source: trunk/python/scantable.py@ 1930

Last change on this file since 1930 was 1928, checked in by Takeshi Nakazato, 14 years ago

New Development: No

JIRA Issue: No

Ready for Test: Yes

Interface Changes: Yes/No

What Interface Changed: Please list interface changes

Test Programs: List test programs

Put in Release Notes: Yes/No

Module(s): Module Names change impacts.

Description: Describe your changes here...

Fixed typo in help and bug in scantable.history().

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 93.0 KB
Line 
1"""This module defines the scantable class."""
2
3import os
4try:
5 from functools import wraps as wraps_dec
6except ImportError:
7 from asap.compatibility import wraps as wraps_dec
8
9from asap.env import is_casapy
10from asap._asap import Scantable
11from asap._asap import filler
12from asap.parameters import rcParams
13from asap.logging import asaplog, asaplog_post_dec
14from asap.selector import selector
15from asap.linecatalog import linecatalog
16from asap.coordinate import coordinate
17from asap.utils import _n_bools, mask_not, mask_and, mask_or, page
18from asap.asapfitter import fitter
19
20
21def preserve_selection(func):
22 @wraps_dec(func)
23 def wrap(obj, *args, **kw):
24 basesel = obj.get_selection()
25 try:
26 val = func(obj, *args, **kw)
27 finally:
28 obj.set_selection(basesel)
29 return val
30 return wrap
31
32def is_scantable(filename):
33 """Is the given file a scantable?
34
35 Parameters:
36
37 filename: the name of the file/directory to test
38
39 """
40 if ( os.path.isdir(filename)
41 and os.path.exists(filename+'/table.info')
42 and os.path.exists(filename+'/table.dat') ):
43 f=open(filename+'/table.info')
44 l=f.readline()
45 f.close()
46 #if ( l.find('Scantable') != -1 ):
47 if ( l.find('Measurement Set') == -1 ):
48 return True
49 else:
50 return False
51 else:
52 return False
53## return (os.path.isdir(filename)
54## and not os.path.exists(filename+'/table.f1')
55## and os.path.exists(filename+'/table.info'))
56
57def is_ms(filename):
58 """Is the given file a MeasurementSet?
59
60 Parameters:
61
62 filename: the name of the file/directory to test
63
64 """
65 if ( os.path.isdir(filename)
66 and os.path.exists(filename+'/table.info')
67 and os.path.exists(filename+'/table.dat') ):
68 f=open(filename+'/table.info')
69 l=f.readline()
70 f.close()
71 if ( l.find('Measurement Set') != -1 ):
72 return True
73 else:
74 return False
75 else:
76 return False
77
78class scantable(Scantable):
79 """\
80 The ASAP container for scans (single-dish data).
81 """
82
83 @asaplog_post_dec
84 #def __init__(self, filename, average=None, unit=None, getpt=None,
85 # antenna=None, parallactify=None):
86 def __init__(self, filename, average=None, unit=None, parallactify=None, **args):
87 """\
88 Create a scantable from a saved one or make a reference
89
90 Parameters:
91
92 filename: the name of an asap table on disk
93 or
94 the name of a rpfits/sdfits/ms file
95 (integrations within scans are auto averaged
96 and the whole file is read) or
97 [advanced] a reference to an existing scantable
98
99 average: average all integrations withinb a scan on read.
100 The default (True) is taken from .asaprc.
101
102 unit: brightness unit; must be consistent with K or Jy.
103 Over-rides the default selected by the filler
104 (input rpfits/sdfits/ms) or replaces the value
105 in existing scantables
106
107 getpt: for MeasurementSet input data only:
108 If True, all pointing data are filled.
109 The deafult is False, which makes time to load
110 the MS data faster in some cases.
111
112 antenna: for MeasurementSet input data only:
113 Antenna selection. integer (id) or string (name or id).
114
115 parallactify: Indicate that the data had been parallatified. Default
116 is taken from rc file.
117
118 """
119 if average is None:
120 average = rcParams['scantable.autoaverage']
121 #if getpt is None:
122 # getpt = True
123 #if antenna is not None:
124 # asaplog.push("Antenna selection currently unsupported."
125 # "Using ''")
126 # asaplog.post('WARN')
127 #if antenna is None:
128 # antenna = ''
129 #elif type(antenna) == int:
130 # antenna = '%s' % antenna
131 #elif type(antenna) == list:
132 # tmpstr = ''
133 # for i in range( len(antenna) ):
134 # if type(antenna[i]) == int:
135 # tmpstr = tmpstr + ('%s,'%(antenna[i]))
136 # elif type(antenna[i]) == str:
137 # tmpstr=tmpstr+antenna[i]+','
138 # else:
139 # raise TypeError('Bad antenna selection.')
140 # antenna = tmpstr.rstrip(',')
141 parallactify = parallactify or rcParams['scantable.parallactify']
142 varlist = vars()
143 from asap._asap import stmath
144 self._math = stmath( rcParams['insitu'] )
145 if isinstance(filename, Scantable):
146 Scantable.__init__(self, filename)
147 else:
148 if isinstance(filename, str):
