| 1 | // | 
|---|
| 2 | // C++ Implementation: CubicSplineInterpolator1D | 
|---|
| 3 | // | 
|---|
| 4 | // Description: | 
|---|
| 5 | // | 
|---|
| 6 | // | 
|---|
| 7 | // Author: Takeshi Nakazato <takeshi.nakazato@nao.ac.jp>, (C) 2012 | 
|---|
| 8 | // | 
|---|
| 9 | // Copyright: See COPYING file that comes with this distribution | 
|---|
| 10 | // | 
|---|
| 11 | // | 
|---|
| 12 | #include <assert.h> | 
|---|
| 13 |  | 
|---|
| 14 | #include <iostream> | 
|---|
| 15 | using namespace std; | 
|---|
| 16 |  | 
|---|
| 17 | #include "CubicSplineInterpolator1D.h" | 
|---|
| 18 |  | 
|---|
| 19 | namespace asap { | 
|---|
| 20 |  | 
|---|
| 21 | template <class T, class U> | 
|---|
| 22 | CubicSplineInterpolator1D<T, U>::CubicSplineInterpolator1D() | 
|---|
| 23 | : Interpolator1D<T, U>(), | 
|---|
| 24 | y2_(0), | 
|---|
| 25 | ny2_(0), | 
|---|
| 26 | reusable_(false) | 
|---|
| 27 | {} | 
|---|
| 28 |  | 
|---|
| 29 | template <class T, class U> | 
|---|
| 30 | CubicSplineInterpolator1D<T, U>::~CubicSplineInterpolator1D() | 
|---|
| 31 | { | 
|---|
| 32 | if (y2_) | 
|---|
| 33 | delete[] y2_; | 
|---|
| 34 | } | 
|---|
| 35 |  | 
|---|
| 36 | template <class T, class U> | 
|---|
| 37 | void CubicSplineInterpolator1D<T, U>::setData(T *x, U *y, unsigned int n) | 
|---|
| 38 | { | 
|---|
| 39 | Interpolator1D<T, U>::setData(x, y, n); | 
|---|
| 40 | reusable_ = false; | 
|---|
| 41 | } | 
|---|
| 42 |  | 
|---|
| 43 | template <class T, class U> | 
|---|
| 44 | void CubicSplineInterpolator1D<T, U>::setX(T *x, unsigned int n) | 
|---|
| 45 | { | 
|---|
| 46 | Interpolator1D<T, U>::setX(x, n); | 
|---|
| 47 | reusable_ = false; | 
|---|
| 48 | } | 
|---|
| 49 |  | 
|---|
| 50 | template <class T, class U> | 
|---|
| 51 | void CubicSplineInterpolator1D<T, U>::setY(U *y, unsigned int n) | 
|---|
| 52 | { | 
|---|
| 53 | Interpolator1D<T, U>::setY(y, n); | 
|---|
| 54 | reusable_ = false; | 
|---|
| 55 | } | 
|---|
| 56 |  | 
|---|
| 57 | template <class T, class U> | 
|---|
| 58 | U CubicSplineInterpolator1D<T, U>::interpolate(T x) | 
|---|
| 59 | { | 
|---|
| 60 | assert(this->isready()); | 
|---|
| 61 | if (this->n_ == 1) | 
|---|
| 62 | return this->y_[0]; | 
|---|
| 63 |  | 
|---|
| 64 | unsigned int i = this->locator_->locate(x); | 
|---|
| 65 |  | 
|---|
| 66 | // do not perform extrapolation | 
|---|
| 67 | if (i == 0) { | 
|---|
| 68 | return this->y_[i]; | 
|---|
| 69 | } | 
|---|
| 70 | else if (i == this->n_) { | 
|---|
| 71 | return this->y_[i-1]; | 
|---|
| 72 | } | 
|---|
| 73 |  | 
|---|
| 74 | // determine second derivative of each point | 
