"""This module defines the scantable class.""" import os import re import tempfile import numpy try: from functools import wraps as wraps_dec except ImportError: from asap.compatibility import wraps as wraps_dec from asap.env import is_casapy from asap._asap import Scantable from asap._asap import filler, msfiller from asap.parameters import rcParams from asap.logging import asaplog, asaplog_post_dec from asap.selector import selector from asap.linecatalog import linecatalog from asap.coordinate import coordinate from asap.utils import _n_bools, mask_not, mask_and, mask_or, page from asap.asapfitter import fitter def preserve_selection(func): @wraps_dec(func) def wrap(obj, *args, **kw): basesel = obj.get_selection() try: val = func(obj, *args, **kw) finally: obj.set_selection(basesel) return val return wrap def is_scantable(filename): """Is the given file a scantable? Parameters: filename: the name of the file/directory to test """ if ( os.path.isdir(filename) and os.path.exists(filename+'/table.info') and os.path.exists(filename+'/table.dat') ): f=open(filename+'/table.info') l=f.readline() f.close() match_pattern = '^Type = (Scantable)? *$' if re.match(match_pattern,l): return True else: return False else: return False ## return (os.path.isdir(filename) ## and not os.path.exists(filename+'/table.f1') ## and os.path.exists(filename+'/table.info')) def is_ms(filename): """Is the given file a MeasurementSet? Parameters: filename: the name of the file/directory to test """ if ( os.path.isdir(filename) and os.path.exists(filename+'/table.info') and os.path.exists(filename+'/table.dat') ): f=open(filename+'/table.info') l=f.readline() f.close() if ( l.find('Measurement Set') != -1 ): return True else: return False else: return False def normalise_edge_param(edge): """\ Convert a given edge value to a one-dimensional array that can be given to baseline-fitting/subtraction functions. The length of the output value will be an even because values for the both sides of spectra are to be contained for each IF. When the length is 2, the values will be applied to all IFs. If the length is larger than 2, it will be 2*ifnos(). Accepted format of edge include: * an integer - will be used for both sides of spectra of all IFs. e.g. 10 is converted to [10,10] * an empty list/tuple [] - converted to [0, 0] and used for all IFs. * a list/tuple containing an integer - same as the above case. e.g. [10] is converted to [10,10] * a list/tuple containing two integers - will be used for all IFs. e.g. [5,10] is output as it is. no need to convert. * a list/tuple of lists/tuples containing TWO integers - each element of edge will be used for each IF. e.g. [[5,10],[15,20]] - [5,10] for IF[0] and [15,20] for IF[1]. If an element contains the same integer values, the input 'edge' parameter can be given in a simpler shape in the following cases: ** when len(edge)!=2 any elements containing the same values can be replaced to single integers. e.g. [[15,15]] can be simplified to [15] (or [15,15] or 15 also). e.g. [[1,1],[2,2],[3,3]] can be simplified to [1,2,3]. ** when len(edge)=2 care is needed for this case: ONLY ONE of the elements can be a single integer, e.g. [[5,5],[10,10]] can be simplified to [5,[10,10]] or [[5,5],10], but can NOT be simplified to [5,10]. when [5,10] given, it is interpreted as [[5,10],[5,10],[5,10],...] instead, as shown before. """ from asap import _is_sequence_or_number as _is_valid if isinstance(edge, list) or isinstance(edge, tuple): for edgepar in edge: if not _is_valid(edgepar, int): raise ValueError, "Each element of the 'edge' tuple has \ to be a pair of integers or an integer." if isinstance(edgepar, list) or isinstance(edgepar, tuple): if len(edgepar) != 2: raise ValueError, "Each element of the 'edge' tuple has \ to be a pair of integers or an integer." else: if not _is_valid(edge, int): raise ValueError, "Parameter 'edge' has to be an integer or a \ pair of integers specified as a tuple. \ Nested tuples are allowed \ to make individual selection for different IFs." if isinstance(edge, int): edge = [ edge, edge ] # e.g. 3 => [3,3] elif isinstance(edge, list) or isinstance(edge, tuple): if len(edge) == 0: edge = [0, 0] # e.g. [] => [0,0] elif len(edge) == 1: if isinstance(edge[0], int): edge = [ edge[0], edge[0] ] # e.g. [1] => [1,1] commonedge = True if len(edge) > 2: commonedge = False else: for edgepar in edge: if isinstance(edgepar, list) or isinstance(edgepar, tuple): commonedge = False break if commonedge: if len(edge) > 1: norm_edge = edge else: norm_edge = edge + edge else: norm_edge = [] for edgepar in edge: if isinstance(edgepar, int): norm_edge += [edgepar, edgepar] else: norm_edge += edgepar return norm_edge def raise_fitting_failure_exception(e): msg = "The fit failed, possibly because it didn't converge." if rcParams["verbose"]: asaplog.push(str(e)) asaplog.push(str(msg)) else: raise RuntimeError(str(e)+'\n'+msg) def pack_progress_params(showprogress, minnrow): return str(showprogress).lower() + ',' + str(minnrow) def pack_blinfo(blinfo, maxirow): """\ convert a dictionary or a list of dictionaries of baseline info into a list of comma-separated strings. """ if isinstance(blinfo, dict): res = do_pack_blinfo(blinfo, maxirow) return [res] if res != '' else [] elif isinstance(blinfo, list) or isinstance(blinfo, tuple): res = [] for i in xrange(len(blinfo)): resi = do_pack_blinfo(blinfo[i], maxirow) if resi != '': res.append(resi) return res def do_pack_blinfo(blinfo, maxirow): """\ convert a dictionary of baseline info for a spectrum into a comma-separated string. """ dinfo = {} for key in ['row', 'blfunc', 'masklist']: if blinfo.has_key(key): val = blinfo[key] if key == 'row': irow = val if isinstance(val, list) or isinstance(val, tuple): slval = [] for i in xrange(len(val)): if isinstance(val[i], list) or isinstance(val[i], tuple): for j in xrange(len(val[i])): slval.append(str(val[i][j])) else: slval.append(str(val[i])) sval = ",".join(slval) else: sval = str(val) dinfo[key] = sval else: raise ValueError("'"+key+"' is missing in blinfo.") if irow >= maxirow: return '' for key in ['order', 'npiece', 'nwave']: if blinfo.has_key(key): val = blinfo[key] if isinstance(val, list) or isinstance(val, tuple): slval = [] for i in xrange(len(val)): slval.append(str(val[i])) sval = ",".join(slval) else: sval = str(val) dinfo[key] = sval fspec_keys = {'poly': 'order', 'chebyshev': 'order', 'cspline': 'npiece', 'sinusoid': 'nwave'} fspec_key = fspec_keys[dinfo['blfunc']] if not blinfo.has_key(fspec_key): raise ValueError("'"+fspec_key+"' is missing in blinfo.") clip_params_n = 0 for key in ['clipthresh', 'clipniter']: if blinfo.has_key(key): clip_params_n += 1 dinfo[key] = str(blinfo[key]) if clip_params_n == 0: dinfo['clipthresh'] = '0.0' dinfo['clipniter'] = '0' elif clip_params_n != 2: raise ValueError("both 'clipthresh' and 'clipniter' must be given for n-sigma clipping.") lf_params_n = 0 for key in ['thresh', 'edge', 'chan_avg_limit']: if blinfo.has_key(key): lf_params_n += 1 val = blinfo[key] if isinstance(val, list) or isinstance(val, tuple): slval = [] for i in xrange(len(val)): slval.append(str(val[i])) sval = ",".join(slval) else: sval = str(val) dinfo[key] = sval if lf_params_n == 3: dinfo['use_linefinder'] = 'true' elif lf_params_n == 0: dinfo['use_linefinder'] = 'false' dinfo['thresh'] = '' dinfo['edge'] = '' dinfo['chan_avg_limit'] = '' else: raise ValueError("all of 'thresh', 'edge' and 'chan_avg_limit' must be given to use linefinder.") slblinfo = [dinfo['row'], dinfo['blfunc'], dinfo[fspec_key], dinfo['masklist'], \ dinfo['clipthresh'], dinfo['clipniter'], \ dinfo['use_linefinder'], dinfo['thresh'], dinfo['edge'], dinfo['chan_avg_limit']] return ":".join(slblinfo) def parse_fitresult(sres): """\ Parse the returned value of apply_bltable() or sub_baseline() and extract row number, the best-fit coefficients and rms, then pack them into a dictionary. The input value is generated by Scantable::packFittingResults() and formatted as 'row:coeff[0],coeff[1],..,coeff[n-1]:rms'. """ res = [] for i in xrange(len(sres)): (srow, scoeff, srms) = sres[i].split(":") row = int(srow) rms = float(srms) lscoeff = scoeff.split(",") coeff = [] for j in xrange(len(lscoeff)): coeff.append(float(lscoeff[j])) res.append({'row': row, 'coeff': coeff, 'rms': rms}) return res def is_number(s): s = s.strip() res = True try: a = float(s) res = True except: res = False finally: return res def is_frequency(s): s = s.strip() return (s[-2:].lower() == "hz") def get_freq_by_string(s1, s2): if not (is_number(s1) and is_frequency(s2)): raise RuntimeError("Invalid input string.") prefix_list = ["a", "f", "p", "n", "u", "m", ".", "k", "M", "G", "T", "P", "E"] factor_list = [1e-18, 1e-15, 1e-12, 1e-9, 1e-6, 1e-3, 1.0, 1e+3, 1e+6, 1e+9, 1e+12, 1e+15, 1e+18] s1 = s1.strip() s2 = s2.strip() prefix = s2[-3:-2] if is_number(prefix): res1 = float(s1) res2 = float(s2[:-2]) else: factor = factor_list[prefix_list.index(prefix)] res1 = float(s1) * factor res2 = float(s2[:-3]) * factor return (res1, res2) def is_velocity(s): s = s.strip() return (s[-3:].lower() == "m/s") def get_velocity_by_string(s1, s2): if not (is_number(s1) and is_velocity(s2)): raise RuntimeError("Invalid input string.") # note that the default velocity unit is km/s prefix_list = [".", "k"] factor_list = [1e-3, 1.0] s1 = s1.strip() s2 = s2.strip() prefix = s2[-4:-3] if is_number(prefix): # in case velocity unit m/s res1 = float(s1) * 1e-3 res2 = float(s2[:-3]) * 1e-3 else: factor = factor_list[prefix_list.index(prefix)] res1 = float(s1) * factor res2 = float(s2[:-4]) * factor return (res1, res2) def get_frequency_by_velocity(restfreq, vel, doppler): # vel is in unit of km/s # speed of light vel_c = 299792.458 import math r = vel / vel_c if doppler.lower() == 'radio': return restfreq * (1.0 - r) if doppler.lower() == 'optical': return restfreq / (1.0 + r) else: return restfreq * math.sqrt((1.0 - r) / (1.0 + r)) def get_restfreq_in_Hz(s_restfreq): value = 0.0 unit = "" s = s_restfreq.replace(" ","") for i in range(len(s))[::-1]: if s[i].isalpha(): unit = s[i] + unit else: value = float(s[0:i+1]) break if (unit == "") or (unit.lower() == "hz"): return value elif (len(unit) == 3) and (unit[1:3].lower() == "hz"): unitprefix = unit[0] factor = 1.0 prefix_list = ["a", "f", "p", "n", "u", "m", ".", "k", "M", "G", "T", "P", "E"] factor_list = [1e-18, 1e-15, 1e-12, 1e-9, 1e-6, 1e-3, 1.0, 1e+3, 1e+6, 1e+9, 1e+12, 1e+15, 1e+18] factor = factor_list[prefix_list.index(unitprefix)] """ if (unitprefix == 'a'): factor = 1.0e-18 elif (unitprefix == 'f'): factor = 1.0e-15 elif (unitprefix == 'p'): factor = 1.0e-12 elif (unitprefix == 'n'): factor = 1.0e-9 elif (unitprefix == 'u'): factor = 1.0e-6 elif (unitprefix == 'm'): factor = 1.0e-3 elif (unitprefix == 'k'): factor = 1.0e+3 elif (unitprefix == 'M'): factor = 1.0e+6 elif (unitprefix == 'G'): factor = 1.0e+9 elif (unitprefix == 'T'): factor = 1.0e+12 elif (unitprefix == 'P'): factor = 1.0e+15 elif (unitprefix == 'E'): factor = 1.0e+18 """ return value*factor else: mesg = "wrong unit of restfreq." raise Exception, mesg def normalise_restfreq(in_restfreq): if isinstance(in_restfreq, float): return in_restfreq elif isinstance(in_restfreq, int) or isinstance(in_restfreq, long): return float(in_restfreq) elif isinstance(in_restfreq, str): return get_restfreq_in_Hz(in_restfreq) elif isinstance(in_restfreq, list) or isinstance(in_restfreq, numpy.ndarray): if isinstance(in_restfreq, numpy.ndarray): if len(in_restfreq.shape) > 1: mesg = "given in numpy.ndarray, in_restfreq must be 1-D." raise Exception, mesg res = [] for i in xrange(len(in_restfreq)): elem = in_restfreq[i] if isinstance(elem, float): res.append(elem) elif isinstance(elem, int) or isinstance(elem, long): res.append(float(elem)) elif isinstance(elem, str): res.append(get_restfreq_in_Hz(elem)) elif isinstance(elem, dict): if isinstance(elem["value"], float): res.append(elem) elif isinstance(elem["value"], int): dictelem = {} dictelem["name"] = elem["name"] dictelem["value"] = float(elem["value"]) res.append(dictelem) elif isinstance(elem["value"], str): dictelem = {} dictelem["name"] = elem["name"] dictelem["value"] = get_restfreq_in_Hz(elem["value"]) res.append(dictelem) else: mesg = "restfreq elements must be float, int, or string." raise Exception, mesg return res else: mesg = "wrong type of restfreq given." raise Exception, mesg def set_restfreq(s, restfreq): rfset = (restfreq != '') and (restfreq != []) if rfset: s.set_restfreqs(normalise_restfreq(restfreq)) class scantable(Scantable): """\ The ASAP container for scans (single-dish data). """ @asaplog_post_dec def __init__(self, filename, average=None, unit=None, parallactify=None, **args): """\ Create a scantable from a saved one or make a reference Parameters: filename: the name of an asap table on disk or the name of a rpfits/sdfits/ms file (integrations within scans are auto averaged and the whole file is read) or [advanced] a reference to an existing scantable average: average all integrations withinb a scan on read. The default (True) is taken from .asaprc. unit: brightness unit; must be consistent with K or Jy. Over-rides the default selected by the filler (input rpfits/sdfits/ms) or replaces the value in existing scantables antenna: for MeasurementSet input data only: Antenna selection. integer (id) or string (name or id). parallactify: Indicate that the data had been parallactified. Default (false) is taken from rc file. getpt: Whether to import direction from MS/POINTING table properly or not. This is effective only when filename is MS. The default (True) is to import direction from MS/POINTING. """ if average is None: average = rcParams['scantable.autoaverage'] parallactify = parallactify or rcParams['scantable.parallactify'] varlist = vars() from asap._asap import stmath self._math = stmath( rcParams['insitu'] ) if isinstance(filename, Scantable): Scantable.__init__(self, filename) else: if isinstance(filename, str): filename = os.path.expandvars(filename) filename = os.path.expanduser(filename) if not os.path.exists(filename): s = "File '%s' not found." % (filename) raise IOError(s) if is_scantable(filename): ondisk = rcParams['scantable.storage'] == 'disk' Scantable.__init__(self, filename, ondisk) if unit is not None: self.set_fluxunit(unit) if average: self._assign( self.average_time( scanav=True ) ) # do not reset to the default freqframe #self.set_freqframe(rcParams['scantable.freqframe']) elif is_ms(filename): # Measurement Set opts={'ms': {}} mskeys=['getpt','antenna'] for key in mskeys: if key in args.keys(): opts['ms'][key] = args[key] self._fill([filename], unit, average, opts) elif os.path.isfile(filename): opts={'nro': {}} nrokeys=['freqref'] for key in nrokeys: if key in args.keys(): opts['nro'][key] = args[key] self._fill([filename], unit, average, opts) # only apply to new data not "copy constructor" self.parallactify(parallactify) else: msg = "The given file '%s'is not a valid " \ "asap table." % (filename) raise IOError(msg) elif (isinstance(filename, list) or isinstance(filename, tuple)) \ and isinstance(filename[-1], str): self._fill(filename, unit, average) self.parallactify(parallactify) self._add_history("scantable", varlist) @asaplog_post_dec def save(self, name=None, format=None, overwrite=False): """\ Store the scantable on disk. This can be an asap (aips++) Table, SDFITS or MS2 format. Parameters: name: the name of the outputfile. For format 'ASCII' this is the root file name (data in 'name'.txt and header in 'name'_header.txt) format: an optional file format. Default is ASAP. Allowed are: * 'ASAP' (save as ASAP [aips++] Table), * 'SDFITS' (save as SDFITS file) * 'ASCII' (saves as ascii text file) * 'MS2' (saves as an casacore MeasurementSet V2) * 'FITS' (save as image FITS - not readable by class) * 'CLASS' (save as FITS readable by CLASS) overwrite: If the file should be overwritten if it exists. The default False is to return with warning without writing the output. USE WITH CARE. Example:: scan.save('myscan.asap') scan.save('myscan.sdfits', 'SDFITS') """ from os import path format = format or rcParams['scantable.save'] suffix = '.'