| [2733] | 1 | // | 
|---|
|  | 2 | // C++ Implementation: CubicSplineInterpolator1D | 
|---|
|  | 3 | // | 
|---|
|  | 4 | // Description: | 
|---|
|  | 5 | // | 
|---|
|  | 6 | // | 
|---|
|  | 7 | // Author: Takeshi Nakazato <takeshi.nakazato@nao.ac.jp>, (C) 2012 | 
|---|
|  | 8 | // | 
|---|
|  | 9 | // Copyright: See COPYING file that comes with this distribution | 
|---|
|  | 10 | // | 
|---|
|  | 11 | // | 
|---|
|  | 12 | #include <assert.h> | 
|---|
|  | 13 |  | 
|---|
|  | 14 | #include <iostream> | 
|---|
|  | 15 | using namespace std; | 
|---|
|  | 16 |  | 
|---|
|  | 17 | #include "CubicSplineInterpolator1D.h" | 
|---|
|  | 18 |  | 
|---|
|  | 19 | namespace asap { | 
|---|
|  | 20 |  | 
|---|
|  | 21 | template <class T, class U> | 
|---|
|  | 22 | CubicSplineInterpolator1D<T, U>::CubicSplineInterpolator1D() | 
|---|
|  | 23 | : Interpolator1D<T, U>(), | 
|---|
|  | 24 | y2_(0), | 
|---|
|  | 25 | ny2_(0), | 
|---|
|  | 26 | reusable_(false) | 
|---|
|  | 27 | {} | 
|---|
|  | 28 |  | 
|---|
|  | 29 | template <class T, class U> | 
|---|
|  | 30 | CubicSplineInterpolator1D<T, U>::~CubicSplineInterpolator1D() | 
|---|
|  | 31 | { | 
|---|
|  | 32 | if (y2_) | 
|---|
|  | 33 | delete[] y2_; | 
|---|
|  | 34 | } | 
|---|
|  | 35 |  | 
|---|
|  | 36 | template <class T, class U> | 
|---|
|  | 37 | void CubicSplineInterpolator1D<T, U>::setData(T *x, U *y, unsigned int n) | 
|---|
|  | 38 | { | 
|---|
|  | 39 | Interpolator1D<T, U>::setData(x, y, n); | 
|---|
|  | 40 | reusable_ = false; | 
|---|
|  | 41 | } | 
|---|
|  | 42 |  | 
|---|
|  | 43 | template <class T, class U> | 
|---|
| [2736] | 44 | void CubicSplineInterpolator1D<T, U>::setX(T *x, unsigned int n) | 
|---|
|  | 45 | { | 
|---|
|  | 46 | Interpolator1D<T, U>::setX(x, n); | 
|---|
|  | 47 | reusable_ = false; | 
|---|
|  | 48 | } | 
|---|
|  | 49 |  | 
|---|
|  | 50 | template <class T, class U> | 
|---|
| [2733] | 51 | void CubicSplineInterpolator1D<T, U>::setY(U *y, unsigned int n) | 
|---|
|  | 52 | { | 
|---|
|  | 53 | Interpolator1D<T, U>::setY(y, n); | 
|---|
|  | 54 | reusable_ = false; | 
|---|
|  | 55 | } | 
|---|
|  | 56 |  | 
|---|
|  | 57 | template <class T, class U> | 
|---|
|  | 58 | U CubicSplineInterpolator1D<T, U>::interpolate(T x) | 
|---|
|  | 59 | { | 
|---|
|  | 60 | assert(this->isready()); | 
|---|
|  | 61 | if (this->n_ == 1) | 
|---|
|  | 62 | return this->y_[0]; | 
|---|
|  | 63 |  | 
|---|
|  | 64 | unsigned int i = this->locator_->locate(x); | 
|---|
|  | 65 |  | 
|---|
|  | 66 | // do not perform extrapolation | 
|---|
|  | 67 | if (i == 0) { | 
|---|
|  | 68 | return this->y_[i]; | 
|---|
|  | 69 | } | 
|---|
|  | 70 | else if (i == this->n_) { | 
|---|
|  | 71 | return this->y_[i-1]; | 
|---|
|  | 72 | } | 
|---|
|  | 73 |  | 
|---|
|  | 74 | // determine second derivative of each point | 
