[2733] | 1 | //
|
---|
| 2 | // C++ Implementation: CubicSplineInterpolator1D
|
---|
| 3 | //
|
---|
| 4 | // Description:
|
---|
| 5 | //
|
---|
| 6 | //
|
---|
| 7 | // Author: Takeshi Nakazato <takeshi.nakazato@nao.ac.jp>, (C) 2012
|
---|
| 8 | //
|
---|
| 9 | // Copyright: See COPYING file that comes with this distribution
|
---|
| 10 | //
|
---|
| 11 | //
|
---|
| 12 | #include <assert.h>
|
---|
| 13 |
|
---|
[2756] | 14 | #include <casa/Exceptions/Error.h>
|
---|
| 15 | #include <casa/Utilities/Assert.h>
|
---|
| 16 |
|
---|
[2733] | 17 | #include <iostream>
|
---|
| 18 | using namespace std;
|
---|
| 19 |
|
---|
| 20 | #include "CubicSplineInterpolator1D.h"
|
---|
| 21 |
|
---|
| 22 | namespace asap {
|
---|
| 23 |
|
---|
| 24 | template <class T, class U>
|
---|
| 25 | CubicSplineInterpolator1D<T, U>::CubicSplineInterpolator1D()
|
---|
| 26 | : Interpolator1D<T, U>(),
|
---|
| 27 | y2_(0),
|
---|
| 28 | ny2_(0),
|
---|
| 29 | reusable_(false)
|
---|
| 30 | {}
|
---|
| 31 |
|
---|
| 32 | template <class T, class U>
|
---|
| 33 | CubicSplineInterpolator1D<T, U>::~CubicSplineInterpolator1D()
|
---|
| 34 | {
|
---|
| 35 | if (y2_)
|
---|
| 36 | delete[] y2_;
|
---|
| 37 | }
|
---|
| 38 |
|
---|
| 39 | template <class T, class U>
|
---|
| 40 | void CubicSplineInterpolator1D<T, U>::setData(T *x, U *y, unsigned int n)
|
---|
| 41 | {
|
---|
| 42 | Interpolator1D<T, U>::setData(x, y, n);
|
---|
| 43 | reusable_ = false;
|
---|
| 44 | }
|
---|
| 45 |
|
---|
| 46 | template <class T, class U>
|
---|
[2736] | 47 | void CubicSplineInterpolator1D<T, U>::setX(T *x, unsigned int n)
|
---|
| 48 | {
|
---|
| 49 | Interpolator1D<T, U>::setX(x, n);
|
---|
| 50 | reusable_ = false;
|
---|
| 51 | }
|
---|
| 52 |
|
---|
| 53 | template <class T, class U>
|
---|
[2733] | 54 | void CubicSplineInterpolator1D<T, U>::setY(U *y, unsigned int n)
|
---|
| 55 | {
|
---|
| 56 | Interpolator1D<T, U>::setY(y, n);
|
---|
| 57 | reusable_ = false;
|
---|
| 58 | }
|
---|
| 59 |
|
---|
| 60 | template <class T, class U>
|
---|
| 61 | U CubicSplineInterpolator1D<T, U>::interpolate(T x)
|
---|
| 62 | {
|
---|
[2756] | 63 | //assert(this->isready());
|
---|
[3106] | 64 | assert_<casacore::AipsError>(this->isready(), "object is not ready to process.");
|
---|
[2733] | 65 | if (this->n_ == 1)
|
---|
| 66 | return this->y_[0];
|
---|
| 67 |
|
---|
| 68 | unsigned int i = this->locator_->locate(x);
|
---|
| 69 |
|
---|
| 70 | // do not perform extrapolation
|
---|
| 71 | if (i == 0) {
|
---|
| 72 | return this->y_[i];
|
---|
| 73 | }
|
---|
| 74 | else if (i == this->n_) {
|
---|
| 75 | return this->y_[i-1];
|
---|
| 76 | }
|
---|
| 77 |
|
---|
| 78 | // determine second derivative of each point
|
---|
| 79 | if (!reusable_) {
|
---|
| 80 | evaly2();
|
---|
| 81 | reusable_ = true;
|
---|
| 82 | }
|
---|
| 83 |
|
---|
| 84 | // cubic spline interpolation
|
---|
| 85 | float y = dospline(x, i);
|
---|
| 86 | return y;
|
---|
| 87 | }
|
---|
| 88 |
|
---|
| 89 | template <class T, class U>
|
---|
| 90 | void CubicSplineInterpolator1D<T, U>::evaly2()
|
---|
| 91 | {
|
---|
| 92 | if (this->n_ > ny2_) {
|
---|
| 93 | if (y2_)
|
---|
| 94 | delete[] y2_;
|
---|
| 95 | y2_ = new U[this->n_];
|
---|
| 96 | ny2_ = this->n_;
|
---|
| 97 | }
|
---|
| 98 |
|
---|
| 99 | U *u = new U[ny2_-1];
|
---|
[2849] | 100 | unsigned int *idx = new unsigned int[this->n_];
|
---|
[2733] | 101 |
|
---|
| 102 | // Natural cubic spline.