+format.lower() if name is None or name == "": name = 'scantable'+suffix msg = "No filename given. Using default name %s..." % name asaplog.push(msg) name = path.expandvars(name) if path.isfile(name) or path.isdir(name): if not overwrite: msg = "File %s exists." % name raise IOError(msg) format2 = format.upper() if format2 == 'ASAP': self._save(name) elif format2 == 'MS2': msopt = {'ms': {'overwrite': overwrite } } from asap._asap import mswriter writer = mswriter( self ) writer.write( name, msopt ) else: from asap._asap import stwriter as stw writer = stw(format2) writer.write(self, name) return def copy(self): """Return a copy of this scantable. *Note*: This makes a full (deep) copy. scan2 = scan1 makes a reference. Example:: copiedscan = scan.copy() """ sd = scantable(Scantable._copy(self)) return sd def drop_scan(self, scanid=None): """\ Return a new scantable where the specified scan number(s) has(have) been dropped. Parameters: scanid: a (list of) scan number(s) """ from asap import _is_sequence_or_number as _is_valid from asap import _to_list from asap import unique if not _is_valid(scanid): raise RuntimeError( 'Please specify a scanno to drop from the' ' scantable' ) scanid = _to_list(scanid) allscans = unique([ self.getscan(i) for i in range(self.nrow())]) for sid in scanid: allscans.remove(sid) if len(allscans) == 0: raise ValueError("Can't remove all scans") sel = selector(scans=allscans) return self._select_copy(sel) def _select_copy(self, selection): orig = self.get_selection() self.set_selection(orig+selection) cp = self.copy() self.set_selection(orig) return cp def get_scan(self, scanid=None): """\ Return a specific scan (by scanno) or collection of scans (by source name) in a new scantable. *Note*: See scantable.drop_scan() for the inverse operation. Parameters: scanid: a (list of) scanno or a source name, unix-style patterns are accepted for source name matching, e.g. '*_R' gets all 'ref scans Example:: # get all scans containing the source '323p459' newscan = scan.get_scan('323p459') # get all 'off' scans refscans = scan.get_scan('*_R') # get a susbset of scans by scanno (as listed in scan.summary()) newscan = scan.get_scan([0, 2, 7, 10]) """ if scanid is None: raise RuntimeError( 'Please specify a scan no or name to ' 'retrieve from the scantable' ) try: bsel = self.get_selection() sel = selector() if type(scanid) is str: sel.set_name(scanid) return self._select_copy(sel) elif type(scanid) is int: sel.set_scans([scanid]) return self._select_copy(sel) elif type(scanid) is list: sel.set_scans(scanid) return self._select_copy(sel) else: msg = "Illegal scanid type, use 'int' or 'list' if ints." raise TypeError(msg) except RuntimeError: raise def __str__(self): tempFile = tempfile.NamedTemporaryFile() Scantable._summary(self, tempFile.name) tempFile.seek(0) asaplog.clear() return tempFile.file.read() @asaplog_post_dec def summary(self, filename=None): """\ Print a summary of the contents of this scantable. Parameters: filename: the name of a file to write the putput to Default - no file output """ if filename is not None: if filename is "": filename = 'scantable_summary.txt' from os.path import expandvars, isdir filename = expandvars(filename) if isdir(filename): msg = "Illegal file name '%s'." % (filename) raise IOError(msg) else: filename = "" Scantable._summary(self, filename) def get_spectrum(self, rowno): """Return the spectrum for the current row in the scantable as a list. Parameters: rowno: the row number to retrieve the spectrum from """ return self._getspectrum(rowno) def get_mask(self, rowno): """Return the mask for the current row in the scantable as a list. Parameters: rowno: the row number to retrieve the mask from """ return self._getmask(rowno) def set_spectrum(self, spec, rowno): """Set the spectrum for the current row in the scantable. Parameters: spec: the new spectrum rowno: the row number to set the spectrum for """ assert(len(spec) == self.nchan(self.getif(rowno))) return self._setspectrum(spec, rowno) def get_coordinate(self, rowno): """Return the (spectral) coordinate for a a given 'rowno'. *Note*: * This coordinate is only valid until a scantable method modifies the frequency axis. * This coordinate does contain the original frequency set-up NOT the new frame. The conversions however are done using the user specified frame (e.g. LSRK/TOPO). To get the 'real' coordinate, use scantable.freq_align first. Without it there is no closure, i.e.:: c = myscan.get_coordinate(0) c.to_frequency(c.get_reference_pixel()) != c.get_reference_value() Parameters: rowno: the row number for the spectral coordinate """ return coordinate(Scantable.get_coordinate(self, rowno)) def get_selection(self): """\ Get the selection object currently set on this scantable. Example:: sel = scan.get_selection() sel.set_ifs(0) # select IF 0 scan.set_selection(sel) # apply modified selection """ return selector(self._getselection()) def set_selection(self, selection=None, **kw): """\ Select a subset of the data. All following operations on this scantable are only applied to thi selection. Parameters: selection: a selector object (default unset the selection), or any combination of 'pols', 'ifs', 'beams', 'scans', 'cycles', 'name', 'query' Examples:: sel = selector() # create a selection object self.set_scans([0, 3]) # select SCANNO 0 and 3 scan.set_selection(sel) # set the selection scan.summary() # will only print summary of scanno 0 an 3 scan.set_selection() # unset the selection # or the equivalent scan.set_selection(scans=[0,3]) scan.summary() # will only print summary of scanno 0 an 3 scan.set_selection() # unset the selection """ if selection is None: # reset if len(kw) == 0: selection = selector() else: # try keywords for k in kw: if k not in selector.fields: raise KeyError("Invalid selection key '%s', " "valid keys are %s" % (k, selector.fields)) selection = selector(**kw) self._setselection(selection) def get_row(self, row=0, insitu=None): """\ Select a row in the scantable. Return a scantable with single row. Parameters: row: row no of integration, default is 0. insitu: if False a new scantable is returned. Otherwise, the scaling is done in-situ. The default is taken from .asaprc (False) """ if insitu is None: insitu = rcParams['insitu'] if not insitu: workscan = self.copy() else: workscan = self # Select a row sel = selector() sel.set_rows([row]) workscan.set_selection(sel) if not workscan.nrow() == 1: msg = "Could not identify single row. %d rows selected." \ % (workscan.nrow()) raise RuntimeError(msg) if insitu: self._assign(workscan) else: return workscan @asaplog_post_dec def stats(self, stat='stddev', mask=None, form='3.3f', row=None, skip_flaggedrow=False): """\ Determine the specified statistic of the current beam/if/pol Takes a 'mask' as an optional parameter to specify which channels should be excluded. Parameters: stat: 'min', 'max', 'min_abc', 'max_abc', 'sumsq', 'sum', 'mean', 'var', 'stddev', 'avdev', 'rms', 'median' mask: an optional mask specifying where the statistic should be determined. form: format string to print statistic values row: row number of spectrum to process. (default is None: for all rows) skip_flaggedrow: if True, skip outputting text for flagged spectra. default is False. Example: scan.set_unit('channel') msk = scan.create_mask([100, 200], [500, 600]) scan.stats(stat='mean', mask=m) """ mask = mask or [] if not self._check_ifs(): raise ValueError("Cannot apply mask as the IFs have different " "number of channels. Please use setselection() " "to select individual IFs") getchan = False if stat.lower().startswith('min') or stat.lower().startswith('max'): chan = self._math._minmaxchan(self, mask, stat) getchan = True statvals = [] rtnabc = False if stat.lower().endswith('_abc'): rtnabc = True else: if row == None: statvals = self._math._stats(self, mask, stat) else: statvals = self._math._statsrow(self, mask, stat, int(row)) #def cb(i): # return statvals[i] #return self._row_callback(cb, stat) label=stat #callback=cb out = "" #outvec = [] sep = '-'*50 if row == None: rows = xrange(self.nrow()) elif isinstance(row, int): rows = [ row ] for i in rows: refstr = '' statunit= '' if getchan: if self._is_all_chan_flagged(i): if rtnabc: statvals.append(None) else: qx, qy = self.chan2data(rowno=i, chan=chan[i]) if rtnabc: statvals.append(qx['value']) refstr = ('(value: %'+form) % (qy['value'])+' ['+qy['unit']+'])' statunit= '['+qx['unit']+']' else: refstr = ('(@ %'+form) % (qx['value'])+' ['+qx['unit']+'])' if self._is_all_chan_flagged(i): if not rtnabc: statvals[i] = None if skip_flaggedrow: continue tm = self._gettime(i) src = self._getsourcename(i) out += 'Scan[%d] (%s) ' % (self.getscan(i), src) out += 'Time[%s]:\n' % (tm) if self.nbeam(-1) > 1: out += ' Beam[%d] ' % (self.getbeam(i)) if self.nif(-1) > 1: out += ' IF[%d] ' % (self.getif(i)) if self.npol(-1) > 1: out += ' Pol[%d] ' % (self.getpol(i)) #outvec.append(callback(i)) if len(rows) > 1: # out += ('= %'+form) % (outvec[i]) +' '+refstr+'\n' if statvals[i] is None: out += ('= None(flagged)') + ' '+refstr+'\n' else: out += ('= %'+form) % (statvals[i]) +' '+refstr+'\n' else: # out += ('= %'+form) % (outvec[0]) +' '+refstr+'\n' if statvals[0] is None: out += ('= None(flagged)') + ' '+refstr+'\n' else: out += ('= %'+form) % (statvals[0]) +' '+refstr+'\n' out += sep+"\n" import os if os.environ.has_key( 'USER' ): usr = os.environ['USER'] else: import commands usr = commands.getoutput( 'whoami' ) tmpfile = '/tmp/tmp_'+usr+'_casapy_asap_scantable_stats' f = open(tmpfile,'w') print >> f, sep print >> f, ' %s %s' % (label, statunit) print >> f, sep print >> f, out f.close() f = open(tmpfile,'r') x = f.readlines() f.close() asaplog.push(''.join(x), False) if skip_flaggedrow: nstatvals = len(statvals) for i in reversed(xrange(nstatvals)): if statvals[i] is None: del statvals[i] return statvals def chan2data(self, rowno=0, chan=0): """\ Returns channel/frequency/velocity and spectral value at an arbitrary row and channel in the scantable. Parameters: rowno: a row number in the scantable. Default is the first row, i.e. rowno=0 chan: a channel in the scantable. Default is the first channel, i.e. pos=0 """ if isinstance(rowno, int) and isinstance(chan, int): qx = {'unit': self.get_unit(), 'value': self._getabcissa(rowno)[chan]} qy = {'unit': self.get_fluxunit(), 'value': self._getspectrum(rowno)[chan]} return qx, qy def stddev(self, mask=None): """\ Determine the standard deviation of the current beam/if/pol Takes a 'mask' as an optional parameter to specify which channels should be excluded. Parameters: mask: an optional mask specifying where the standard deviation should be determined. Example:: scan.set_unit('channel') msk = scan.create_mask([100, 200], [500, 600]) scan.stddev(mask=m) """ return self.stats(stat='stddev', mask=mask); def get_column_names(self): """\ Return a list of column names, which can be used for selection. """ return list(Scantable.get_column_names(self)) def get_tsys(self, row=-1): """\ Return the System temperatures. Parameters: row: the rowno to get the information for. (default all rows) Returns: a list of Tsys values for the current selection """ if row > -1: return self._get_column(self._gettsys, row) return self._row_callback(self._gettsys, "Tsys") def get_tsysspectrum(self, row=-1): """\ Return the channel dependent system temperatures. Parameters: row: the rowno to get the information for. (default all rows) Returns: a list of Tsys values for the current selection """ return self._get_column( self._gettsysspectrum, row ) def set_tsys(self, values, row=-1): """\ Set the Tsys value(s) of the given 'row' or the whole scantable (selection). Parameters: values: a scalar or list (if Tsys is a vector) of Tsys value(s) row: the row number to apply Tsys values to. (default all rows) """ if not hasattr(values, "__len__"): values = [values] self._settsys(values, row) def get_weather(self, row=-1): """\ Return the weather information. Parameters: row: the rowno to get the information for. (default all rows) Returns: a dict or list of of dicts of values for the current selection """ if row >= len(self): raise IndexError("row out of range") values = self._get_column(self._get_weather, row) if row > -1: return {'temperature': values[0], 'pressure': values[1], 'humidity' : values[2], 'windspeed' : values[3], 'windaz' : values[4] } else: out = [] for r in values: out.append({'temperature': r[0], 'pressure': r[1], 'humidity' : r[2], 'windspeed' : r[3], 'windaz' : r[4] }) return out def _row_callback(self, callback, label): out = "" outvec = [] sep = '-'*50 for i in range(self.nrow()): tm = self._gettime(i) src = self._getsourcename(i) out += 'Scan[%d] (%s) ' % (self.getscan(i), src) out += 'Time[%s]:\n' % (tm) if self.nbeam(-1) > 1: out += ' Beam[%d] ' % (self.getbeam(i)) if self.nif(-1) > 1: out += ' IF[%d] ' % (self.getif(i)) if self.npol(-1) > 1: out += ' Pol[%d] ' % (self.getpol(i)) outvec.append(callback(i)) out += '= %3.3f\n' % (outvec[i]) out += sep+'\n' asaplog.push(sep) asaplog.push(" %s" % (label)) asaplog.push(sep) asaplog.push(out) asaplog.post() return outvec def _get_column(self, callback, row=-1, *args): """ """ if row == -1: return [callback(i, *args) for i in range(self.nrow())] else: if 0 <= row < self.nrow(): return callback(row, *args) def get_time(self, row=-1, asdatetime=False, prec=-1): """\ Get a list of time stamps for the observations. Return a datetime object or a string (default) for each integration time stamp in the scantable. Parameters: row: row no of integration. Default -1 return all rows asdatetime: return values as datetime objects rather than strings prec: number of digits shown. Default -1 to automatic calculation. Note this number is equals to the digits of MVTime, i.e., 0 : with hh:mm:ss.tt... (prec-6 t's added) """ from datetime import datetime if prec < 0: # automagically set necessary precision +1 prec = 7 - \ numpy.floor(numpy.log10(numpy.min(self.get_inttime(row)))) prec = max(6, int(prec)) else: prec = max(0, prec) if asdatetime: #precision can be 1 millisecond at max prec = min(12, prec) times = self._get_column(self._gettime, row, prec) if not asdatetime: return times format = "%Y/%m/%d/%H:%M:%S.%f" if prec < 7: nsub = 1 + (((6-prec)/2) % 3) substr = [".%f","%S","%M"] for i in range(nsub): format = format.replace(substr[i],"") if isinstance(times, list): return [datetime.strptime(i, format) for i in times] else: return datetime.strptime(times, format) def get_inttime(self, row=-1): """\ Get a list of integration times for the observations. Return a time in seconds for each integration in the scantable. Parameters: row: row no of integration. Default -1 return all rows. """ return self._get_column(self._getinttime, row) def get_sourcename(self, row=-1): """\ Get a list source names for the observations. Return a string for each integration in the scantable. Parameters: row: row no of integration. Default -1 return all rows. """ return self._get_column(self._getsourcename, row) def get_elevation(self, row=-1): """\ Get a list of elevations for the observations. Return a float for each integration in the scantable. Parameters: row: row no of integration. Default -1 return all rows. """ return self._get_column(self._getelevation, row) def get_azimuth(self, row=-1): """\ Get a list of azimuths for the observations. Return a float for each integration in the scantable. Parameters: row: row no of integration. Default -1 return all rows. """ return self._get_column(self._getazimuth, row) def get_parangle(self, row=-1): """\ Get a list of parallactic angles for the observations. Return a float for each integration in the scantable. Parameters: row: row no of integration. Default -1 return all rows. """ return self._get_column(self._getparangle, row) def get_direction(self, row=-1): """ Get a list of Positions on the sky (direction) for the observations. Return a string for each integration in the scantable. Parameters: row: row no of integration. Default -1 return all rows """ return self._get_column(self._getdirection, row) def get_directionval(self, row=-1): """\ Get a list of Positions on the sky (direction) for the observations. Return a float for each integration in the scantable. Parameters: row: row no of integration. Default -1 return all rows """ return self._get_column(self._getdirectionvec, row) @asaplog_post_dec def set_unit(self, unit='channel'): """\ Set the unit for all following operations on this scantable Parameters: unit: optional unit, default is 'channel'. Use one of '*Hz', 'km/s', 'channel' or equivalent '' """ varlist = vars() if unit in ['', 'pixel', 'channel']: unit = '' inf = list(self._getcoordinfo()) inf[0] = unit self._setcoordinfo(inf) self._add_history("set_unit", varlist) @asaplog_post_dec def set_instrument(self, instr): """\ Set the instrument for subsequent processing. Parameters: instr: Select from 'ATPKSMB', 'ATPKSHOH', 'ATMOPRA', 'DSS-43' (Tid), 'CEDUNA', and 'HOBART' """ self._setInstrument(instr) self._add_history("set_instument", vars()) @asaplog_post_dec def set_feedtype(self, feedtype): """\ Overwrite the feed type, which might not be set correctly. Parameters: feedtype: 'linear' or 'circular' """ self._setfeedtype(feedtype) self._add_history("set_feedtype", vars()) @asaplog_post_dec def get_doppler(self): """\ Get the doppler. """ return self._getcoordinfo()[2] @asaplog_post_dec def set_doppler(self, doppler='RADIO'): """\ Set the doppler for all following operations on this scantable. Parameters: doppler: One of 'RADIO', 'OPTICAL', 'Z', 'BETA', 'GAMMA' """ varlist = vars() inf = list(self._getcoordinfo()) inf[2] = doppler self._setcoordinfo(inf) self._add_history("set_doppler", vars()) @asaplog_post_dec def set_freqframe(self, frame=None): """\ Set the frame type of the Spectral Axis. Parameters: frame: an optional frame type, default 'LSRK'. Valid frames are: 'TOPO', 'LSRD', 'LSRK', 'BARY', 'GEO', 'GALACTO', 'LGROUP', 'CMB' Example:: scan.set_freqframe('BARY') """ frame = frame or rcParams['scantable.freqframe'] varlist = vars() # "REST" is not implemented in casacore #valid = ['REST', 'TOPO', 'LSRD', 'LSRK', 'BARY', \ # 'GEO', 'GALACTO', 'LGROUP', 'CMB'] valid = ['TOPO', 'LSRD', 'LSRK', 'BARY', \ 'GEO', 'GALACTO', 'LGROUP', 'CMB'] if frame in valid: inf = list(self._getcoordinfo()) inf[1] = frame self._setcoordinfo(inf) self._add_history("set_freqframe", varlist) else: msg = "Please specify a valid freq type. Valid types