|
---|
| 48 | tmp.value() = this->param_p[this->HEIGHT].value() * exponential;
|
---|
| 49 | // get derivatives (assuming either all or none)
|
---|
| 50 | if (tmp.nDerivatives()>0) {
|
---|
| 51 | for (uInt j=0; j<tmp.nDerivatives(); j++) tmp.deriv(j) = 0.0;
|
---|
| 52 | // derivative wrt height
|
---|
| 53 | T dev = exponential;
|
---|
| 54 | if (this->param_p.mask(this->HEIGHT)) tmp.deriv(this->HEIGHT) = dev;
|
---|
| 55 | // derivative wrt center
|
---|
| 56 | T dev2 = this->param_p[this->HEIGHT].value()*dev*dev*T(2.0)*x_norm/
|
---|
| 57 | this->param_p[this->WIDTH].value();
|
---|
| 58 | if (this->param_p.mask(this->CENTER)) tmp.deriv(this->CENTER) = dev2/this->fwhm2int.value();
|
---|
| 59 | // derivative wrt width
|
---|
| 60 | if (this->param_p.mask(this->WIDTH)) tmp.deriv(this->WIDTH) = dev2*x_norm;
|
---|
| 61 | }
|
---|
| 62 | return tmp;
|
---|
| 63 | }
|
---|
| 64 |
|
---|
| 65 | //# Member functions
|
---|
| 66 |
|
---|
| 67 | } //# NAMESPACE CASA - END
|
---|
| 68 |
|
---|