|
---|
| 103 | y2_[0] = 0.0;
|
---|
| 104 | y2_[ny2_-1] = 0.0;
|
---|
| 105 | u[0] = 0.0;
|
---|
| 106 |
|
---|
[2849] | 107 | if (this->x_[0] < this->x_[this->n_-1]) {
|
---|
| 108 | // ascending
|
---|
| 109 | for (unsigned int i = 0; i < this->n_; ++i)
|
---|
| 110 | idx[i] = i;
|
---|
| 111 | }
|
---|
| 112 | else {
|
---|
| 113 | // descending
|
---|
| 114 | for (unsigned int i = 0; i < this->n_; ++i)
|
---|
| 115 | idx[i] = this->n_ - 1 - i;
|
---|
| 116 | }
|
---|
| 117 |
|
---|
| 118 |
|
---|
[2733] | 119 | // Solve tridiagonal system.
|
---|
[2736] | 120 | // Here, tridiagonal matrix is decomposed to upper triangular
|
---|
| 121 | // matrix. u stores upper triangular components while y2_ stores
|
---|
| 122 | // right-hand side vector. The diagonal elements are normalized
|
---|
| 123 | // to 1.
|
---|
[2849] | 124 | T a1 = this->x_[idx[1]] - this->x_[idx[0]];
|
---|
[2733] | 125 | T a2, bi;
|
---|
| 126 | for (unsigned int i = 1; i < ny2_ - 1; i++) {
|
---|
[2849] | 127 | a2 = this->x_[idx[i+1]] - this->x_[idx[i]];
|
---|
| 128 | bi = 1.0 / (this->x_[idx[i+1]] - this->x_[idx[i-1]]);
|
---|
| 129 | y2_[i] = 3.0 * bi * ((this->y_[idx[i+1]] - this->y_[idx[i]]) / a2
|
---|
| 130 | - (this->y_[idx[i]] - this->y_[idx[i-1]]) / a1
|
---|
[2733] | 131 | - y2_[i-1] * 0.5 * a1);
|
---|
| 132 | a1 = 1.0 / (1.0 - u[i-1] * 0.5 * a1 * bi);
|
---|
| 133 | y2_[i] *= a1;
|
---|
| 134 | u[i] = 0.5 * a2 * bi * a1;
|
---|
| 135 | a1 = a2;
|
---|
| 136 | }
|
---|
| 137 |
|
---|
| 138 | // Then, solve the system by backsubstitution and store solution
|
---|
| 139 | // vector to y2_.
|
---|
[2850] | 140 | for (int k = ny2_ - 2; k >= 1; k--)
|
---|
[2733] | 141 | y2_[k] -= u[k] * y2_[k+1];
|
---|
[2849] | 142 |
|
---|
| 143 | delete[] idx;
|
---|
[2733] | 144 | delete[] u;
|
---|
| 145 | }
|
---|
| 146 |
|
---|
| 147 | template <class T, class U>
|
---|
| 148 | U CubicSplineInterpolator1D<T, U>::dospline(T x, unsigned int i)
|
---|
| 149 | {
|
---|
[2849] | 150 | unsigned int index_lower;
|
---|
| 151 | unsigned int index_higher;
|
---|
| 152 | unsigned int index_lower_correct;
|
---|
| 153 | unsigned int index_higher_correct;
|
---|
| 154 | if (this->x_[0] < this->x_[this->n_-1]) {
|
---|
| 155 | index_lower = i - 1;
|
---|
| 156 | index_higher = i;
|
---|
| 157 | index_lower_correct = index_lower;
|
---|
| 158 | index_higher_correct = index_higher;
|
---|
| 159 | }
|
---|
| 160 | else {
|
---|
| 161 | index_lower = i;
|
---|
| 162 | index_higher = i - 1;
|
---|
| 163 | index_lower_correct = this->n_ - 1 - index_lower;
|
---|
| 164 | index_higher_correct = this->n_ - 1 - index_higher;
|
---|
| 165 | }
|
---|
| 166 | T dx = this->x_[index_higher] - this->x_[index_lower];
|
---|
| 167 | T a = (this->x_[index_higher] - x) / dx;
|
---|
| 168 | T b = (x - this->x_[index_lower]) / dx;
|
---|
| 169 | U y = a * this->y_[index_lower] + b * this->y_[index_higher] +
|
---|
| 170 | ((a * a * a - a) * y2_[index_lower_correct] + (b * b * b - b) * y2_[index_higher_correct]) * (dx * dx) / 6.0;
|
---|
[2733] | 171 | return y;
|
---|
| 172 | }
|
---|
| 173 |
|
---|
| 174 | }
|
---|