are:\n", valid raise TypeError(msg) @asaplog_post_dec def set_dirframe(self, frame=""): """\ Set the frame type of the Direction on the sky. Parameters: frame: an optional frame type, default ''. Valid frames are: 'J2000', 'B1950', 'GALACTIC' Example: scan.set_dirframe('GALACTIC') """ varlist = vars() Scantable.set_dirframe(self, frame) self._add_history("set_dirframe", varlist) def get_unit(self): """\ Get the default unit set in this scantable Returns: A unit string """ inf = self._getcoordinfo() unit = inf[0] if unit == '': unit = 'channel' return unit @asaplog_post_dec def get_abcissa(self, rowno=0): """\ Get the abcissa in the current coordinate setup for the currently selected Beam/IF/Pol Parameters: rowno: an optional row number in the scantable. Default is the first row, i.e. rowno=0 Returns: The abcissa values and the format string (as a dictionary) """ abc = self._getabcissa(rowno) lbl = self._getabcissalabel(rowno) return abc, lbl @asaplog_post_dec def flag(self, mask=None, unflag=False, row=-1): """\ Flag the selected data using an optional channel mask. Parameters: mask: an optional channel mask, created with create_mask. Default (no mask) is all channels. unflag: if True, unflag the data row: an optional row number in the scantable. Default -1 flags all rows """ varlist = vars() mask = mask or [] self._flag(row, mask, unflag) self._add_history("flag", varlist) @asaplog_post_dec def flag_row(self, rows=None, unflag=False): """\ Flag the selected data in row-based manner. Parameters: rows: list of row numbers to be flagged. Default is no row (must be explicitly specified to execute row-based flagging). unflag: if True, unflag the data. """ varlist = vars() if rows is None: rows = [] self._flag_row(rows, unflag) self._add_history("flag_row", varlist) @asaplog_post_dec def clip(self, uthres=None, dthres=None, clipoutside=True, unflag=False): """\ Flag the selected data outside a specified range (in channel-base) Parameters: uthres: upper threshold. dthres: lower threshold clipoutside: True for flagging data outside the range [dthres:uthres]. False for flagging data inside the range. unflag: if True, unflag the data. """ varlist = vars() self._clip(uthres, dthres, clipoutside, unflag) self._add_history("clip", varlist) @asaplog_post_dec def lag_flag(self, start, end, unit="MHz", insitu=None): """\ Flag the data in 'lag' space by providing a frequency to remove. Flagged data in the scantable get interpolated over the region. No taper is applied. Parameters: start: the start frequency (really a period within the bandwidth) or period to remove end: the end frequency or period to remove unit: the frequency unit (default 'MHz') or '' for explicit lag channels *Notes*: It is recommended to flag edges of the band or strong signals beforehand. """ if insitu is None: insitu = rcParams['insitu'] self._math._setinsitu(insitu) varlist = vars() base = { "GHz": 1000000000., "MHz": 1000000., "kHz": 1000., "Hz": 1.} if not (unit == "" or base.has_key(unit)): raise ValueError("%s is not a valid unit." % unit) if unit == "": s = scantable(self._math._lag_flag(self, start, end, "lags")) else: s = scantable(self._math._lag_flag(self, start*base[unit], end*base[unit], "frequency")) s._add_history("lag_flag", varlist) if insitu: self._assign(s) else: return s @asaplog_post_dec def fft(self, rowno=None, mask=None, getrealimag=False): """\ Apply FFT to the spectra. Flagged data in the scantable get interpolated over the region. Parameters: rowno: The row number(s) to be processed. int, list and tuple are accepted. By default (None), FFT is applied to the whole data. mask: Auxiliary channel mask(s). Given as a boolean list, it is applied to all specified rows. A list of boolean lists can also be used to apply different masks. In the latter case, the length of 'mask' must be the same as that of 'rowno'. The default is None. getrealimag: If True, returns the real and imaginary part values of the complex results. If False (the default), returns the amplitude (absolute value) normalised with Ndata/2 and phase (argument, in unit of radian). Returns: A list of dictionaries containing the results for each spectrum. Each dictionary contains two values, the real and the imaginary parts when getrealimag = True, or the amplitude(absolute value) and the phase(argument) when getrealimag = False. The key for these values are 'real' and 'imag', or 'ampl' and 'phase', respectively. """ if rowno is None: rowno = [] if isinstance(rowno, int): rowno = [rowno] elif not (isinstance(rowno, list) or isinstance(rowno, tuple)): raise TypeError("The row number(s) must be int, list or tuple.") if len(rowno) == 0: rowno = [i for i in xrange(self.nrow())] usecommonmask = True if mask is None: mask = [] if isinstance(mask, list) or isinstance(mask, tuple): if len(mask) == 0: mask = [[]] else: if isinstance(mask[0], bool): if len(mask) != self.nchan(self.getif(rowno[0])): raise ValueError("The spectra and the mask have " "different length.") mask = [mask] elif isinstance(mask[0], list) or isinstance(mask[0], tuple): usecommonmask = False if len(mask) != len(rowno): raise ValueError("When specifying masks for each " "spectrum, the numbers of them " "must be identical.") for i in xrange(mask): if len(mask[i]) != self.nchan(self.getif(rowno[i])): raise ValueError("The spectra and the mask have " "different length.") else: raise TypeError("The mask must be a boolean list or " "a list of boolean list.") else: raise TypeError("The mask must be a boolean list or a list of " "boolean list.") res = [] imask = 0 for whichrow in rowno: fspec = self._fft(whichrow, mask[imask], getrealimag) nspec = len(fspec) i = 0 v1 = [] v2 = [] reselem = {"real":[],"imag":[]} if getrealimag \ else {"ampl":[],"phase":[]} while (i < nspec): v1.append(fspec[i]) v2.append(fspec[i+1]) i += 2 if getrealimag: reselem["real"] += v1 reselem["imag"] += v2 else: reselem["ampl"] += v1 reselem["phase"] += v2 res.append(reselem) if not usecommonmask: imask += 1 return res @asaplog_post_dec def create_mask(self, *args, **kwargs): """\ Compute and return a mask based on [min, max] windows. The specified windows are to be INCLUDED, when the mask is applied. Parameters: [min, max], [min2, max2], ... Pairs of start/end points (inclusive)specifying the regions to be masked invert: optional argument. If specified as True, return an inverted mask, i.e. the regions specified are EXCLUDED row: create the mask using the specified row for unit conversions, default is row=0 only necessary if frequency varies over rows. Examples:: scan.set_unit('channel') # a) msk = scan.create_mask([400, 500], [800, 900]) # masks everything outside 400 and 500 # and 800 and 900 in the unit 'channel' # b) msk = scan.create_mask([400, 500], [800, 900], invert=True) # masks the regions between 400 and 500 # and 800 and 900 in the unit 'channel' # c) #mask only channel 400 msk = scan.create_mask([400]) """ row = kwargs.get("row", 0) data = self._getabcissa(row) u = self._getcoordinfo()[0] if u == "": u = "channel" msg = "The current mask window unit is %s" % u i = self._check_ifs() if not i: msg += "\nThis mask is only valid for IF=%d" % (self.getif(i)) asaplog.push(msg) n = len(data) msk = _n_bools(n, False) # test if args is a 'list' or a 'normal *args - UGLY!!! ws = (isinstance(args[-1][-1], int) or isinstance(args[-1][-1], float)) and args or args[0] for window in ws: if len(window) == 1: window = [window[0], window[0]] if len(window) == 0 or len(window) > 2: raise ValueError("A window needs to be defined as " "[start(, end)]") if window[0] > window[1]: tmp = window[0] window[0] = window[1] window[1] = tmp for i in range(n): if data[i] >= window[0] and data[i] <= window[1]: msk[i] = True if kwargs.has_key('invert'): if kwargs.get('invert'): msk = mask_not(msk) return msk def get_masklist(self, mask=None, row=0, silent=False): """\ Compute and return a list of mask windows, [min, max]. Parameters: mask: channel mask, created with create_mask. row: calcutate the masklist using the specified row for unit conversions, default is row=0 only necessary if frequency varies over rows. Returns: [min, max], [min2, max2], ... Pairs of start/end points (inclusive)specifying the masked regions """ if not (isinstance(mask,list) or isinstance(mask, tuple)): raise TypeError("The mask should be list or tuple.") if len(mask) <= 0: raise TypeError("The mask elements should be > 0") data = self._getabcissa(row) if len(data) != len(mask): msg = "Number of channels in scantable != number of mask elements" raise TypeError(msg) u = self._getcoordinfo()[0] if u == "": u = "channel" msg = "The current mask window unit is %s" % u i = self._check_ifs() if not i: msg += "\nThis mask is only valid for IF=%d" % (self.getif(i)) if not silent: asaplog.push(msg) masklist = [] ist, ien = None, None ist, ien=self.get_mask_indices(mask) if ist is not None and ien is not None: for i in xrange(len(ist)): range=[data[ist[i]],data[ien[i]]] range.sort() masklist.append([range[0],range[1]]) return masklist def get_mask_indices(self, mask=None): """\ Compute and Return lists of mask start indices and mask end indices. Parameters: mask: channel mask, created with create_mask. Returns: List of mask start indices and that of mask end indices, i.e., [istart1,istart2,....], [iend1,iend2,....]. """ if not (isinstance(mask,list) or isinstance(mask, tuple)): raise TypeError("The mask should be list or tuple.") if len(mask) <= 0: raise TypeError("The mask elements should be > 0") istart = [] iend = [] if mask[0]: istart.append(0) for i in range(len(mask)-1): if not mask[i] and mask[i+1]: istart.append(i+1) elif mask[i] and not mask[i+1]: iend.append(i) if mask[len(mask)-1]: iend.append(len(mask)-1) if len(istart) != len(iend): raise RuntimeError("Numbers of mask start != mask end.") for i in range(len(istart)): if istart[i] > iend[i]: raise RuntimeError("Mask start index > mask end index") break return istart,iend @asaplog_post_dec def parse_spw_selection(self, selectstring, restfreq=None, frame=None, doppler=None): """ Parse MS type spw/channel selection syntax. Parameters: selectstring : A string expression of spw and channel selection. Comma-separated expressions mean different spw - channel combinations. Spws and channel selections are partitioned by a colon ':'. In a single selection expression, you can put multiple values separated by semicolons ';'. Both for spw and channel selection, allowed cases include single value, blank('') or asterisk('*') to specify all available values, two values connected with a tilde ('~') to specify an inclusive range. Unit strings for frequency or velocity can be added to the tilde-connected values. For channel selection expression, placing a '<' or a '>' is possible to specify a semi-infinite interval as well. examples: '' or '*' = all spws (all channels) '<2,4~6,9' = Spws 0,1,4,5,6,9 (all channels) '3:3~45;60' = channels 3 to 45 and 60 in spw 3 '0~1:2~6,8' = channels 2 to 6 in spws 0,1, and all channels in spw8 '1.3~1.5GHz' = all spws whose central frequency falls in frequency range between 1.3GHz and 1.5GHz. '1.3~1.5GHz:1.3~1.5GHz' = channels which fall between the specified frequency range in spws whose central frequency falls in the specified frequency range. '1:-200~250km/s' = channels that fall between the specified velocity range in spw 1. restfreq: the rest frequency. examples: '115.2712GHz', 115271201800.0 frame: an optional frame type, default 'LSRK'. Valid frames are: 'TOPO', 'LSRD', 'LSRK', 'BARY', 'GEO', 'GALACTO', 'LGROUP', 'CMB' doppler: one of 'RADIO', 'OPTICAL', 'Z', 'BETA', 'GAMMA' Returns: A dictionary of selected (valid) spw and masklist pairs, e.g. {'0': [[50,250],[350,462]], '2': [[100,400],[550,974]]} """ if not isinstance(selectstring, str): asaplog.post() asaplog.push("Expression of spw/channel selection must be a string.") asaplog.post("ERROR") orig_unit = self.get_unit() self.set_unit('channel') if restfreq is not None: orig_molids = self._getmolidcol_list() set_restfreq(self, restfreq) orig_coord = self._getcoordinfo() if frame is not None: orig_frame = orig_coord[1] self.set_freqframe(frame) if doppler is not None: orig_doppler = orig_coord[2] self.set_doppler(doppler) valid_ifs = self.getifnos() comma_sep = selectstring.split(",") res = {} for cms_elem in comma_sep: colon_sep = cms_elem.split(":") if (len(colon_sep) > 2): raise RuntimeError("Invalid selection expression: more than two colons!") # parse spw expression and store result in spw_list. # allowed cases include '', '*', 'a', 'a', 'a~b', # 'a~b*Hz' (where * can be '', 'k', 'M', 'G' etc.), # 'a~b*m/s' (where * can be '' or 'k') and also # several of the above expressions connected with ';'. spw_list = [] semicolon_sep = colon_sep[0].split(";") for scs_elem in semicolon_sep: scs_elem = scs_elem.strip() lt_sep = scs_elem.split("<") gt_sep = scs_elem.split(">") ti_sep = scs_elem.split("~") lt_sep_length = len(lt_sep) gt_sep_length = len(gt_sep) ti_sep_length = len(ti_sep) len_product = lt_sep_length * gt_sep_length * ti_sep_length if (len_product > 2): # '<', '>' and '~' must not coexist in a single spw expression raise RuntimeError("Invalid spw selection.") elif (len_product == 1): # '', '*', or single spw number. if (scs_elem == "") or (scs_elem == "*"): spw_list = valid_ifs[:] # deep copy else: # single number expr = int(scs_elem) spw_list.append(expr) if expr not in valid_ifs: asaplog.push("Invalid spw given. Ignored.") else: # (len_product == 2) # namely, one of '<', '>' or '~' appears just once. if (lt_sep_length == 2): # 'a' if is_number(gt_sep[1]): no_valid_spw = True for i in valid_ifs: if (i > float(gt_sep[1])): spw_list.append(i) no_valid_spw = False if no_valid_spw: raise ValueError("Invalid spw selection ('>" + str(gt_sep[1]) + "').") else: raise RuntimeError("Invalid spw selection.") else: # (ti_sep_length == 2) where both boundaries inclusive expr0 = ti_sep[0].strip() expr1 = ti_sep[1].strip() if is_number(expr0) and is_number(expr1): # 'a~b' expr_pmin = min(float(expr0), float(expr1)) expr_pmax = max(float(expr0), float(expr1)) has_invalid_spw = False no_valid_spw = True for i in valid_ifs: if (expr_pmin <= i) and (i <= expr_pmax): spw_list.append(i) no_valid_spw = False else: has_invalid_spw = True if has_invalid_spw: msg = "Invalid spw is given. Ignored." asaplog.push(msg) asaplog.post() if no_valid_spw: raise ValueError("No valid spw in range ('" + str(expr_pmin) + "~" + str(expr_pmax) + "').") elif is_number(expr0) and is_frequency(expr1): # 'a~b*Hz' (expr_f0, expr_f1) = get_freq_by_string(expr0, expr1) expr_fmin = min(expr_f0, expr_f1) expr_fmax = max(expr_f0, expr_f1) no_valid_spw = True for coord in self._get_coordinate_list(): spw = coord['if'] """ expr_p0 = coord['coord'].to_pixel(expr_f0) expr_p1 = coord['coord'].to_pixel(expr_f1) expr_pmin = min(expr_p0, expr_p1) expr_pmax = max(expr_p0, expr_p1) pmin = 0.0 pmax = float(self.nchan(spw) - 1) if ((expr_pmax - pmin)*(expr_pmin - pmax) <= 0.0): spw_list.append(spw) no_valid_spw = False """ crd = coord['coord'] fhead = crd.to_frequency(0) ftail = crd.to_frequency(self.nchan(spw) - 1) fcen = (fhead + ftail) / 2.0 if ((expr_fmin <= fcen) and (fcen <= expr_fmax)): spw_list.append(spw) no_valid_spw = False if no_valid_spw: raise ValueError("No valid spw in range ('" + str(expr0) + "~" + str(expr1) + "').") elif is_number(expr0) and is_velocity(expr1): # 'a~b*m/s' (expr_v0, expr_v1) = get_velocity_by_string(expr0, expr1) expr_vmin = min(expr_v0, expr_v1) expr_vmax = max(expr_v0, expr_v1) no_valid_spw = True for coord in self._get_coordinate_list(): spw = coord['if'] """ pmin = 0.0 pmax = float(self.nchan(spw) - 1) vel0 = coord['coord'].to_velocity(pmin) vel1 = coord['coord'].to_velocity(pmax) vmin = min(vel0, vel1) vmax = max(vel0, vel1) if ((expr_vmax - vmin)*(expr_vmin - vmax) <= 0.0): spw_list.append(spw) no_valid_spw = False """ crd = coord['coord'] fhead = crd.to_frequency(0) ftail = crd.to_frequency(self.nchan(spw) - 1) fcen = (fhead + ftail) / 2.0 vcen = crd.to_velocity(crd.to_pixel(fcen)) if ((expr_vmin <= vcen) and (vcen <= expr_vmax)): spw_list.append(spw) no_valid_spw = False if no_valid_spw: raise ValueError("No valid spw in range ('" + str(expr0) + "~" + str(expr1) + "').") else: # cases such as 'aGHz~bkm/s' are not allowed now raise RuntimeError("Invalid spw selection.") # check spw list and remove invalid ones. # if no valid spw left, emit ValueError. if len(spw_list) == 0: raise ValueError("No valid spw in given range.") # parse channel expression and store the result in crange_list. # allowed cases include '', 'a~b', 'a*Hz~b*Hz' (where * can be # '', 'k', 'M', 'G' etc.), 'a*m/s~b*m/s' (where * can be '' or 'k') # and also several of the above expressions connected with ';'. for spw in spw_list: pmin = 0.0 pmax = float(self.nchan(spw) - 1) molid = self._getmolidcol_list()[self.get_first_rowno_by_if(spw)] if (len(colon_sep) == 1): # no expression for channel selection, # which means all channels are to be selected. crange_list = [[pmin, pmax]] else: # (len(colon_sep) == 2) crange_list = [] found = False for i in self._get_coordinate_list(): if (i['if'] == spw): coord = i['coord'] found = True break if found: semicolon_sep = colon_sep[1].split(";") for scs_elem in semicolon_sep: scs_elem = scs_elem.strip() ti_sep = scs_elem.split("~") ti_sep_length = len(ti_sep) if (ti_sep_length > 2): raise RuntimeError("Invalid channel selection.") elif (ti_sep_length == 1): if (scs_elem == "") or (scs_elem == "*"): # '' and '*' for all channels crange_list = [[pmin, pmax]] break elif (is_number(scs_elem)): # single channel given crange_list.append([float(scs_elem), float(scs_elem)]) else: raise RuntimeError("Invalid channel selection.") else: #(ti_sep_length == 2) expr0 = ti_sep[0].strip() expr1 = ti_sep[1].strip() if is_number(expr0) and is_number(expr1): # 'a~b' expr_pmin = min(float(expr0), float(expr1)) expr_pmax = max(float(expr0), float(expr1)) elif is_number(expr0) and is_frequency(expr1): # 'a~b*Hz' (expr_f0, expr_f1) = get_freq_by_string(expr0, expr1) expr_p0 = coord.to_pixel(expr_f0) expr_p1 = coord.to_pixel(expr_f1) expr_pmin = min(expr_p0, expr_p1) expr_pmax = max(expr_p0, expr_p1) elif is_number(expr0) and is_velocity(expr1): # 'a~b*m/s' restf = self.get_restfreqs()[molid][0] (expr_v0, expr_v1) = get_velocity_by_string(expr0, expr1) dppl = self.get_doppler() expr_f0 = get_frequency_by_velocity(restf, expr_v0, dppl) expr_f1 = get_frequency_by_velocity(restf, expr_v1, dppl) expr_p0 = coord.to_pixel(expr_f0) expr_p1 = coord.to_pixel(expr_f1) expr_pmin = min(expr_p0, expr_p1) expr_pmax = max(expr_p0, expr_p1) else: # cases such as 'aGHz~bkm/s' are not allowed now raise RuntimeError("Invalid channel selection.") cmin = max(pmin, expr_pmin) cmax = min(pmax, expr_pmax) # if the given range of channel selection has overwrap with # that of current spw, output the overwrap area. if (cmin <= cmax): cmin = float(int(cmin + 0.5)) cmax = float(int(cmax + 0.5)) crange_list.append([cmin, cmax]) if (len(crange_list) == 0): crange_list.append([]) if (len(crange_list[0]) > 0): if res.has_key(spw): res[spw].extend(crange_list) else: res[spw] = crange_list for spw in res.keys(): if spw in valid_ifs: # remove duplicated channel ranges for i in reversed(xrange(len(res[spw]))): for j in xrange(i): if ((res[spw][i][0]-res[spw][j][1])*(res[spw][i][1]-res[spw][j][0]) <= 0) or \ (min(abs(res[spw][i][0]-res[spw][j][1]),abs(res[spw][j][0]-res[spw][i][1])) == 1): asaplog.post() merge_warn_mesg = "Spw " + str(spw) + ": overwrapping channel ranges are merged." asaplog.push(merge_warn_mesg) asaplog.post('WARN') res[spw][j][0] = min(res[spw][i][0], res[spw][j][0]) res[spw][j][1] = max(res[spw][i][1], res[spw][j][1]) res[spw].pop(i) break else: del res[spw] if len(res) == 0: raise RuntimeError("No valid spw.") # restore original values self.set_unit(orig_unit) if restfreq is not None: self._setmolidcol_list(orig_molids) if frame is not None: self.set_freqframe(orig_frame) if doppler is not None: self.set_doppler(orig_doppler) return res @asaplog_post_dec def get_first_rowno_by_if(self, ifno): found = False for irow in xrange(self.nrow()): if (self.getif(irow) == ifno): res = irow found = True break if not found: raise RuntimeError("No valid spw.") return res @asaplog_post_dec def _get_coordinate_list(self): res = [] spws = self.getifnos() for spw in spws: elem = {} elem['if'] = spw elem['coord'] = self.get_coordinate(self.get_first_rowno_by_if(spw)) res.append(elem) return res @asaplog_post_dec def parse_maskexpr(self, maskstring): """ Parse CASA type mask selection syntax (IF dependent). Parameters: maskstring : A string mask selection expression. A comma separated selections mean different IF - channel combinations. IFs and channel selections are partitioned by a colon, ':'. examples: '' = all IFs (all channels) '<2,4~6,9' = IFs 0,1,4,5,6,9 (all channels) '3:3~45;60' = channels 3 to 45 and 60 in IF 3 '0~1:2~6,8' = channels 2 to 6 in IFs 0,1, and all channels in IF8 Returns: A dictionary of selected (valid) IF and masklist pairs, e.g. {'0': [[50,250],[350,462]], '2': [[100,400],[550,974]]} """ if not isinstance(maskstring,str): asaplog.post() asaplog.push("Mask expression should be a string.") asaplog.post("ERROR") valid_ifs = self.getifnos() frequnit = self.get_unit() seldict = {} if maskstring == "": maskstring = str(valid_ifs)[1:-1] ## split each selection "IF range[:CHAN range]" # split maskstring by "," comma_sep = re.compile('\s*,\s*') sellist = comma_sep.split(maskstring) # separator by ":" collon_sep = re.compile('\s*:\s*') for currselstr in sellist: selset = collon_sep.split(currselstr) # spw and mask string (may include ~, < or >) spwmasklist = self._parse_selection(selset[0], typestr='integer', minval=min(valid_ifs), maxval=max(valid_ifs)) for spwlist in spwmasklist: selspws = [] for ispw in range(spwlist[0],spwlist[1]+1): # Put into the list only if ispw exists if valid_ifs.count(ispw): selspws.append(ispw) del spwmasklist, spwlist # parse frequency mask list if len(selset) > 1: freqmasklist = self._parse_selection(selset[1], typestr='float', offset=0.) else: # want to select the whole spectrum freqmasklist = [None] ## define a dictionary of spw - masklist combination for ispw in selspws: #print "working on", ispw spwstr = str(ispw) if len(selspws) == 0: # empty spw continue else: ## want to get min and max of the spw and ## offset to set for '<' and '>' if frequnit == 'channel': minfreq = 0 maxfreq = self.nchan(ifno=ispw) offset = 0.5 else: ## This is ugly part. need improvement for ifrow in xrange(self.nrow()): if self.getif(ifrow) == ispw: #print "IF",ispw,"found in row =",ifrow break freqcoord = self.get_coordinate(ifrow) freqs = self._getabcissa(ifrow) minfreq = min(freqs) maxfreq = max(freqs) if len(freqs) == 1: offset = 0.5 elif frequnit.find('Hz') > 0: offset = abs(freqcoord.to_frequency(1, unit=frequnit) -freqcoord.to_frequency(0, unit=frequnit) )*0.5 elif frequnit.find('m/s') > 0: offset = abs(freqcoord.to_velocity(1, unit=frequnit) -freqcoord.to_velocity(0, unit=frequnit) )*0.5 else: asaplog.post() asaplog.push("Invalid frequency unit") asaplog.post("ERROR") del freqs, freqcoord, ifrow for freq in freqmasklist: selmask = freq or [minfreq, maxfreq] if selmask[0] == None: ## selection was "freq[0]" if selmask[0] > maxfreq: ## avoid adding region selection selmask = None else: selmask = [selmask[0]+offset,maxfreq] if selmask: if not seldict.has_key(spwstr): # new spw selection seldict[spwstr] = [] seldict[spwstr] += [selmask] del minfreq,maxfreq,offset,freq,selmask del spwstr del freqmasklist del valid_ifs if len(seldict) == 0: asaplog.post() asaplog.push("No valid selection in the mask expression: " +maskstring) asaplog.post("WARN") return None msg = "Selected masklist:\n" for sif, lmask in seldict.iteritems(): msg += " IF"+sif+" - "+str(lmask)+"\n" asaplog.push(msg) return seldict @asaplog_post_dec def parse_idx_selection(self, mode, selexpr): """ Parse CASA type mask selection syntax of SCANNO, IFNO, POLNO, BEAMNO, and row number Parameters: mode : which column to select. ['scan',|'if'|'pol'|'beam'|'row'] selexpr : A comma separated selection expression. examples: '' = all (returns []) '<2,4~6,9' = indices less than 2, 4 to 6 and 9 (returns [0,1,4,5,6,9]) Returns: A List of selected indices """ if selexpr == "": return [] valid_modes = {'s': 'scan', 'i': 'if', 'p': 'pol', 'b': 'beam', 'r': 'row'} smode = mode.lower()[0] if not (smode in valid_modes.keys()): msg = "Invalid mode '%s'. Valid modes are %s" %\ (mode, str(valid_modes.values())) asaplog.post() asaplog.push(msg) asaplog.post("ERROR") mode = valid_modes[smode] minidx = None maxidx = None if smode == 'r': minidx = 0 maxidx = self.nrow()-1 else: idx = getattr(self,"get"+mode+"nos")() minidx = min(idx) maxidx = max(idx) del idx # split selexpr by "," comma_sep = re.compile('\s*,\s*') sellist = comma_sep.split(selexpr) idxlist = [] for currselstr in sellist: # single range (may include ~, < or >) currlist = self._parse_selection(currselstr, typestr='integer', minval=minidx,maxval=maxidx) for thelist in currlist: idxlist += range(thelist[0],thelist[1]+1) # remove duplicated elements after first ones for i in reversed(xrange(len(idxlist))): if idxlist.index(idxlist[i]) < i: idxlist.pop(i) # remove elements outside range [minidx, maxidx] for smode='r' if smode == 'r': for i in reversed(xrange(len(idxlist))): if (idxlist[i] < minidx) or (idxlist[i] > maxidx): idxlist.pop(i) msg = "Selected %s: %s" % (mode.upper()+"NO", str(idxlist)) asaplog.push(msg) return idxlist def _parse_selection(self, selstr, typestr='float', offset=0., minval=None, maxval=None): """ Parameters: selstr : The Selection string, e.g., '<3;5~7;100~103;9' typestr : The type of the values in returned list ('integer' or 'float') offset : The offset value to subtract from or add to the boundary value if the selection string includes '<' or '>' [Valid only for typestr='float'] minval, maxval : The minimum/maximum values to set if the selection string includes '<' or '>'. The list element is filled with None by default. Returns: A list of min/max pair of selections. Example: _parse_selection('<3;5~7;9',typestr='int',minval=0) --> returns [[0,2],[5,7],[9,9]] _parse_selection('<3;5~7;9',typestr='float',offset=0.5,minval=0) --> returns [[0.,2.5],[5.0,7.0],[9.,9.]] """ # split selstr by ';' semi_sep = re.compile('\s*;\s*') selgroups = semi_sep.split(selstr) sellists = [] if typestr.lower().startswith('int'): formatfunc = int offset = 1 else: formatfunc = float for currsel in selgroups: if currsel.strip() == '*' or len(currsel.strip()) == 0: minsel = minval maxsel = maxval if currsel.find('~') > 0: # val0 <= x <= val1 minsel = formatfunc(currsel.split('~')[0].strip()) maxsel = formatfunc(currsel.split('~')[1].strip()) elif currsel.strip().find('<=') > -1: bound = currsel.split('<=') try: # try "x <= val" minsel = minval maxsel = formatfunc(bound[1].strip()) except ValueError: # now "val <= x" minsel = formatfunc(bound[0].strip()) maxsel = maxval elif currsel.strip().find('>=') > -1: bound = currsel.split('>=') try: # try "x >= val" minsel = formatfunc(bound[1].strip()) maxsel = maxval except ValueError: # now "val >= x" minsel = minval maxsel = formatfunc(bound[0].strip()) elif currsel.strip().find('<') > -1: bound = currsel.split('<') try: # try "x < val" minsel = minval maxsel = formatfunc(bound[1].strip()) \ - formatfunc(offset) except ValueError: # now "val < x" minsel = formatfunc(bound[0].strip()) \ + formatfunc(offset) maxsel = maxval elif currsel.strip().find('>') > -1: bound = currsel.split('>') try: # try "x > val" minsel = formatfunc(bound[1].strip()) \ + formatfunc(offset) maxsel = maxval except ValueError: # now "val > x" minsel = minval maxsel = formatfunc(bound[0].strip()) \ - formatfunc(offset) else: minsel = formatfunc(currsel) maxsel = formatfunc(currsel) sellists.append([minsel,maxsel]) return sellists # def get_restfreqs(self): # """ # Get the restfrequency(s) stored in this scantable. # The return value(s) are always of unit 'Hz' # Parameters: # none # Returns: # a list of doubles # """ # return list(self._getrestfreqs()) def get_restfreqs(self, ids=None): """\ Get the restfrequency(s) stored in this scantable. The return value(s) are always of unit 'Hz' Parameters: ids: (optional) a list of MOLECULE_ID for that restfrequency(s) to be retrieved Returns: dictionary containing ids and a list of doubles for each id """ if ids is None: rfreqs = {} idlist = self.getmolnos() for i in idlist: rfreqs[i] = list(self._getrestfreqs(i)) return rfreqs else: if type(ids) == list or type(ids) == tuple: rfreqs = {} for i in ids: rfreqs[i] = list(self._getrestfreqs(i)) return rfreqs else: return list(self._getrestfreqs(ids)) @asaplog_post_dec def set_restfreqs(self, freqs=None, unit='Hz'): """\ Set or replace the restfrequency specified and if the 'freqs' argument holds a scalar, then that rest frequency will be applied to all the selected data. If the 'freqs' argument holds a vector, then it MUST be of equal or smaller length than the number of IFs (and the available restfrequencies will be replaced by this vector). In this case, *all* data have the restfrequency set per IF according to the corresponding value you give in the 'freqs' vector. E.g. 'freqs=[1e9, 2e9]' would mean IF 0 gets restfreq 1e9 and IF 1 gets restfreq 2e9. You can also specify the frequencies via a linecatalog. Parameters: freqs: list of rest frequency values or string idenitfiers unit: unit for rest frequency (default 'Hz') Example:: # set the given restfrequency for the all currently selected IFs scan.set_restfreqs(freqs=1.4e9) # set restfrequencies for the n IFs (n > 1) in the order of the # list, i.e # IF0 -> 1.4e9, IF1 -> 1.41e9, IF3 -> 1.42e9 # len(list_of_restfreqs) == nIF # for nIF == 1 the following will set multiple restfrequency for # that IF scan.set_restfreqs(freqs=[1.4e9, 1.41e9, 1.42e9]) # set multiple restfrequencies per IF. as a list of lists where # the outer list has nIF elements, the inner s arbitrary scan.set_restfreqs(freqs=[[1.4e9, 1.41e9], [1.67e9]]) *Note*: To do more sophisticate Restfrequency setting, e.g. on a source and IF basis, use scantable.set_selection() before using this function:: # provided your scantable is called scan selection = selector() selection.set_name('ORION*') selection.set_ifs([1]) scan.set_selection(selection) scan.set_restfreqs(freqs=86.6e9) """ varlist = vars() from asap import linecatalog # simple value if isinstance(freqs, int) or isinstance(freqs, float): self._setrestfreqs([freqs], [""], unit) # list of values elif isinstance(freqs, list) or isinstance(freqs, tuple): # list values are scalars if isinstance(freqs[-1], int) or isinstance(freqs[-1], float): if len(freqs) == 1: self._setrestfreqs(freqs, [""], unit) else: # allow the 'old' mode of setting mulitple IFs savesel = self._getselection() sel = self.get_selection() iflist = self.getifnos() if len(freqs)>len(iflist): raise ValueError("number of elements in list of list " "exeeds the current IF selections") iflist = self.getifnos() for i, fval in enumerate(freqs): sel.set_ifs(iflist[i]) self._setselection(sel) self._setrestfreqs([fval], [""], unit) self._setselection(savesel) # list values are dict, {'value'=, 'name'=) elif isinstance(freqs[-1], dict): values = [] names = [] for d in freqs: values.append(d["value"]) names.append(d["name"]) self._setrestfreqs(values, names, unit) elif isinstance(freqs[-1], list) or isinstance(freqs[-1], tuple): savesel = self._getselection() sel = self.get_selection() iflist = self.getifnos() if len(freqs)>len(iflist): raise ValueError("number of elements in list of list exeeds" " the current IF selections") for i, fval in enumerate(freqs): sel.set_ifs(iflist[i]) self._setselection(sel) self._setrestfreqs(fval, [""], unit) self._setselection(savesel) # freqs are to be taken from a linecatalog elif isinstance(freqs, linecatalog): savesel = self._getselection() sel = self.get_selection() for i in xrange(freqs.nrow()): sel.set_ifs(iflist[i]) self._setselection(sel) self._setrestfreqs([freqs.get_frequency(i)], [freqs.get_name(i)], "MHz") # ensure that we are not iterating past nIF if i == self.nif()-1: break self._setselection(savesel) else: return self._add_history("set_restfreqs", varlist) @asaplog_post_dec def shift_refpix(self, delta): """\ Shift the reference pixel of the Spectra Coordinate by an integer amount. Parameters: delta: the amount to shift by *Note*: Be careful using this with broadband data. """ varlist = vars() Scantable.shift_refpix(self, delta) s._add_history("shift_refpix", varlist) @asaplog_post_dec def history(self, filename=None, nrows=-1, start=0): """\ Print the history. Optionally to a file. Parameters: filename: The name of the file to save the history to. """ n = self._historylength() if nrows == -1: nrows = n if start+nrows > n: nrows = nrows-start if n > 1000 and nrows == n: nrows = 1000 start = n-1000 asaplog.push("Warning: History has {0} entries. Displaying last " "1000".format(n)) hist = list(self._gethistory(nrows, start)) out = "-"*80 for h in hist: if not h.strip(): continue if h.find("---") >-1: continue else: items = h.split("##") date = items[0] func = items[1] items = items[2:] out += "\n"+date+"\n" out += "Function: %s\n Parameters:" % (func) for i in items: if i == '': continue s = i.split("=") out += "\n %s = %s" % (s[0], s[1]) out = "\n".join([out, "*"*80]) if filename is not None: if filename is "": filename = 'scantable_history.txt' filename = os.path.expandvars(os.path.expanduser(filename)) if not os.path.isdir(filename): data = open(filename, 'w') data.write(out) data.close() else: msg = "Illegal file name '%s'." % (filename) raise IOError(msg) return page(out) # # Maths business # @asaplog_post_dec def average_time(self, mask=None, scanav=False, weight='tint', align=False, avmode="NONE"): """\ Return the (time) weighted average of a scan. Scans will be averaged only if the source direction (RA/DEC) is within 1' otherwise *Note*: in channels only - align if necessary Parameters: mask: an optional mask (only used for 'var' and 'tsys' weighting) scanav: True averages each scan separately False (default) averages all scans together, weight: Weighting scheme. 