1 | //
|
---|
2 | // C++ Implementation: CubicSplineInterpolator1D
|
---|
3 | //
|
---|
4 | // Description:
|
---|
5 | //
|
---|
6 | //
|
---|
7 | // Author: Takeshi Nakazato <takeshi.nakazato@nao.ac.jp>, (C) 2012
|
---|
8 | //
|
---|
9 | // Copyright: See COPYING file that comes with this distribution
|
---|
10 | //
|
---|
11 | //
|
---|
12 | #include <assert.h>
|
---|
13 |
|
---|
14 | #include <iostream>
|
---|
15 | using namespace std;
|
---|
16 |
|
---|
17 | #include "CubicSplineInterpolator1D.h"
|
---|
18 |
|
---|
19 | namespace asap {
|
---|
20 |
|
---|
21 | CubicSplineInterpolator1D::CubicSplineInterpolator1D()
|
---|
22 | : Interpolator1D(),
|
---|
23 | y2_(0),
|
---|
24 | ny2_(0),
|
---|
25 | reusable_(false)
|
---|
26 | {}
|
---|
27 |
|
---|
28 | CubicSplineInterpolator1D::~CubicSplineInterpolator1D()
|
---|
29 | {
|
---|
30 | if (y2_)
|
---|
31 | delete[] y2_;
|
---|
32 | }
|
---|
33 |
|
---|
34 | void CubicSplineInterpolator1D::setY(float *y, unsigned int n)
|
---|
35 | {
|
---|
36 | Interpolator1D::setY(y, n);
|
---|
37 | reusable_ = false;
|
---|
38 | }
|
---|
39 |
|
---|
40 | float CubicSplineInterpolator1D::interpolate(double x)
|
---|
41 | {
|
---|
42 | assert(isready());
|
---|
43 | if (n_ == 1)
|
---|
44 | return y_[0];
|
---|
45 |
|
---|
46 | unsigned int i = locator_->locate(x);
|
---|
47 |
|
---|
48 | // do not perform extrapolation
|
---|
49 | if (i == 0) {
|
---|
50 | return y_[i];
|
---|
51 | }
|
---|
52 | else if (i == n_) {
|
---|
53 | return y_[i-1];
|
---|
54 | }
|
---|
55 |
|
---|
56 | // determine second derivative of each point
|
---|
57 | if (!reusable_) {
|
---|
58 | spline();
|
---|
59 | reusable_ = true;
|
---|
60 | }
|
---|
61 |
|
---|
62 | // cubic spline interpolation
|
---|
63 | float y = splint(x, i);
|
---|
64 | return y;
|
---|
65 | }
|
---|
66 |
|
---|
67 | void CubicSplineInterpolator1D::spline()
|
---|
68 | {
|
---|
69 | if (n_ > ny2_) {
|
---|
70 | if (y2_)
|
---|
71 | delete[] y2_;
|
---|
72 | y2_ = new float[n_];
|
---|
73 | ny2_ = n_;
|
---|
74 | }
|
---|
75 |
|
---|
76 | float *u = new float[ny2_-1];
|
---|
77 | y2_[0] = 0.0;
|
---|
78 | u[0] = 0.0;
|
---|
79 |
|
---|
80 | for (unsigned int i = 1; i < ny2_ - 1; i++) {
|
---|
81 | double sig = (x_[i] - x_[i-1]) / (x_[i+1] - x_[i-1]);
|
---|
82 | double p = sig * y2_[i-1] + 2.0;
|
---|
83 | y2_[i] = (sig - 1.0) / p;
|
---|
84 | u[i] = (y_[i+1] - y_[i]) / (x_[i+1] - x_[i])
|
---|
85 | - (y_[i] - y_[i-1]) / (x_[i] - x_[i-1]);
|
---|
86 | u[i] = (6.0 * u[i] / (x_[i+1] - x_[i-1]) - sig * u[i-1]) / p;
|
---|
87 | }
|
---|
88 |
|
---|
89 | y2_[ny2_-1] = 0.0;
|
---|
90 |
|
---|
91 | for (int k = ny2_ - 2; k >= 0; k--)
|
---|
92 | y2_[k] = y2_[k] * y2_[k+1] + u[k];
|
---|
93 |
|
---|
94 | delete[] u;
|
---|
95 | }
|
---|
96 |
|
---|
97 | float CubicSplineInterpolator1D::splint(double x, unsigned int i)
|
---|
98 | {
|
---|
99 | unsigned int j = i - 1;
|
---|
100 | double h = x_[i] - x_[j];
|
---|
101 | double a = (x_[i] - x) / h;
|
---|
102 | double b = (x - x_[j]) / h;
|
---|
103 | float y = a * y_[j] + b * y_[i] +
|
---|
104 | ((a * a * a - a) * y2_[j] + (b * b * b - b) * y2_[i]) * (h * h) / 6.0;
|
---|
105 | return y;
|
---|
106 | }
|
---|
107 |
|
---|
108 | }
|
---|