1 | //
|
---|
2 | // C++ Implementation: CubicSplineInterpolator1D
|
---|
3 | //
|
---|
4 | // Description:
|
---|
5 | //
|
---|
6 | //
|
---|
7 | // Author: Takeshi Nakazato <takeshi.nakazato@nao.ac.jp>, (C) 2012
|
---|
8 | //
|
---|
9 | // Copyright: See COPYING file that comes with this distribution
|
---|
10 | //
|
---|
11 | //
|
---|
12 | #include <assert.h>
|
---|
13 |
|
---|
14 | #include <iostream>
|
---|
15 | using namespace std;
|
---|
16 |
|
---|
17 | #include "CubicSplineInterpolator1D.h"
|
---|
18 |
|
---|
19 | namespace asap {
|
---|
20 |
|
---|
21 | CubicSplineInterpolator1D::CubicSplineInterpolator1D()
|
---|
22 | : Interpolator1D(),
|
---|
23 | y2_(0),
|
---|
24 | ny2_(0),
|
---|
25 | reusable_(false)
|
---|
26 | {}
|
---|
27 |
|
---|
28 | CubicSplineInterpolator1D::~CubicSplineInterpolator1D()
|
---|
29 | {
|
---|
30 | if (y2_)
|
---|
31 | delete[] y2_;
|
---|
32 | }
|
---|
33 |
|
---|
34 | void CubicSplineInterpolator1D::setData(double *x, float *y, unsigned int n)
|
---|
35 | {
|
---|
36 | Interpolator1D::setData(x, y, n);
|
---|
37 | reusable_ = false;
|
---|
38 | }
|
---|
39 |
|
---|
40 | void CubicSplineInterpolator1D::setY(float *y, unsigned int n)
|
---|
41 | {
|
---|
42 | Interpolator1D::setY(y, n);
|
---|
43 | reusable_ = false;
|
---|
44 | }
|
---|
45 |
|
---|
46 | float CubicSplineInterpolator1D::interpolate(double x)
|
---|
47 | {
|
---|
48 | assert(isready());
|
---|
49 | if (n_ == 1)
|
---|
50 | return y_[0];
|
---|
51 |
|
---|
52 | unsigned int i = locator_->locate(x);
|
---|
53 |
|
---|
54 | // do not perform extrapolation
|
---|
55 | if (i == 0) {
|
---|
56 | return y_[i];
|
---|
57 | }
|
---|
58 | else if (i == n_) {
|
---|
59 | return y_[i-1];
|
---|
60 | }
|
---|
61 |
|
---|
62 | // determine second derivative of each point
|
---|
63 | if (!reusable_) {
|
---|
64 | evaly2();
|
---|
65 | reusable_ = true;
|
---|
66 | }
|
---|
67 |
|
---|
68 | // cubic spline interpolation
|
---|
69 | float y = dospline(x, i);
|
---|
70 | return y;
|
---|
71 | }
|
---|
72 |
|
---|
73 | void CubicSplineInterpolator1D::evaly2()
|
---|
74 | {
|
---|
75 | if (n_ > ny2_) {
|
---|
76 | if (y2_)
|
---|
77 | delete[] y2_;
|
---|
78 | y2_ = new float[n_];
|
---|
79 | ny2_ = n_;
|
---|
80 | }
|
---|
81 |
|
---|
82 | float *u = new float[ny2_-1];
|
---|
83 |
|
---|
84 | // Natural cubic spline.
|
---|
85 | y2_[0] = 0.0;
|
---|
86 | y2_[ny2_-1] = 0.0;
|
---|
87 | u[0] = 0.0;
|
---|
88 |
|
---|
89 | // Solve tridiagonal system.
|
---|
90 | // Here, tridiagonal matrix is decomposed to triangular matrix
|
---|
91 | // u stores upper triangular components while y2_ stores
|
---|
92 | // right-hand side vector.
|
---|
93 | double a1 = x_[1] - x_[0];
|
---|
94 | double a2, bi;
|
---|
95 | for (unsigned int i = 1; i < ny2_ - 1; i++) {
|
---|
96 | a2 = x_[i+1] - x_[i];
|
---|
97 | bi = 1.0 / (x_[i+1] - x_[i-1]);
|
---|
98 | y2_[i] = 3.0 * bi * ((y_[i+1] - y_[i]) / a2 - (y_[i] - y_[i-1]) / a1
|
---|
99 | - y2_[i-1] * 0.5 * a1);
|
---|
100 | a1 = 1.0 / (1.0 - u[i-1] * 0.5 * a1 * bi);
|
---|
101 | y2_[i] *= a1;
|
---|
102 | u[i] = 0.5 * a2 * bi * a1;
|
---|
103 | a1 = a2;
|
---|
104 | }
|
---|
105 |
|
---|
106 | // Then, solve the system by backsubstitution and store solution
|
---|
107 | // vector to y2_.
|
---|
108 | for (int k = ny2_ - 2; k >= 0; k--)
|
---|
109 | y2_[k] -= u[k] * y2_[k+1];
|
---|
110 |
|
---|
111 | delete[] u;
|
---|
112 | }
|
---|
113 |
|
---|
114 | float CubicSplineInterpolator1D::dospline(double x, unsigned int i)
|
---|
115 | {
|
---|
116 | unsigned int j = i - 1;
|
---|
117 | double h = x_[i] - x_[j];
|
---|
118 | double a = (x_[i] - x) / h;
|
---|
119 | double b = (x - x_[j]) / h;
|
---|
120 | float y = a * y_[j] + b * y_[i] +
|
---|
121 | ((a * a * a - a) * y2_[j] + (b * b * b - b) * y2_[i]) * (h * h) / 6.0;
|
---|
122 | return y;
|
---|
123 | }
|
---|
124 |
|
---|
125 | }
|
---|