'none' (mean no weight) 'var' (1/var(spec) weighted) 'tsys' (1/Tsys**2 weighted) 'tint' (integration time weighted) 'tintsys' (Tint/Tsys**2) 'median' ( median averaging) The default is 'tint' align: align the spectra in velocity before averaging. It takes the time of the first spectrum as reference time. avmode: 'SOURCE' - also select by source name - or 'NONE' (default). Not applicable for scanav=True or weight=median Example:: # time average the scantable without using a mask newscan = scan.average_time() """ varlist = vars() weight = weight or 'TINT' mask = mask or () scanav = (scanav and 'SCAN') or avmode.upper() scan = (self, ) if align: scan = (self.freq_align(insitu=False), ) asaplog.push("Note: Alignment is don on a source-by-source basis") asaplog.push("Note: Averaging (by default) is not") # we need to set it to SOURCE averaging here s = None if weight.upper() == 'MEDIAN': s = scantable(self._math._averagechannel(scan[0], 'MEDIAN', scanav)) else: s = scantable(self._math._average(scan, mask, weight.upper(), scanav)) s._add_history("average_time", varlist) return s @asaplog_post_dec def convert_flux(self, jyperk=None, eta=None, d=None, insitu=None): """\ Return a scan where all spectra are converted to either Jansky or Kelvin depending upon the flux units of the scan table. By default the function tries to look the values up internally. If it can't find them (or if you want to over-ride), you must specify EITHER jyperk OR eta (and D which it will try to look up also if you don't set it). jyperk takes precedence if you set both. Parameters: jyperk: the Jy / K conversion factor eta: the aperture efficiency d: the geometric diameter (metres) insitu: if False a new scantable is returned. Otherwise, the scaling is done in-situ The default is taken from .asaprc (False) """ if insitu is None: insitu = rcParams['insitu'] self._math._setinsitu(insitu) varlist = vars() jyperk = jyperk or -1.0 d = d or -1.0 eta = eta or -1.0 s = scantable(self._math._convertflux(self, d, eta, jyperk)) s._add_history("convert_flux", varlist) if insitu: self._assign(s) else: return s @asaplog_post_dec def gain_el(self, poly=None, filename="", method="linear", insitu=None): """\ Return a scan after applying a gain-elevation correction. The correction can be made via either a polynomial or a table-based interpolation (and extrapolation if necessary). You specify polynomial coefficients, an ascii table or neither. If you specify neither, then a polynomial correction will be made with built in coefficients known for certain telescopes (an error will occur if the instrument is not known). The data and Tsys are *divided* by the scaling factors. Parameters: poly: Polynomial coefficients (default None) to compute a gain-elevation correction as a function of elevation (in degrees). filename: The name of an ascii file holding correction factors. The first row of the ascii file must give the column names and these MUST include columns 'ELEVATION' (degrees) and 'FACTOR' (multiply data by this) somewhere. The second row must give the data type of the column. Use 'R' for Real and 'I' for Integer. An example file would be (actual factors are arbitrary) : TIME ELEVATION FACTOR R R R 0.1 0 0.8 0.2 20 0.85 0.3 40 0.9 0.4 60 0.85 0.5 80 0.8 0.6 90 0.75 method: Interpolation method when correcting from a table. Values are 'nearest', 'linear' (default), 'cubic' and 'spline' insitu: if False a new scantable is returned. Otherwise, the scaling is done in-situ The default is taken from .asaprc (False) """ if insitu is None: insitu = rcParams['insitu'] self._math._setinsitu(insitu) varlist = vars() poly = poly or () from os.path import expandvars filename = expandvars(filename) s = scantable(self._math._gainel(self, poly, filename, method)) s._add_history("gain_el", varlist) if insitu: self._assign(s) else: return s @asaplog_post_dec def freq_align(self, reftime=None, method='cubic', insitu=None): """\ Return a scan where all rows have been aligned in frequency/velocity. The alignment frequency frame (e.g. LSRK) is that set by function set_freqframe. Parameters: reftime: reference time to align at. By default, the time of the first row of data is used. method: Interpolation method for regridding the spectra. Choose from 'nearest', 'linear', 'cubic' (default) and 'spline' insitu: if False a new scantable is returned. Otherwise, the scaling is done in-situ The default is taken from .asaprc (False) """ if insitu is None: insitu = rcParams["insitu"] oldInsitu = self._math._insitu() self._math._setinsitu(insitu) varlist = vars() reftime = reftime or "" s = scantable(self._math._freq_align(self, reftime, method)) s._add_history("freq_align", varlist) self._math._setinsitu(oldInsitu) if insitu: self._assign(s) else: return s @asaplog_post_dec def opacity(self, tau=None, insitu=None): """\ Apply an opacity correction. The data and Tsys are multiplied by the correction factor. Parameters: tau: (list of) opacity from which the correction factor is exp(tau*ZD) where ZD is the zenith-distance. If a list is provided, it has to be of length nIF, nIF*nPol or 1 and in order of IF/POL, e.g. [opif0pol0, opif0pol1, opif1pol0 ...] if tau is `None` the opacities are determined from a model. insitu: if False a new scantable is returned. Otherwise, the scaling is done in-situ The default is taken from .asaprc (False) """ if insitu is None: insitu = rcParams['insitu'] self._math._setinsitu(insitu) varlist = vars() if not hasattr(tau, "__len__"): tau = [tau] s = scantable(self._math._opacity(self, tau)) s._add_history("opacity", varlist) if insitu: self._assign(s) else: return s @asaplog_post_dec def bin(self, width=5, insitu=None): """\ Return a scan where all spectra have been binned up. Parameters: width: The bin width (default=5) in pixels insitu: if False a new scantable is returned. Otherwise, the scaling is done in-situ The default is taken from .asaprc (False) """ if insitu is None: insitu = rcParams['insitu'] self._math._setinsitu(insitu) varlist = vars() s = scantable(self._math._bin(self, width)) s._add_history("bin", varlist) if insitu: self._assign(s) else: return s @asaplog_post_dec def reshape(self, first, last, insitu=None): """Resize the band by providing first and last channel. This will cut off all channels outside [first, last]. """ if insitu is None: insitu = rcParams['insitu'] varlist = vars() if last < 0: last = self.nchan()-1 + last s = None if insitu: s = self else: s = self.copy() s._reshape(first,last) s._add_history("reshape", varlist) if not insitu: return s @asaplog_post_dec def resample(self, width=5, method='cubic', insitu=None): """\ Return a scan where all spectra have been binned up. Parameters: width: The bin width (default=5) in pixels method: Interpolation method when correcting from a table. Values are 'nearest', 'linear', 'cubic' (default) and 'spline' insitu: if False a new scantable is returned. Otherwise, the scaling is done in-situ The default is taken from .asaprc (False) """ if insitu is None: insitu = rcParams['insitu'] self._math._setinsitu(insitu) varlist = vars() s = scantable(self._math._resample(self, method, width)) s._add_history("resample", varlist) if insitu: self._assign(s) else: return s @asaplog_post_dec def average_pol(self, mask=None, weight='none'): """\ Average the Polarisations together. Parameters: mask: An optional mask defining the region, where the averaging will be applied. The output will have all specified points masked. weight: Weighting scheme. 'none' (default), 'var' (1/var(spec) weighted), or 'tsys' (1/Tsys**2 weighted) """ varlist = vars() mask = mask or () s = scantable(self._math._averagepol(self, mask, weight.upper())) s._add_history("average_pol", varlist) return s @asaplog_post_dec def average_beam(self, mask=None, weight='none'): """\ Average the Beams together. Parameters: mask: An optional mask defining the region, where the averaging will be applied. The output will have all specified points masked. weight: Weighting scheme. 'none' (default), 'var' (1/var(spec) weighted), or 'tsys' (1/Tsys**2 weighted) """ varlist = vars() mask = mask or () s = scantable(self._math._averagebeams(self, mask, weight.upper())) s._add_history("average_beam", varlist) return s def parallactify(self, pflag): """\ Set a flag to indicate whether this data should be treated as having been 'parallactified' (total phase == 0.0) Parameters: pflag: Bool indicating whether to turn this on (True) or off (False) """ varlist = vars() self._parallactify(pflag) self._add_history("parallactify", varlist) @asaplog_post_dec def convert_pol(self, poltype=None): """\ Convert the data to a different polarisation type. Note that you will need cross-polarisation terms for most conversions. Parameters: poltype: The new polarisation type. Valid types are: 'linear', 'circular', 'stokes' and 'linpol' """ varlist = vars() s = scantable(self._math._convertpol(self, poltype)) s._add_history("convert_pol", varlist) return s @asaplog_post_dec def smooth(self, kernel="hanning", width=5.0, order=2, plot=False, insitu=None): """\ Smooth the spectrum by the specified kernel (conserving flux). Parameters: kernel: The type of smoothing kernel. Select from 'hanning' (default), 'gaussian', 'boxcar', 'rmedian' or 'poly' width: The width of the kernel in pixels. For hanning this is ignored otherwise it defauls to 5 pixels. For 'gaussian' it is the Full Width Half Maximum. For 'boxcar' it is the full width. For 'rmedian' and 'poly' it is the half width. order: Optional parameter for 'poly' kernel (default is 2), to specify the order of the polnomial. Ignored by all other kernels. plot: plot the original and the smoothed spectra. In this each indivual fit has to be approved, by typing 'y' or 'n' insitu: if False a new scantable is returned. Otherwise, the scaling is done in-situ The default is taken from .asaprc (False) """ if insitu is None: insitu = rcParams['insitu'] self._math._setinsitu(insitu) varlist = vars() if plot: orgscan = self.copy() s = scantable(self._math._smooth(self, kernel.lower(), width, order)) s._add_history("smooth", varlist) action = 'H' if plot: from asap.asapplotter import new_asaplot theplot = new_asaplot(rcParams['plotter.gui']) from matplotlib import rc as rcp rcp('lines', linewidth=1) theplot.set_panels() ylab=s._get_ordinate_label() #theplot.palette(0,["#777777","red"]) for r in xrange(s.nrow()): xsm=s._getabcissa(r) ysm=s._getspectrum(r) xorg=orgscan._getabcissa(r) yorg=orgscan._getspectrum(r) if action != "N": #skip plotting if rejecting all theplot.clear() theplot.hold() theplot.set_axes('ylabel',ylab) theplot.set_axes('xlabel',s._getabcissalabel(r)) theplot.set_axes('title',s._getsourcename(r)) theplot.set_line(label='Original',color="#777777") theplot.plot(xorg,yorg) theplot.set_line(label='Smoothed',color="red") theplot.plot(xsm,ysm) ### Ugly part for legend for i in [0,1]: theplot.subplots[0]['lines'].append( [theplot.subplots[0]['axes'].lines[i]] ) theplot.release() ### Ugly part for legend theplot.subplots[0]['lines']=[] res = self._get_verify_action("Accept smoothing?",action) #print "IF%d, POL%d: got result = %s" %(s.getif(r),s.getpol(r),res) if r == 0: action = None #res = raw_input("Accept smoothing ([y]/n): ") if res.upper() == 'N': # reject for the current rows s._setspectrum(yorg, r) elif res.upper() == 'R': # reject all the following rows action = "N" s._setspectrum(yorg, r) elif res.upper() == 'A': # accept all the following rows break theplot.quit() del theplot del orgscan if insitu: self._assign(s) else: return s @asaplog_post_dec def regrid_channel(self, width=5, plot=False, insitu=None): """\ Regrid the spectra by the specified channel width Parameters: width: The channel width (float) of regridded spectra in the current spectral unit. plot: [NOT IMPLEMENTED YET] plot the original and the regridded spectra. In this each indivual fit has to be approved, by typing 'y' or 'n' insitu: if False a new scantable is returned. Otherwise, the scaling is done in-situ The default is taken from .asaprc (False) """ if insitu is None: insitu = rcParams['insitu'] varlist = vars() if plot: asaplog.post() asaplog.push("Verification plot is not implemtnetd yet.") asaplog.post("WARN") s = self.copy() s._regrid_specchan(width) s._add_history("regrid_channel", varlist) # if plot: # from asap.asapplotter import new_asaplot # theplot = new_asaplot(rcParams['plotter.gui']) # from matplotlib import rc as rcp # rcp('lines', linewidth=1) # theplot.set_panels() # ylab=s._get_ordinate_label() # #theplot.palette(0,["#777777","red"]) # for r in xrange(s.nrow()): # xsm=s._getabcissa(r) # ysm=s._getspectrum(r) # xorg=orgscan._getabcissa(r) # yorg=orgscan._getspectrum(r) # theplot.clear() # theplot.hold() # theplot.set_axes('ylabel',ylab) # theplot.set_axes('xlabel',s._getabcissalabel(r)) # theplot.set_axes('title',s._getsourcename(r)) # theplot.set_line(label='Original',color="#777777") # theplot.plot(xorg,yorg) # theplot.set_line(label='Smoothed',color="red") # theplot.plot(xsm,ysm) # ### Ugly part for legend # for i in [0,1]: # theplot.subplots[0]['lines'].append( # [theplot.subplots[0]['axes'].lines[i]] # ) # theplot.release() # ### Ugly part for legend # theplot.subplots[0]['lines']=[] # res = raw_input("Accept smoothing ([y]/n): ") # if res.upper() == 'N': # s._setspectrum(yorg, r) # theplot.quit() # del theplot # del orgscan if insitu: self._assign(s) else: return s @asaplog_post_dec def _parse_wn(self, wn): if isinstance(wn, list) or isinstance(wn, tuple): return wn elif isinstance(wn, int): return [ wn ] elif isinstance(wn, str): if '-' in wn: # case 'a-b' : return [a,a+1,...,b-1,b] val = wn.split('-') val = [int(val[0]), int(val[1])] val.sort() res = [i for i in xrange(val[0], val[1]+1)] elif wn[:2] == '<=' or wn[:2] == '=<': # cases '<=a','==' or wn[-2:] == '=>': # cases 'a>=','a=>' : return [0,1,...,a-1,a] val = int(wn[:-2])+1 res = [i for i in xrange(val)] elif wn[0] == '<': # case '': # case 'a>' : return [0,1,...,a-2,a-1] val = int(wn[:-1]) res = [i for i in xrange(val)] elif wn[:2] == '>=' or wn[:2] == '=>': # cases '>=a','=>a' : return [a,-999], which is # then interpreted in C++ # side as [a,a+1,...,a_nyq] # (CAS-3759) val = int(wn[2:]) res = [val, -999] #res = [i for i in xrange(val, self.nchan()/2+1)] elif wn[-2:] == '<=' or wn[-2:] == '=<': # cases 'a<=','a=<' : return [a,-999], which is # then interpreted in C++ # side as [a,a+1,...,a_nyq] # (CAS-3759) val = int(wn[:-2]) res = [val, -999] #res = [i for i in xrange(val, self.nchan()/2+1)] elif wn[0] == '>': # case '>a' : return [a+1,-999], which is # then interpreted in C++ # side as [a+1,a+2,...,a_nyq] # (CAS-3759) val = int(wn[1:])+1 res = [val, -999] #res = [i for i in xrange(val, self.nchan()/2+1)] elif wn[-1] == '<': # case 'a<' : return [a+1,-999], which is # then interpreted in C++ # side as [a+1,a+2,...,a_nyq] # (CAS-3759) val = int(wn[:-1])+1 res = [val, -999] #res = [i for i in xrange(val, self.nchan()/2+1)] return res else: msg = 'wrong value given for addwn/rejwn' raise RuntimeError(msg) @asaplog_post_dec def apply_bltable(self, insitu=None, retfitres=None, inbltable=None, outbltable=None, overwrite=None): """\ Subtract baseline based on parameters written in Baseline Table. Parameters: insitu: if True, baseline fitting/subtraction is done in-situ. If False, a new scantable with baseline subtracted is returned. Actually, format of the returned value depends on both insitu and retfitres (see below). The default is taken from .asaprc (False) retfitres: if True, the results of baseline fitting (i.e., coefficients and rms) are returned. default is False. The format of the returned value of this function varies as follows: (1) in case insitu=True and retfitres=True: fitting result. (2) in case insitu=True and retfitres=False: None. (3) in case insitu=False and retfitres=True: a dictionary containing a new scantable (with baseline subtracted) and the fitting results. (4) in case insitu=False and retfitres=False: a new scantable (with baseline subtracted). inbltable: name of input baseline table. The row number of scantable and that of inbltable must be identical. outbltable: name of output baseline table where baseline parameters and fitting results recorded. default is ''(no output). overwrite: if True when an existing baseline table is specified for outbltable, overwrites it. Otherwise there is no harm. default is False. """ try: varlist = vars() if retfitres is None: retfitres = False if inbltable is None: raise ValueError("bltable missing.") if outbltable is None: outbltable = '' if overwrite is None: overwrite = False if insitu is None: insitu = rcParams['insitu'] if insitu: workscan = self else: workscan = self.copy() sres = workscan._apply_bltable(inbltable, retfitres, outbltable, os.path.exists(outbltable), overwrite) if retfitres: res = parse_fitresult(sres) workscan._add_history('apply_bltable', varlist) if insitu: self._assign(workscan) if retfitres: return res else: return None else: if retfitres: return {'scantable': workscan, 'fitresults': res} else: return workscan except RuntimeError, e: raise_fitting_failure_exception(e) @asaplog_post_dec def sub_baseline(self, insitu=None, retfitres=None, blinfo=None, bltable=None, overwrite=None): """\ Subtract baseline based on parameters written in the input list. Parameters: insitu: if True, baseline fitting/subtraction is done in-situ. If False, a new scantable with baseline subtracted is returned. Actually, format of the returned value depends on both insitu and retfitres (see below). The default is taken from .asaprc (False) retfitres: if True, the results of baseline fitting (i.e., coefficients and rms) are returned. default is False. The format of the returned value of this function