|---|
| 75 | if (!reusable_) { | 
|---|
| 76 | evaly2(); | 
|---|
| 77 | reusable_ = true; | 
|---|
| 78 | } | 
|---|
| 79 |  | 
|---|
| 80 | // cubic spline interpolation | 
|---|
| 81 | float y = dospline(x, i); | 
|---|
| 82 | return y; | 
|---|
| 83 | } | 
|---|
| 84 |  | 
|---|
| 85 | template <class T, class U> | 
|---|
| 86 | void CubicSplineInterpolator1D<T, U>::evaly2() | 
|---|
| 87 | { | 
|---|
| 88 | if (this->n_ > ny2_) { | 
|---|
| 89 | if (y2_) | 
|---|
| 90 | delete[] y2_; | 
|---|
| 91 | y2_ = new U[this->n_]; | 
|---|
| 92 | ny2_ = this->n_; | 
|---|
| 93 | } | 
|---|
| 94 |  | 
|---|
| 95 | U *u = new U[ny2_-1]; | 
|---|
| 96 |  | 
|---|
| 97 | // Natural cubic spline. | 
|---|
| 98 | y2_[0] = 0.0; | 
|---|
| 99 | y2_[ny2_-1] = 0.0; | 
|---|
| 100 | u[0] = 0.0; | 
|---|
| 101 |  | 
|---|
| 102 | // Solve tridiagonal system. | 
|---|
| 103 | // Here, tridiagonal matrix is decomposed to upper triangular | 
|---|
| 104 | // matrix. u stores upper triangular components while y2_ stores | 
|---|
| 105 | // right-hand side vector. The diagonal elements are normalized | 
|---|
| 106 | // to 1. | 
|---|
| 107 | T a1 = this->x_[1] - this->x_[0]; | 
|---|
| 108 | T a2, bi; | 
|---|
| 109 | for (unsigned int i = 1; i < ny2_ - 1; i++) { | 
|---|
| 110 | a2 = this->x_[i+1] - this->x_[i]; | 
|---|
| 111 | bi = 1.0 / (this->x_[i+1] - this->x_[i-1]); | 
|---|
| 112 | y2_[i] = 3.0 * bi * ((this->y_[i+1] - this->y_[i]) / a2 | 
|---|
| 113 | - (this->y_[i] - this->y_[i-1]) / a1 | 
|---|
| 114 | - y2_[i-1] * 0.5 * a1); | 
|---|
| 115 | a1 = 1.0 / (1.0 - u[i-1] * 0.5 * a1 * bi); | 
|---|
| 116 | y2_[i] *= a1; | 
|---|
| 117 | u[i] = 0.5 * a2 * bi * a1; | 
|---|
| 118 | a1 = a2; | 
|---|
| 119 | } | 
|---|
| 120 |  | 
|---|
| 121 | // Then, solve the system by backsubstitution and store solution | 
|---|
| 122 | // vector to y2_. | 
|---|
| 123 | for (int k = ny2_ - 2; k >= 0; k--) | 
|---|
| 124 | y2_[k] -= u[k] * y2_[k+1]; | 
|---|
| 125 |  | 
|---|
| 126 | delete[] u; | 
|---|
| 127 | } | 
|---|
| 128 |  | 
|---|
| 129 | template <class T, class U> | 
|---|
| 130 | U CubicSplineInterpolator1D<T, U>::dospline(T x, unsigned int i) | 
|---|
| 131 | { | 
|---|
| 132 | unsigned int j = i - 1; | 
|---|
| 133 | T h = this->x_[i] - this->x_[j]; | 
|---|
| 134 | T a = (this->x_[i] - x) / h; | 
|---|
| 135 | T b = (x - this->x_[j]) / h; | 
|---|
| 136 | U y = a * this->y_[j] + b * this->y_[i] + | 
|---|
| 137 | ((a * a * a - a) * y2_[j] + (b * b * b - b) * y2_[i]) * (h * h) / 6.0; | 
|---|
| 138 | return y; | 
|---|
| 139 | } | 
|---|
| 140 |  | 
|---|
| 141 | } | 
|---|