// // C++ Implementation: CubicSplineInterpolator1D // // Description: // // // Author: Takeshi Nakazato , (C) 2012 // // Copyright: See COPYING file that comes with this distribution // // #include #include using namespace std; #include "CubicSplineInterpolator1D.h" namespace asap { CubicSplineInterpolator1D::CubicSplineInterpolator1D() : Interpolator1D(), y2_(0), ny2_(0), reusable_(false) {} CubicSplineInterpolator1D::~CubicSplineInterpolator1D() { if (y2_) delete[] y2_; } void CubicSplineInterpolator1D::setY(float *y, unsigned int n) { Interpolator1D::setY(y, n); reusable_ = false; } float CubicSplineInterpolator1D::interpolate(double x) { assert(isready()); if (n_ == 1) return y_[0]; unsigned int i = locator_->locate(x); // do not perform extrapolation if (i == 0) { return y_[i]; } else if (i == n_) { return y_[i-1]; } // determine second derivative of each point if (!reusable_) { spline(); reusable_ = true; } // cubic spline interpolation float y = splint(x, i); return y; } void CubicSplineInterpolator1D::spline() { if (n_ > ny2_) { if (y2_) delete[] y2_; y2_ = new float[n_]; ny2_ = n_; } float *u = new float[ny2_-1]; y2_[0] = 0.0; u[0] = 0.0; for (unsigned int i = 1; i < ny2_ - 1; i++) { double sig = (x_[i] - x_[i-1]) / (x_[i+1] - x_[i-1]); double p = sig * y2_[i-1] + 2.0; y2_[i] = (sig - 1.0) / p; u[i] = (y_[i+1] - y_[i]) / (x_[i+1] - x_[i]) - (y_[i] - y_[i-1]) / (x_[i] - x_[i-1]); u[i] = (6.0 * u[i] / (x_[i+1] - x_[i-1]) - sig * u[i-1]) / p; } y2_[ny2_-1] = 0.0; for (int k = ny2_ - 2; k >= 0; k--) y2_[k] = y2_[k] * y2_[k+1] + u[k]; delete[] u; } float CubicSplineInterpolator1D::splint(double x, unsigned int i) { unsigned int j = i - 1; double h = x_[i] - x_[j]; double a = (x_[i] - x) / h; double b = (x - x_[j]) / h; float y = a * y_[j] + b * y_[i] + ((a * a * a - a) * y2_[j] + (b * b * b - b) * y2_[i]) * (h * h) / 6.0; return y; } }