varies as follows: (1) in case insitu=True and retfitres=True: fitting result. (2) in case insitu=True and retfitres=False: None. (3) in case insitu=False and retfitres=True: a dictionary containing a new scantable (with baseline subtracted) and the fitting results. (4) in case insitu=False and retfitres=False: a new scantable (with baseline subtracted). blinfo: baseline parameter set stored in a dictionary or a list of dictionary. Each dictionary corresponds to each spectrum and must contain the following keys and values: 'row': row number, 'blfunc': function name. available ones include 'poly', 'chebyshev', 'cspline' and 'sinusoid', 'order': maximum order of polynomial. needed if blfunc='poly' or 'chebyshev', 'npiece': number or piecewise polynomial. needed if blfunc='cspline', 'nwave': a list of sinusoidal wave numbers. needed if blfunc='sinusoid', and 'masklist': min-max windows for channel mask. the specified ranges will be used for fitting. bltable: name of output baseline table where baseline parameters and fitting results recorded. default is ''(no output). overwrite: if True when an existing baseline table is specified for bltable, overwrites it. Otherwise there is no harm. default is False. Example: sub_baseline(blinfo=[{'row':0, 'blfunc':'poly', 'order':5, 'masklist':[[10,350],[352,510]]}, {'row':1, 'blfunc':'cspline', 'npiece':3, 'masklist':[[3,16],[19,404],[407,511]]} ]) the first spectrum (row=0) will be fitted with polynomial of order=5 and the next one (row=1) will be fitted with cubic spline consisting of 3 pieces. """ try: varlist = vars() if retfitres is None: retfitres = False if blinfo is None: blinfo = [] if bltable is None: bltable = '' if overwrite is None: overwrite = False if insitu is None: insitu = rcParams['insitu'] if insitu: workscan = self else: workscan = self.copy() nrow = workscan.nrow() in_blinfo = pack_blinfo(blinfo=blinfo, maxirow=nrow) sres = workscan._sub_baseline(in_blinfo, retfitres, bltable, os.path.exists(bltable), overwrite) if retfitres: res = parse_fitresult(sres) workscan._add_history('sub_baseline', varlist) if insitu: self._assign(workscan) if retfitres: return res else: return None else: if retfitres: return {'scantable': workscan, 'fitresults': res} else: return workscan except RuntimeError, e: raise_fitting_failure_exception(e) @asaplog_post_dec def calc_aic(self, value=None, blfunc=None, order=None, mask=None, whichrow=None, uselinefinder=None, edge=None, threshold=None, chan_avg_limit=None): """\ Calculates and returns model selection criteria for a specified baseline model and a given spectrum data. Available values include Akaike Information Criterion (AIC), the corrected Akaike Information Criterion (AICc) by Sugiura(1978), Bayesian Information Criterion (BIC) and the Generalised Cross Validation (GCV). Parameters: value: name of model selection criteria to calculate. available ones include 'aic', 'aicc', 'bic' and 'gcv'. default is 'aicc'. blfunc: baseline function name. available ones include 'chebyshev', 'cspline' and 'sinusoid'. default is 'chebyshev'. order: parameter for basline function. actually stands for order of polynomial (order) for 'chebyshev', number of spline pieces (npiece) for 'cspline' and maximum wave number for 'sinusoid', respectively. default is 5 (which is also the default order value for [auto_]chebyshev_baseline()). mask: an optional mask. default is []. whichrow: row number. default is 0 (the first row) uselinefinder: use sd.linefinder() to flag out line regions default is True. edge: an optional number of channel to drop at the edge of spectrum. If only one value is specified, the same number will be dropped from both sides of the spectrum. Default is to keep all channels. Nested tuples represent individual edge selection for different IFs (a number of spectral channels can be different) default is (0, 0). threshold: the threshold used by line finder. It is better to keep it large as only strong lines affect the baseline solution. default is 3. chan_avg_limit: a maximum number of consequtive spectral channels to average during the search of weak and broad lines. The default is no averaging (and no search for weak lines). If such lines can affect the fitted baseline (e.g. a high order polynomial is fitted), increase this parameter (usually values up to 8 are reasonable). Most users of this method should find the default value sufficient. default is 1. Example: aic = scan.calc_aic(blfunc='chebyshev', order=5, whichrow=0) """ try: varlist = vars() if value is None: value = 'aicc' if blfunc is None: blfunc = 'chebyshev' if order is None: order = 5 if mask is None: mask = [] if whichrow is None: whichrow = 0 if uselinefinder is None: uselinefinder = True if edge is None: edge = (0, 0) if threshold is None: threshold = 3 if chan_avg_limit is None: chan_avg_limit = 1 return self._calc_aic(value, blfunc, order, mask, whichrow, uselinefinder, edge, threshold, chan_avg_limit) except RuntimeError, e: raise_fitting_failure_exception(e) @asaplog_post_dec def sinusoid_baseline(self, mask=None, applyfft=None, fftmethod=None, fftthresh=None, addwn=None, rejwn=None, insitu=None, clipthresh=None, clipniter=None, plot=None, getresidual=None, showprogress=None, minnrow=None, outlog=None, blfile=None, csvformat=None, bltable=None): """\ Return a scan which has been baselined (all rows) with sinusoidal functions. Parameters: mask: an optional mask applyfft: if True use some method, such as FFT, to find strongest sinusoidal components in the wavenumber domain to be used for baseline fitting. default is True. fftmethod: method to find the strong sinusoidal components. now only 'fft' is available and it is the default. fftthresh: the threshold to select wave numbers to be used for fitting from the distribution of amplitudes in the wavenumber domain. both float and string values accepted. given a float value, the unit is set to sigma. for string values, allowed formats include: 'xsigma' or 'x' (= x-sigma level. e.g., '3sigma'), or 'topx' (= the x strongest ones, e.g. 'top5'). default is 3.0 (unit: sigma). addwn: the additional wave numbers to be used for fitting. list or integer value is accepted to specify every wave numbers. also string value can be used in case you need to specify wave numbers in a certain range, e.g., 'a-b' (= a, a+1, a+2, ..., b-1, b), '=a' (= a, a+1, ... up to the maximum wave number corresponding to the Nyquist frequency for the case of FFT). default is [0]. rejwn: the wave numbers NOT to be used for fitting. can be set just as addwn but has higher priority: wave numbers which are specified both in addwn and rejwn will NOT be used. default is []. insitu: if False a new scantable is returned. Otherwise, the scaling is done in-situ The default is taken from .asaprc (False) clipthresh: Clipping threshold. (default is 3.0, unit: sigma) clipniter: maximum number of iteration of 'clipthresh'-sigma clipping (default is 0) plot: *** CURRENTLY UNAVAILABLE, ALWAYS FALSE *** plot the fit and the residual. In this each indivual fit has to be approved, by typing 'y' or 'n' getresidual: if False, returns best-fit values instead of residual. (default is True) showprogress: show progress status for large data. default is True. minnrow: minimum number of input spectra to show. default is 1000. outlog: Output the coefficients of the best-fit function to logger (default is False) blfile: Name of a text file in which the best-fit parameter values to be written (default is '': no file/logger output) csvformat: if True blfile is csv-formatted, default is False. bltable: name of a baseline table where fitting results (coefficients, rms, etc.) are to be written. if given, fitting results will NOT be output to scantable (insitu=True) or None will be returned (insitu=False). (default is "": no table output) Example: # return a scan baselined by a combination of sinusoidal curves # having wave numbers in spectral window up to 10, # also with 3-sigma clipping, iteration up to 4 times bscan = scan.sinusoid_baseline(addwn='<=10',clipthresh=3.0,clipniter=4) Note: The best-fit parameter values output in logger and/or blfile are now based on specunit of 'channel'. """ try: varlist = vars() if insitu is None: insitu = rcParams['insitu'] if insitu: workscan = self else: workscan = self.copy() if mask is None: mask = [] if applyfft is None: applyfft = True if fftmethod is None: fftmethod = 'fft' if fftthresh is None: fftthresh = 3.0 if addwn is None: addwn = [0] if rejwn is None: rejwn = [] if clipthresh is None: clipthresh = 3.0 if clipniter is None: clipniter = 0 if plot is None: plot = False if getresidual is None: getresidual = True if showprogress is None: showprogress = True if minnrow is None: minnrow = 1000 if outlog is None: outlog = False if blfile is None: blfile = '' if csvformat is None: csvformat = False if bltable is None: bltable = '' sapplyfft = 'true' if applyfft else 'false' fftinfo = ','.join([sapplyfft, fftmethod.lower(), str(fftthresh).lower()]) scsvformat = 'T' if csvformat else 'F' #CURRENTLY, PLOT=true is UNAVAILABLE UNTIL sinusoidal fitting is implemented as a fitter method. workscan._sinusoid_baseline(mask, fftinfo, #applyfft, fftmethod.lower(), #str(fftthresh).lower(), workscan._parse_wn(addwn), workscan._parse_wn(rejwn), clipthresh, clipniter, getresidual, pack_progress_params(showprogress, minnrow), outlog, scsvformat+blfile, bltable) workscan._add_history('sinusoid_baseline', varlist) if bltable == '': if insitu: self._assign(workscan) else: return workscan else: if not insitu: return None except RuntimeError, e: raise_fitting_failure_exception(e) @asaplog_post_dec def auto_sinusoid_baseline(self, mask=None, applyfft=None, fftmethod=None, fftthresh=None, addwn=None, rejwn=None, insitu=None, clipthresh=None, clipniter=None, edge=None, threshold=None, chan_avg_limit=None, plot=None, getresidual=None, showprogress=None, minnrow=None, outlog=None, blfile=None, csvformat=None, bltable=None): """\ Return a scan which has been baselined (all rows) with sinusoidal functions. Spectral lines are detected first using linefinder and masked out to avoid them affecting the baseline solution. Parameters: mask: an optional mask retreived from scantable applyfft: if True use some method, such as FFT, to find strongest sinusoidal components in the wavenumber domain to be used for baseline fitting. default is True. fftmethod: method to find the strong sinusoidal components. now only 'fft' is available and it is the default. fftthresh: the threshold to select wave numbers to be used for fitting from the distribution of amplitudes in the wavenumber domain. both float and string values accepted. given a float value, the unit is set to sigma. for string values, allowed formats include: 'xsigma' or 'x' (= x-sigma level. e.g., '3sigma'), or 'topx' (= the x strongest ones, e.g. 'top5'). default is 3.0 (unit: sigma). addwn: the additional wave numbers to be used for fitting. list or integer value is accepted to specify every wave numbers. also string value can be used in case you need to specify wave numbers in a certain range, e.g., 'a-b' (= a, a+1, a+2, ..., b-1, b), '=a' (= a, a+1, ... up to the maximum wave number corresponding to the Nyquist frequency for the case of FFT). default is [0]. rejwn: the wave numbers NOT to be used for fitting. can be set just as addwn but has higher priority: wave numbers which are specified both in addwn and rejwn will NOT be used. default is []. insitu: if False a new scantable is returned. Otherwise, the scaling is done in-situ The default is taken from .asaprc (False) clipthresh: Clipping threshold. (default is 3.0, unit: sigma) clipniter: maximum number of iteration of 'clipthresh'-sigma clipping (default is 0) edge: an optional number of channel to drop at the edge of spectrum. If only one value is specified, the same number will be dropped from both sides of the spectrum. Default is to keep all channels. Nested tuples represent individual edge selection for different IFs (a number of spectral channels can be different) threshold: the threshold used by line finder. It is better to keep it large as only strong lines affect the baseline solution. chan_avg_limit: a maximum number of consequtive spectral channels to average during the search of weak and broad lines. The default is no averaging (and no search for weak lines). If such lines can affect the fitted baseline (e.g. a high order polynomial is fitted), increase this parameter (usually values up to 8 are reasonable). Most users of this method should find the default value sufficient. plot: *** CURRENTLY UNAVAILABLE, ALWAYS FALSE *** plot the fit and the residual. In this each indivual fit has to be approved, by typing 'y' or 'n' getresidual: if False, returns best-fit values instead of residual. (default is True) showprogress: show progress status for large data. default is True. minnrow: minimum number of input spectra to show. default is 1000. outlog: Output the coefficients of the best-fit function to logger (default is False) blfile: Name of a text file in which the best-fit parameter values to be written (default is "": no file/logger output) csvformat: if True blfile is csv-formatted, default is False. bltable: name of a baseline table where fitting results (coefficients, rms, etc.) are to be written. if given, fitting results will NOT be output to scantable (insitu=True) or None will be returned (insitu=False). (default is "": no table output) Example: bscan = scan.auto_sinusoid_baseline(addwn='<=10', insitu=False) Note: The best-fit parameter values output in logger and/or blfile are now based on specunit of 'channel'. """ try: varlist = vars() if insitu is None: insitu = rcParams['insitu'] if insitu: workscan = self else: workscan = self.copy() if mask is None: mask = [] if applyfft is None: applyfft = True if fftmethod is None: fftmethod = 'fft' if fftthresh is None: fftthresh = 3.0 if addwn is None: addwn = [0] if rejwn is None: rejwn = [] if clipthresh is None: clipthresh = 3.0 if clipniter is None: clipniter = 0 if edge is None: edge = (0,0) if threshold is None: threshold = 3 if chan_avg_limit is None: chan_avg_limit = 1 if plot is None: plot = False if getresidual is None: getresidual = True if showprogress is None: showprogress = True if minnrow is None: minnrow = 1000 if outlog is None: outlog = False if blfile is None: blfile = '' if csvformat is None: csvformat = False if bltable is None: bltable = '' sapplyfft = 'true' if applyfft else 'false' fftinfo = ','.join([sapplyfft, fftmethod.lower(), str(fftthresh).lower()]) scsvformat = 'T' if csvformat else 'F' #CURRENTLY, PLOT=true is UNAVAILABLE UNTIL sinusoidal fitting is implemented as a fitter method. workscan._auto_sinusoid_baseline(mask, fftinfo, workscan._parse_wn(addwn), workscan._parse_wn(rejwn), clipthresh, clipniter, normalise_edge_param(edge), threshold, chan_avg_limit, getresidual, pack_progress_params(showprogress, minnrow), outlog, scsvformat+blfile, bltable) workscan._add_history("auto_sinusoid_baseline", varlist) if bltable == '': if insitu: self._assign(workscan) else: return workscan else: if not insitu: return None except RuntimeError, e: raise_fitting_failure_exception(e) @asaplog_post_dec def cspline_baseline(self, mask=None, npiece=None, insitu=None, clipthresh=None, clipniter=None, plot=None, getresidual=None, showprogress=None, minnrow=None, outlog=None, blfile=None, csvformat=None, bltable=None): """\ Return a scan which has been baselined (all rows) by cubic spline function (piecewise cubic polynomial). Parameters: mask: An optional mask npiece: Number of pieces. (default is 2) insitu: If False a new scantable is returned. Otherwise, the scaling is done in-situ The default is taken from .asaprc (False) clipthresh: Clipping threshold. (default is 3.0, unit: sigma) clipniter: maximum number of iteration of 'clipthresh'-sigma clipping (default is 0) plot: *** CURRENTLY UNAVAILABLE, ALWAYS FALSE *** plot the fit and the residual. In this each indivual fit has to be approved, by typing 'y' or 'n' getresidual: if False, returns best-fit values instead of residual. (default is True) showprogress: show progress status for large data. default is True. minnrow: minimum number of input spectra to show. default is 1000. outlog: Output the coefficients of the best-fit function to logger (default is False) blfile: Name of a text file in which the best-fit parameter values to be written (default is "": no file/logger output) csvformat: if True blfile is csv-formatted, default is False. bltable: name of a baseline table where fitting results (coefficients, rms, etc.) are to be written. if given, fitting results will NOT be output to scantable (insitu=True) or None will be returned (insitu=False). (default is "": no table output) Example: # return a scan baselined by a cubic spline consisting of 2 pieces # (i.e., 1 internal knot), # also with 3-sigma clipping, iteration up to 4 times bscan = scan.cspline_baseline(npiece=2,clipthresh=3.0,clipniter=4) Note: The best-fit parameter values output in logger and/or blfile are now based on specunit of 'channel'. """ try: varlist = vars() if insitu is None: insitu = rcParams['insitu'] if insitu: workscan = self else: workscan = self.copy() if mask is None: mask = [] if npiece is None: npiece = 2 if clipthresh is None: clipthresh = 3.0 if clipniter is None: clipniter = 0 if plot is None: plot = False if getresidual is None: getresidual = True if showprogress is None: showprogress = True if minnrow is None: minnrow = 1000 if outlog is None: outlog = False if blfile is None: blfile = '' if csvformat is None: csvformat = False if bltable is None: bltable = '' scsvformat = 'T' if csvformat else 'F' #CURRENTLY, PLOT=true UNAVAILABLE UNTIL cubic spline fitting is implemented as a fitter method. workscan._cspline_baseline(mask, npiece, clipthresh, clipniter, getresidual, pack_progress_params(showprogress, minnrow), outlog, scsvformat+blfile, bltable) workscan._add_history("cspline_baseline", varlist) if bltable == '': if insitu: self._assign(workscan) else: return workscan else: if not insitu: return None except RuntimeError, e: raise_fitting_failure_exception(e) @asaplog_post_dec def auto_cspline_baseline(self, mask=None, npiece=None, insitu=None, clipthresh=None, clipniter=None, edge=None, threshold=None, chan_avg_limit=None, getresidual=None, plot=None, showprogress=None, minnrow=None, outlog=None, blfile=None, csvformat=None, bltable=None): """\ Return a scan which has been baselined (all rows) by cubic spline function (piecewise cubic polynomial). Spectral lines are detected first using linefinder and masked out to avoid them affecting the baseline solution. Parameters: mask: an optional mask retreived from scantable npiece: Number of pieces. (default is 2) insitu: if False a new scantable is returned. Otherwise, the scaling is done in-situ The default is taken from .asaprc (False) clipthresh: Clipping threshold. (default is 3.0, unit: sigma) clipniter: maximum number of iteration of 'clipthresh'-sigma clipping (default is 0) edge: an optional number of channel to drop at the edge of spectrum. If only one value is specified, the same number will be dropped from both sides of the spectrum. Default is to keep all channels. Nested tuples represent individual edge selection for different IFs (a number of spectral channels can be different) threshold: the threshold used by line finder. It is better to keep it large as only strong lines affect the baseline solution. chan_avg_limit: a maximum number of consequtive spectral channels to average during the search of weak and broad lines. The default is no averaging (and no search for weak lines). If such lines can affect the fitted baseline (e.g. a high order polynomial is fitted), increase this parameter (usually values up to 8 are reasonable). Most users of this method should find the default value sufficient. plot: *** CURRENTLY UNAVAILABLE, ALWAYS FALSE *** plot the fit and the residual. In this each indivual fit has to be approved, by typing 'y' or 'n' getresidual: if False, returns best-fit values instead of residual. (default is True) showprogress: show progress status for large data. default is True. minnrow: minimum number of input spectra to show. default is 1000. outlog: Output the coefficients of the best-fit function to logger (default is False) blfile: Name of a text file in which the best-fit parameter values to be written (default is "": no file/logger output) csvformat: if True blfile is csv-formatted, default is False. bltable: name of a baseline table where fitting results (coefficients, rms, etc.) are to be written. if given, fitting results will NOT be output to scantable (insitu=True) or None will be returned (insitu=False). (default is "": no table output) Example: bscan = scan.auto_cspline_baseline(npiece=3, insitu=False) Note: The best-fit parameter values output in logger and/or blfile are now based on specunit of 'channel'. """ try: varlist = vars() if insitu is None: insitu = rcParams['insitu'] if insitu: workscan = self else: workscan = self.copy() #if mask is None: mask = [True for i in xrange(workscan.nchan())] if mask is None: mask = [] if npiece is None: npiece = 2 if clipthresh is None: clipthresh = 3.0 if clipniter is None: clipniter = 0 if edge is None: edge = (0, 0) if threshold is None: threshold = 3 if chan_avg_limit is None: chan_avg_limit = 1 if plot is None: plot = False if getresidual is None: getresidual = True if showprogress is None: showprogress = True if minnrow is None: minnrow = 1000 if outlog is None: outlog = False if blfile is None: blfile = '' if csvformat is None: csvformat = False if bltable is None: bltable = '' scsvformat = 'T' if csvformat else 'F' #CURRENTLY, PLOT=true UNAVAILABLE UNTIL cubic spline fitting is implemented as a fitter method. workscan._auto_cspline_baseline(mask, npiece, clipthresh, clipniter, normalise_edge_param(edge), threshold, chan_avg_limit, getresidual, pack_progress_params(showprogress, minnrow), outlog, scsvformat+blfile, bltable) workscan._add_history("auto_cspline_baseline", varlist) if bltable == '': if insitu: self._assign(workscan) else: return workscan else: if not insitu: return None except RuntimeError, e: raise_fitting_failure_exception(e) @asaplog_post_dec def chebyshev_baseline(self, mask=None, order=None, insitu=None, clipthresh=None, clipniter=None, plot=None, getresidual=None, showprogress=None, minnrow=None, outlog=None, blfile=None, csvformat=None, bltable=None): """\ Return a scan which has been baselined (all rows) by Chebyshev polynomials. Parameters: mask: An optional mask order: the maximum order of Chebyshev polynomial (default is 5) insitu: If False a new scantable is returned. Otherwise, the scaling is done in-situ The default is taken from .asaprc (False) clipthresh: Clipping threshold. (default is 3.0, unit: sigma) clipniter: maximum number of iteration of 'clipthresh'-sigma clipping (default is 0) plot: *** CURRENTLY UNAVAILABLE, ALWAYS FALSE *** plot the fit and the residual. In this each indivual fit has to be approved, by typing 'y' or 'n' getresidual: if False, returns best-fit values instead of residual. (default is True) showprogress: show progress status for large data. default is True. minnrow: minimum number of input spectra to show. default is 1000. outlog: Output the coefficients of the best-fit function to logger (default is False) blfile: Name of a text file in which the best-fit parameter values to be written (default is "": no file/logger output) csvformat: if True blfile is csv-formatted, default is False. bltable: name of a baseline table where fitting results (coefficients, rms, etc.) are to be written. if given, fitting results will NOT be output to scantable (insitu=True) or None will be returned (insitu=False). (default is "": no table output) Example: # return a scan baselined by a cubic spline consisting of 2 pieces # (i.e., 1 internal knot), # also with 3-sigma clipping, iteration up to 4 times bscan = scan.cspline_baseline(npiece=2,clipthresh=3.0,clipniter=4) Note: The best-fit parameter values output in logger and/or blfile are now based on specunit of 'channel'. """ try: varlist = vars() if insitu is None: insitu = rcParams['insitu'] if insitu: workscan = self else: workscan = self.copy() if mask is None: mask = [] if order is None: order = 5 if clipthresh is None: clipthresh = 3.0 if clipniter is None: clipniter = 0 if plot is None: plot = False if getresidual is None: getresidual = True if showprogress is None: showprogress = True if minnrow is None: minnrow = 1000 if outlog is None: outlog = False if blfile is None: blfile = '' if csvformat is None: csvformat = False if bltable is None: bltable = '' scsvformat = 'T' if csvformat else 'F' #CURRENTLY, PLOT=true UNAVAILABLE UNTIL cubic spline fitting is implemented as a fitter method. workscan._chebyshev_baseline(mask, order, clipthresh, clipniter, getresidual, pack_progress_params(showprogress, minnrow), outlog, scsvformat+blfile, bltable) workscan._add_history("chebyshev_baseline", varlist) if bltable == '': if insitu: self._assign(workscan) else: return workscan else: if not insitu: return None except RuntimeError, e: raise_fitting_failure_exception(e) @asaplog_post_dec def auto_chebyshev_baseline(self, mask=None, order=None, insitu=None, clipthresh=None, clipniter=None, edge=None, threshold=None, chan_avg_limit=None, getresidual=None, plot=None, showprogress=None, minnrow=None, outlog=None, blfile=None, csvformat=None, bltable=None): """\ Return a scan which has been baselined (all rows) by Chebyshev polynomials. Spectral lines are detected first using linefinder and masked out to avoid them affecting the baseline solution. Parameters: mask: an optional mask retreived from scantable order: the maximum order of Chebyshev polynomial (default is 5) insitu: if False a new scantable is returned. Otherwise, the scaling is done in-situ The default is taken from .asaprc (False) clipthresh: Clipping threshold. (default is 3.0, unit: sigma) clipniter: maximum number of iteration of 'clipthresh'-sigma clipping (default is 0) edge: an optional number of channel to drop at the edge of spectrum. If only one value is specified, the same number will be dropped from both sides of the spectrum. Default is to keep all channels. Nested tuples represent individual edge selection for different IFs (a number of spectral channels can be different) threshold: the threshold used by line finder. It is better to keep it large as only strong lines affect the baseline solution. chan_avg_limit: a maximum number of consequtive spectral channels to average during the search of weak and broad lines. The default is no averaging (and no search for weak lines). If such lines can affect the fitted baseline (e.g. a high order polynomial is fitted), increase this parameter (usually values up to 8 are reasonable). Most users of this method should find the default value sufficient. plot: *** CURRENTLY UNAVAILABLE, ALWAYS FALSE *** plot the fit and the residual. In this each indivual fit has to be approved, by typing 'y' or 'n' getresidual: if False, returns best-fit values instead of residual. (default is True) showprogress: show progress status for large data. default is True. minnrow: minimum number of input spectra to show. default is 1000. outlog: Output the coefficients of the best-fit function to logger (default is False) blfile: Name of a text file in which the best-fit parameter values to be written (default is "": no file/logger output) csvformat: if True blfile is csv-formatted, default is False. bltable: name of a baseline table where fitting results (coefficients, rms, etc.) are to be written. if given, fitting results will NOT be output to scantable (insitu=True) or None will be returned (insitu=False). (default is "": no table output) Example: bscan = scan.auto_cspline_baseline(npiece=3, insitu=False) Note: The best-fit parameter values output in logger and/or blfile are now based on specunit of 'channel'. """ try: varlist = vars() if insitu is None: insitu = rcParams['insitu'] if insitu: workscan = self else: workscan = self.copy() if mask is None: mask = [] if order is None: order = 5 if clipthresh is None: clipthresh = 3.0 if clipniter is None: clipniter = 0 if edge is None: edge = (0, 0) if threshold is None: threshold = 3 if chan_avg_limit is None: chan_avg_limit = 1 if plot is None: plot = False if getresidual is None: getresidual = True if showprogress is None: showprogress = True if minnrow is None: minnrow = 1000 if outlog is None: outlog = False if blfile is None: blfile = '' if csvformat is None: csvformat = False if bltable is None: bltable = '' scsvformat = 'T' if csvformat else 'F' #CURRENTLY, PLOT=true UNAVAILABLE UNTIL cubic spline fitting is implemented as a fitter method. workscan._auto_chebyshev_baseline(mask, order, clipthresh, clipniter, normalise_edge_param(edge), threshold, chan_avg_limit, getresidual, pack_progress_params(showprogress, minnrow), outlog, scsvformat+blfile, bltable) workscan._add_history("auto_chebyshev_baseline", varlist) if bltable == '': if insitu: self._assign(workscan) else: return workscan else: if not insitu: return None except RuntimeError, e: raise_fitting_failure_exception(e) @asaplog_post_dec def poly_baseline(self, mask=None, order=None, insitu=None, clipthresh=None, clipniter=None, plot=None, getresidual=None, showprogress=None, minnrow=None, outlog=None, blfile=None, csvformat=None, bltable=None): """\ Return a scan which has been baselined (all rows) by a polynomial. Parameters: mask: an optional mask order: the order of the polynomial (default is 0) insitu: if False a new scantable is returned. Otherwise, the scaling is done in-situ The default is taken from .asaprc (False) clipthresh: Clipping threshold. (default is 3.0, unit: sigma) clipniter: maximum number of iteration of 'clipthresh'-sigma clipping (default is 0) plot: plot the fit and the residual. In this each indivual fit has to be approved, by typing 'y' or 'n' getresidual: if False, returns best-fit values instead of residual. (default is True) showprogress: show progress status for large data. default is True. minnrow: minimum number of input spectra to show. default is 1000. outlog: Output the coefficients of the best-fit function to logger (default is False) blfile: Name of a text file in which the best-fit parameter values to be written (default is "": no file/logger output) csvformat: if True blfile is csv-formatted, default is False. bltable: name of a baseline table where fitting results (coefficients, rms, etc.) are to be written. if given, fitting results will NOT be output to scantable (insitu=True) or None will be returned (insitu=False). (default is "": no table output) Example: # return a scan baselined by a third order polynomial, # not using a mask bscan = scan.poly_baseline(order=3) """ try: varlist = vars() if insitu is None: insitu = rcParams["insitu"] if insitu: workscan = self else: workscan = self.copy() if mask is None: mask = [] if order is None: order = 0 if clipthresh is None: clipthresh = 3.0 if clipniter is None: clipniter = 0 if plot is None: plot = False if getresidual is None: getresidual = True if showprogress is None: showprogress = True if minnrow is None: minnrow = 1000 if outlog is None: outlog = False if blfile is None: blfile = '' if csvformat is None: csvformat = False if bltable is None: bltable = '' scsvformat = 'T' if csvformat else 'F' if plot: outblfile = (blfile != "") and \ os.path.exists(os.path.expanduser( os.path.expandvars(blfile)) ) if outblfile: blf = open(blfile, "a") f = fitter() f.set_function(lpoly=order) rows = xrange(workscan.nrow()) #if len(rows) > 0: workscan._init_blinfo() action = "H" for r in rows: f.x = workscan._getabcissa(r) f.y = workscan._getspectrum(r) if mask: f.mask = mask_and(mask, workscan._getmask(r)) # (CAS-1434) else: # mask=None f.mask = workscan._getmask(r) f.data = None f.fit() if action != "Y": # skip plotting when accepting all f.plot(residual=True) #accept_fit = raw_input("Accept fit ( [y]/n ): ") #if accept_fit.upper() == "N": # #workscan._append_blinfo(None, None, None) # continue accept_fit = self._get_verify_action("Accept fit?",action) if r == 0: action = None if accept_fit.upper() == "N": continue elif accept_fit.upper() == "R": break elif accept_fit.upper() == "A": action = "Y" blpars = f.get_parameters() masklist = workscan.get_masklist(f.mask, row=r, silent=True) #workscan._append_blinfo(blpars, masklist, f.mask) workscan._setspectrum((f.fitter.getresidual() if getresidual else f.fitter.getfit()), r) if outblfile: rms = workscan.get_rms(f.mask, r) dataout = \ workscan.format_blparams_row(blpars["params"], blpars["fixed"], rms, str(masklist), r, True, csvformat) blf.write(dataout) f._p.unmap() f._p = None if outblfile: blf.close() else: workscan._poly_baseline(mask, order, clipthresh, clipniter, # getresidual, pack_progress_params(showprogress, minnrow), outlog, scsvformat+blfile, bltable) # workscan._add_history("poly_baseline", varlist) if insitu: self._assign(workscan) else: return workscan except RuntimeError, e: raise_fitting_failure_exception(e) @asaplog_post_dec def auto_poly_baseline(self, mask=None, order=None, insitu=None, clipthresh=None, clipniter=None, edge=None, threshold=None, chan_avg_limit=None, getresidual=None, plot=None, showprogress=None, minnrow=None, outlog=None, blfile=None, csvformat=None, bltable=None): """\ Return a scan which has been baselined (all rows) by a polynomial. Spectral lines are detected first using linefinder and masked out to avoid them affecting the baseline solution. Parameters: mask: an optional mask retreived from scantable order: the order of the polynomial (default is 0) insitu: if False a new scantable is returned. Otherwise, the scaling is done in-situ The default is taken from .asaprc (False) clipthresh: Clipping threshold. (default is 3.0, unit: sigma) clipniter: maximum number of iteration of 'clipthresh'-sigma clipping (default is 0) edge: an optional number of channel to drop at the edge of spectrum. If only one value is specified, the same number will be dropped from both sides of the spectrum. Default is to keep all channels. Nested tuples represent individual edge selection for different IFs (a number of spectral channels can be different) threshold: the threshold used by line finder. It is better to keep it large as only strong lines affect the baseline solution. chan_avg_limit: a maximum number of consequtive spectral channels to average during the search of weak and broad lines. The default is no averaging (and no search for weak