|---|
|  | 75 | if (!reusable_) { | 
|---|
|  | 76 | evaly2(); | 
|---|
|  | 77 | reusable_ = true; | 
|---|
|  | 78 | } | 
|---|
|  | 79 |  | 
|---|
|  | 80 | // cubic spline interpolation | 
|---|
|  | 81 | float y = dospline(x, i); | 
|---|
|  | 82 | return y; | 
|---|
|  | 83 | } | 
|---|
|  | 84 |  | 
|---|
|  | 85 | template <class T, class U> | 
|---|
|  | 86 | void CubicSplineInterpolator1D<T, U>::evaly2() | 
|---|
|  | 87 | { | 
|---|
|  | 88 | if (this->n_ > ny2_) { | 
|---|
|  | 89 | if (y2_) | 
|---|
|  | 90 | delete[] y2_; | 
|---|
|  | 91 | y2_ = new U[this->n_]; | 
|---|
|  | 92 | ny2_ = this->n_; | 
|---|
|  | 93 | } | 
|---|
|  | 94 |  | 
|---|
|  | 95 | U *u = new U[ny2_-1]; | 
|---|
|  | 96 |  | 
|---|
|  | 97 | // Natural cubic spline. | 
|---|
|  | 98 | y2_[0] = 0.0; | 
|---|
|  | 99 | y2_[ny2_-1] = 0.0; | 
|---|
|  | 100 | u[0] = 0.0; | 
|---|
|  | 101 |  | 
|---|
|  | 102 | // Solve tridiagonal system. | 
|---|
| [2736] | 103 | // Here, tridiagonal matrix is decomposed to upper triangular | 
|---|
|  | 104 | // matrix. u stores upper triangular components while y2_ stores | 
|---|
|  | 105 | // right-hand side vector. The diagonal elements are normalized | 
|---|
|  | 106 | // to 1. | 
|---|
| [2733] | 107 | T a1 = this->x_[1] - this->x_[0]; | 
|---|
|  | 108 | T a2, bi; | 
|---|
|  | 109 | for (unsigned int i = 1; i < ny2_ - 1; i++) { | 
|---|
|  | 110 | a2 = this->x_[i+1] - this->x_[i]; | 
|---|
|  | 111 | bi = 1.0 / (this->x_[i+1] - this->x_[i-1]); | 
|---|
|  | 112 | y2_[i] = 3.0 * bi * ((this->y_[i+1] - this->y_[i]) / a2 | 
|---|
|  | 113 | - (this->y_[i] - this->y_[i-1]) / a1 | 
|---|
|  | 114 | - y2_[i-1] * 0.5 * a1); | 
|---|
|  | 115 | a1 = 1.0 / (1.0 - u[i-1] * 0.5 * a1 * bi); | 
|---|
|  | 116 | y2_[i] *= a1; | 
|---|
|  | 117 | u[i] = 0.5 * a2 * bi * a1; | 
|---|
|  | 118 | a1 = a2; | 
|---|
|  | 119 | } | 
|---|
|  | 120 |  | 
|---|
|  | 121 | // Then, solve the system by backsubstitution and store solution | 
|---|
|  | 122 | // vector to y2_. | 
|---|
|  | 123 | for (int k = ny2_ - 2; k >= 0; k--) | 
|---|
|  | 124 | y2_[k] -= u[k] * y2_[k+1]; | 
|---|
|  | 125 |  | 
|---|
|  | 126 | delete[] u; | 
|---|
|  | 127 | } | 
|---|
|  | 128 |  | 
|---|
|  | 129 | template <class T, class U> | 
|---|
|  | 130 | U CubicSplineInterpolator1D<T, U>::dospline(T x, unsigned int i) | 
|---|
|  | 131 | { | 
|---|
|  | 132 | unsigned int j = i - 1; | 
|---|
|  | 133 | T h = this->x_[i] - this->x_[j]; | 
|---|
|  | 134 | T a = (this->x_[i] - x) / h; | 
|---|
|  | 135 | T b = (x - this->x_[j]) / h; | 
|---|
|  | 136 | U y = a * this->y_[j] + b * this->y_[i] + | 
|---|
|  | 137 | ((a * a * a - a) * y2_[j] + (b * b * b - b) * y2_[i]) * (h * h) / 6.0; | 
|---|
|  | 138 | return y; | 
|---|
|  | 139 | } | 
|---|
|  | 140 |  | 
|---|
|  | 141 | } | 
|---|