lines). If such lines can affect the fitted baseline (e.g. a high order polynomial is fitted), increase this parameter (usually values up to 8 are reasonable). Most users of this method should find the default value sufficient. plot: plot the fit and the residual. In this each indivual fit has to be approved, by typing 'y' or 'n' getresidual: if False, returns best-fit values instead of residual. (default is True) showprogress: show progress status for large data. default is True. minnrow: minimum number of input spectra to show. default is 1000. outlog: Output the coefficients of the best-fit function to logger (default is False) blfile: Name of a text file in which the best-fit parameter values to be written (default is "": no file/logger output) csvformat: if True blfile is csv-formatted, default is False. bltable: name of a baseline table where fitting results (coefficients, rms, etc.) are to be written. if given, fitting results will NOT be output to scantable (insitu=True) or None will be returned (insitu=False). (default is "": no table output) Example: bscan = scan.auto_poly_baseline(order=7, insitu=False) """ try: varlist = vars() if insitu is None: insitu = rcParams['insitu'] if insitu: workscan = self else: workscan = self.copy() if mask is None: mask = [] if order is None: order = 0 if clipthresh is None: clipthresh = 3.0 if clipniter is None: clipniter = 0 if edge is None: edge = (0, 0) if threshold is None: threshold = 3 if chan_avg_limit is None: chan_avg_limit = 1 if plot is None: plot = False if getresidual is None: getresidual = True if showprogress is None: showprogress = True if minnrow is None: minnrow = 1000 if outlog is None: outlog = False if blfile is None: blfile = '' if csvformat is None: csvformat = False if bltable is None: bltable = '' scsvformat = 'T' if csvformat else 'F' edge = normalise_edge_param(edge) if plot: outblfile = (blfile != "") and \ os.path.exists(os.path.expanduser(os.path.expandvars(blfile))) if outblfile: blf = open(blfile, "a") from asap.asaplinefind import linefinder fl = linefinder() fl.set_options(threshold=threshold, avg_limit=chan_avg_limit) fl.set_scan(workscan) f = fitter() f.set_function(lpoly=order) rows = xrange(workscan.nrow()) #if len(rows) > 0: workscan._init_blinfo() action = "H" for r in rows: idx = 2*workscan.getif(r) if mask: msk = mask_and(mask, workscan._getmask(r)) # (CAS-1434) else: # mask=None msk = workscan._getmask(r) fl.find_lines(r, msk, edge[idx:idx+2]) f.x = workscan._getabcissa(r) f.y = workscan._getspectrum(r) f.mask = fl.get_mask() f.data = None f.fit() if action != "Y": # skip plotting when accepting all f.plot(residual=True) #accept_fit = raw_input("Accept fit ( [y]/n ): ") accept_fit = self._get_verify_action("Accept fit?",action) if r == 0: action = None if accept_fit.upper() == "N": #workscan._append_blinfo(None, None, None) continue elif accept_fit.upper() == "R": break elif accept_fit.upper() == "A": action = "Y" blpars = f.get_parameters() masklist = workscan.get_masklist(f.mask, row=r, silent=True) #workscan._append_blinfo(blpars, masklist, f.mask) workscan._setspectrum( (f.fitter.getresidual() if getresidual else f.fitter.getfit()), r ) if outblfile: rms = workscan.get_rms(f.mask, r) dataout = \ workscan.format_blparams_row(blpars["params"], blpars["fixed"], rms, str(masklist), r, True, csvformat) blf.write(dataout) f._p.unmap() f._p = None if outblfile: blf.close() else: workscan._auto_poly_baseline(mask, order, clipthresh, clipniter, edge, threshold, chan_avg_limit, getresidual, pack_progress_params(showprogress, minnrow), outlog, scsvformat+blfile, bltable) workscan._add_history("auto_poly_baseline", varlist) if bltable == '': if insitu: self._assign(workscan) else: return workscan else: if not insitu: return None except RuntimeError, e: raise_fitting_failure_exception(e) def _init_blinfo(self): """\ Initialise the following three auxiliary members: blpars : parameters of the best-fit baseline, masklists : mask data (edge positions of masked channels) and actualmask : mask data (in boolean list), to keep for use later (including output to logger/text files). Used by poly_baseline() and auto_poly_baseline() in case of 'plot=True'. """ self.blpars = [] self.masklists = [] self.actualmask = [] return def _append_blinfo(self, data_blpars, data_masklists, data_actualmask): """\ Append baseline-fitting related info to blpars, masklist and actualmask. """ self.blpars.append(data_blpars) self.masklists.append(data_masklists) self.actualmask.append(data_actualmask) return @asaplog_post_dec def rotate_linpolphase(self, angle): """\ Rotate the phase of the complex polarization O=Q+iU correlation. This is always done in situ in the raw data. So if you call this function more than once then each call rotates the phase further. Parameters: angle: The angle (degrees) to rotate (add) by. Example:: scan.rotate_linpolphase(2.3) """ varlist = vars() self._math._rotate_linpolphase(self, angle) self._add_history("rotate_linpolphase", varlist) return @asaplog_post_dec def rotate_xyphase(self, angle): """\ Rotate the phase of the XY correlation. This is always done in situ in the data. So if you call this function more than once then each call rotates the phase further. Parameters: angle: The angle (degrees) to rotate (add) by. Example:: scan.rotate_xyphase(2.3) """ varlist = vars() self._math._rotate_xyphase(self, angle) self._add_history("rotate_xyphase", varlist) return @asaplog_post_dec def swap_linears(self): """\ Swap the linear polarisations XX and YY, or better the first two polarisations as this also works for ciculars. """ varlist = vars() self._math._swap_linears(self) self._add_history("swap_linears", varlist) return @asaplog_post_dec def invert_phase(self): """\ Invert the phase of the complex polarisation """ varlist = vars() self._math._invert_phase(self) self._add_history("invert_phase", varlist) return @asaplog_post_dec def add(self, offset, insitu=None): """\ Return a scan where all spectra have the offset added Parameters: offset: the offset insitu: if False a new scantable is returned. Otherwise, the scaling is done in-situ The default is taken from .asaprc (False) """ if insitu is None: insitu = rcParams['insitu'] self._math._setinsitu(insitu) varlist = vars() s = scantable(self._math._unaryop(self, offset, "ADD", False, False)) s._add_history("add", varlist) if insitu: self._assign(s) else: return s @asaplog_post_dec def scale(self, factor, tsys=True, insitu=None): """\ Return a scan where all spectra are scaled by the given 'factor' Parameters: factor: the scaling factor (float or 1D float list) insitu: if False a new scantable is returned. Otherwise, the scaling is done in-situ The default is taken from .asaprc (False) tsys: if True (default) then apply the operation to Tsys as well as the data """ if insitu is None: insitu = rcParams['insitu'] self._math._setinsitu(insitu) varlist = vars() s = None import numpy if isinstance(factor, list) or isinstance(factor, numpy.ndarray): if isinstance(factor[0], list) or isinstance(factor[0], numpy.ndarray): from asapmath import _array2dOp s = _array2dOp( self, factor, "MUL", tsys, insitu, True ) else: s = scantable( self._math._arrayop( self, factor, "MUL", tsys, True ) ) else: s = scantable(self._math._unaryop(self, factor, "MUL", tsys, True )) s._add_history("scale", varlist) if insitu: self._assign(s) else: return s @preserve_selection def set_sourcetype(self, match, matchtype="pattern", sourcetype="reference"): """\ Set the type of the source to be an source or reference scan using the provided pattern. Parameters: match: a Unix style pattern, regular expression or selector matchtype: 'pattern' (default) UNIX style pattern or 'regex' regular expression sourcetype: the type of the source to use (source/reference) """ varlist = vars() stype = -1 if sourcetype.lower().startswith("r") or sourcetype.lower() == "off": stype = 1 elif sourcetype.lower().startswith("s") or sourcetype.lower() == "on": stype = 0 else: raise ValueError("Illegal sourcetype use s(ource)/on or r(eference)/off") if matchtype.lower().startswith("p"): matchtype = "pattern" elif matchtype.lower().startswith("r"): matchtype = "regex" else: raise ValueError("Illegal matchtype, use p(attern) or r(egex)") sel = selector() if isinstance(match, selector): sel = match else: sel.set_query("SRCNAME=%s('%s')" % (matchtype, match)) self.set_selection(sel) self._setsourcetype(stype) self._add_history("set_sourcetype", varlist) def set_sourcename(self, name): varlist = vars() self._setsourcename(name) self._add_history("set_sourcename", varlist) @asaplog_post_dec @preserve_selection def auto_quotient(self, preserve=True, mode='paired', verify=False): """\ This function allows to build quotients automatically. It assumes the observation to have the same number of "ons" and "offs" Parameters: preserve: you can preserve (default) the continuum or remove it. The equations used are preserve: Output = Toff * (on/off) - Toff remove: Output = Toff * (on/off) - Ton mode: the on/off detection mode 'paired' (default) identifies 'off' scans by the trailing '_R' (Mopra/Parkes) or '_e'/'_w' (Tid) and matches on/off pairs from the observing pattern 'time' finds the closest off in time .. todo:: verify argument is not implemented """ varlist = vars() modes = ["time", "paired"] if not mode in modes: msg = "please provide valid mode. Valid modes are %s" % (modes) raise ValueError(msg) s = None if mode.lower() == "paired": from asap._asap import srctype sel = self.get_selection() #sel.set_query("SRCTYPE==psoff") sel.set_types(srctype.psoff) self.set_selection(sel) offs = self.copy() #sel.set_query("SRCTYPE==pson") sel.set_types(srctype.pson) self.set_selection(sel) ons = self.copy() s = scantable(self._math._quotient(ons, offs, preserve)) elif mode.lower() == "time": s = scantable(self._math._auto_quotient(self, mode, preserve)) s._add_history("auto_quotient", varlist) return s @asaplog_post_dec def mx_quotient(self, mask = None, weight='median', preserve=True): """\ Form a quotient using "off" beams when observing in "MX" mode. Parameters: mask: an optional mask to be used when weight == 'stddev' weight: How to average the off beams. Default is 'median'. preserve: you can preserve (default) the continuum or remove it. The equations used are: preserve: Output = Toff * (on/off) - Toff remove: Output = Toff * (on/off) - Ton """ mask = mask or () varlist = vars() on = scantable(self._math._mx_extract(self, 'on')) preoff = scantable(self._math._mx_extract(self, 'off')) off = preoff.average_time(mask=mask, weight=weight, scanav=False) from asapmath import quotient q = quotient(on, off, preserve) q._add_history("mx_quotient", varlist) return q @asaplog_post_dec def freq_switch(self, insitu=None): """\ Apply frequency switching to the data. Parameters: insitu: if False a new scantable is returned. Otherwise, the swictching is done in-situ The default is taken from .asaprc (False) """ if insitu is None: insitu = rcParams['insitu'] self._math._setinsitu(insitu) varlist = vars() s = scantable(self._math._freqswitch(self)) s._add_history("freq_switch", varlist) if insitu: self._assign(s) else: return s @asaplog_post_dec def recalc_azel(self): """Recalculate the azimuth and elevation for each position.""" varlist = vars() self._recalcazel() self._add_history("recalc_azel", varlist) return @asaplog_post_dec def __add__(self, other): """ implicit on all axes and on Tsys """ varlist = vars() s = self.__op( other, "ADD" ) s._add_history("operator +", varlist) return s @asaplog_post_dec def __sub__(self, other): """ implicit on all axes and on Tsys """ varlist = vars() s = self.__op( other, "SUB" ) s._add_history("operator -", varlist) return s @asaplog_post_dec def __mul__(self, other): """ implicit on all axes and on Tsys """ varlist = vars() s = self.__op( other, "MUL" ) ; s._add_history("operator *", varlist) return s @asaplog_post_dec def __div__(self, other): """ implicit on all axes and on Tsys """ varlist = vars() s = self.__op( other, "DIV" ) s._add_history("operator /", varlist) return s @asaplog_post_dec def __op( self, other, mode ): s = None if isinstance(other, scantable): s = scantable(self._math._binaryop(self, other, mode)) elif isinstance(other, float): if other == 0.0: raise ZeroDivisionError("Dividing by zero is not recommended") s = scantable(self._math._unaryop(self, other, mode, False, True)) elif isinstance(other, list) or isinstance(other, numpy.ndarray): if isinstance(other[0], list) \ or isinstance(other[0], numpy.ndarray): from asapmath import _array2dOp s = _array2dOp(self, other, mode, False) else: s = scantable(self._math._arrayop(self, other, mode, False, True)) else: raise TypeError("Other input is not a scantable or float value") return s @asaplog_post_dec def get_fit(self, row=0): """\ Print or return the stored fits for a row in the scantable Parameters: row: the row which the fit has been applied to. """ if row > self.nrow(): return from asap.asapfit import asapfit fit = asapfit(self._getfit(row)) asaplog.push( '%s' %(fit) ) return fit.as_dict() @preserve_selection def flag_nans(self): """\ Utility function to flag NaN values in the scantable. """ import numpy basesel = self.get_selection() for i in range(self.nrow()): sel = self.get_row_selector(i) self.set_selection(basesel+sel) nans = numpy.isnan(self._getspectrum(0)) if numpy.any(nans): bnans = [ bool(v) for v in nans] self.flag(bnans) self.set_selection(basesel) def get_row_selector(self, rowno): return selector(rows=[rowno]) def _add_history(self, funcname, parameters): if not rcParams['scantable.history']: return # create date sep = "##" from datetime import datetime dstr = datetime.now().strftime('%Y/%m/%d %H:%M:%S') hist = dstr+sep hist += funcname+sep#cdate+sep if parameters.has_key('self'): del parameters['self'] for k, v in parameters.iteritems(): if type(v) is dict: for k2, v2 in v.iteritems(): hist += k2 hist += "=" if isinstance(v2, scantable): hist += 'scantable' elif k2 == 'mask': if isinstance(v2, list) or isinstance(v2, tuple): hist += str(self._zip_mask(v2)) else: hist += str(v2) else: hist += str(v2) else: hist += k hist += "=" if isinstance(v, scantable): hist += 'scantable' elif k == 'mask': if isinstance(v, list) or isinstance(v, tuple): hist += str(self._zip_mask(v)) else: hist += str(v) else: hist += str(v) hist += sep hist = hist[:-2] # remove trailing '##' self._addhistory(hist) def _zip_mask(self, mask): mask = list(mask) i = 0 segments = [] while mask[i:].count(1): i += mask[i:].index(1) if mask[i:].count(0): j = i + mask[i:].index(0) else: j = len(mask) segments.append([i, j]) i = j return segments def _get_ordinate_label(self): fu = "("+self.get_fluxunit()+")" import re lbl = "Intensity" if re.match(".K.", fu): lbl = "Brightness Temperature "+ fu elif re.match(".Jy.", fu): lbl = "Flux density "+ fu return lbl def _check_ifs(self): # return len(set([self.nchan(i) for i in self.getifnos()])) == 1 nchans = [self.nchan(i) for i in self.getifnos()] nchans = filter(lambda t: t > 0, nchans) return (sum(nchans)/len(nchans) == nchans[0]) @asaplog_post_dec def _fill(self, names, unit, average, opts={}): first = True fullnames = [] for name in names: name = os.path.expandvars(name) name = os.path.expanduser(name) if not os.path.exists(name): msg = "File '%s' does not exists" % (name) raise IOError(msg) fullnames.append(name) if average: asaplog.push('Auto averaging integrations') stype = int(rcParams['scantable.storage'].lower() == 'disk') for name in fullnames: tbl = Scantable(stype) if is_ms( name ): r = msfiller( tbl ) else: r = filler( tbl ) msg = "Importing %s..." % (name) asaplog.push(msg, False) r.open(name, opts) rx = rcParams['scantable.reference'] r.setreferenceexpr(rx) r.fill() if average: tbl = self._math._average((tbl, ), (), 'NONE', 'SCAN') if not first: tbl = self._math._merge([self, tbl]) Scantable.__init__(self, tbl) r.close() del r, tbl first = False #flush log asaplog.post() if unit is not None: self.set_fluxunit(unit) if not is_casapy(): self.set_freqframe(rcParams['scantable.freqframe']) def _get_verify_action( self, msg, action=None ): valid_act = ['Y', 'N', 'A', 'R'] if not action or not isinstance(action, str): action = raw_input("%s [Y/n/a/r] (h for help): " % msg) if action == '': return "Y" elif (action.upper()[0] in valid_act): return action.upper()[0] elif (action.upper()[0] in ['H','?']): print "Available actions of verification [Y|n|a|r]" print " Y : Yes for current data (default)" print " N : No for current data" print " A : Accept all in the following and exit from verification" print " R : Reject all in the following and exit from verification" print " H or ?: help (show this message)" return self._get_verify_action(msg) else: return 'Y' def __getitem__(self, key): if key < 0: key += self.nrow() if key >= self.nrow(): raise IndexError("Row index out of range.") return self._getspectrum(key) def __setitem__(self, key, value): if key < 0: key += self.nrow() if key >= self.nrow(): raise IndexError("Row index out of range.") if not hasattr(value, "__len__") or \ len(value) > self.nchan(self.getif(key)): raise ValueError("Spectrum length doesn't match.") return self._setspectrum(value, key) def __len__(self): return self.nrow() def __iter__(self): for i in range(len(self)): yield self[i]