149 filename = os.path.expandvars(filename)
150 filename = os.path.expanduser(filename)
151 if not os.path.exists(filename):
152 s = "File '%s' not found." % (filename)
153 raise IOError(s)
154 if is_scantable(filename):
155 ondisk = rcParams['scantable.storage'] == 'disk'
156 Scantable.__init__(self, filename, ondisk)
157 if unit is not None:
158 self.set_fluxunit(unit)
159 # do not reset to the default freqframe
160 #self.set_freqframe(rcParams['scantable.freqframe'])
161 #elif os.path.isdir(filename) \
162 # and not os.path.exists(filename+'/table.f1'):
163 elif is_ms(filename):
164 # Measurement Set
165 opts={'ms': {}}
166 mskeys=['getpt','antenna']
167 for key in mskeys:
168 if key in args.keys():
169 opts['ms'][key] = args[key]
170 #self._fill([filename], unit, average, getpt, antenna)
171 self._fill([filename], unit, average, opts)
172 elif os.path.isfile(filename):
173 #self._fill([filename], unit, average, getpt, antenna)
174 self._fill([filename], unit, average)
175 else:
176 msg = "The given file '%s'is not a valid " \
177 "asap table." % (filename)
178 raise IOError(msg)
179 elif (isinstance(filename, list) or isinstance(filename, tuple)) \
180 and isinstance(filename[-1], str):
181 #self._fill(filename, unit, average, getpt, antenna)
182 self._fill(filename, unit, average)
183 self.parallactify(parallactify)
184 self._add_history("scantable", varlist)
185
186 @asaplog_post_dec
187 def save(self, name=None, format=None, overwrite=False):
188 """\
189 Store the scantable on disk. This can be an asap (aips++) Table,
190 SDFITS or MS2 format.
191
192 Parameters:
193
194 name: the name of the outputfile. For format "ASCII"
195 this is the root file name (data in 'name'.txt
196 and header in 'name'_header.txt)
197
198 format: an optional file format. Default is ASAP.
199 Allowed are:
200
201 * 'ASAP' (save as ASAP [aips++] Table),
202 * 'SDFITS' (save as SDFITS file)
203 * 'ASCII' (saves as ascii text file)
204 * 'MS2' (saves as an casacore MeasurementSet V2)
205 * 'FITS' (save as image FITS - not readable by class)
206 * 'CLASS' (save as FITS readable by CLASS)
207
208 overwrite: If the file should be overwritten if it exists.
209 The default False is to return with warning
210 without writing the output. USE WITH CARE.
211
212 Example::
213
214 scan.save('myscan.asap')
215 scan.save('myscan.sdfits', 'SDFITS')
216
217 """
218 from os import path
219 format = format or rcParams['scantable.save']
220 suffix = '.'+format.lower()
221 if name is None or name == "":
222 name = 'scantable'+suffix
223 msg = "No filename given. Using default name %s..." % name
224 asaplog.push(msg)
225 name = path.expandvars(name)
226 if path.isfile(name) or path.isdir(name):
227 if not overwrite:
228 msg = "File %s exists." % name
229 raise IOError(msg)
230 format2 = format.upper()
231 if format2 == 'ASAP':
232 self._save(name)
233 else:
234 from asap._asap import stwriter as stw
235 writer = stw(format2)
236 writer.write(self, name)
237 return
238
239 def copy(self):
240 """Return a copy of this scantable.
241
242 *Note*:
243
244 This makes a full (deep) copy. scan2 = scan1 makes a reference.
245
246 Example::
247
248 copiedscan = scan.copy()
249
250 """
251 sd = scantable(Scantable._copy(self))
252 return sd
253
254 def drop_scan(self, scanid=None):
255 """\
256 Return a new scantable where the specified scan number(s) has(have)
257 been dropped.
258
259 Parameters:
260
261 scanid: a (list of) scan number(s)
262
263 """
264 from asap import _is_sequence_or_number as _is_valid
265 from asap import _to_list
266 from asap import unique
267 if not _is_valid(scanid):
268 raise RuntimeError( 'Please specify a scanno to drop from the scantable' )
269 scanid = _to_list(scanid)
270 allscans = unique([ self.getscan(i) for i in range(self.nrow())])
271 for sid in scanid: allscans.remove(sid)
272 if len(allscans) == 0:
273 raise ValueError("Can't remove all scans")
274 sel = selector(scans=allscans)
275 return self._select_copy(sel)
276
277 def _select_copy(self, selection):
278 orig = self.get_selection()
279 self.set_selection(orig+selection)
280 cp = self.copy()
281 self.set_selection(orig)
282 return cp
283
284 def get_scan(self, scanid=None):
285 """\
286 Return a specific scan (by scanno) or collection of scans (by
287 source name) in a new scantable.
288
289 *Note*:
290
291 See scantable.drop_scan() for the inverse operation.
292
293 Parameters:
294
295 scanid: a (list of) scanno or a source name, unix-style
296 patterns are accepted for source name matching, e.g.
297 '*_R' gets all 'ref scans
298
299 Example::
300
301 # get all scans containing the source '323p459'
302 newscan = scan.get_scan('323p459')
303 # get all 'off' scans
304 refscans = scan.get_scan('*_R')
305 # get a susbset of scans by scanno (as listed in scan.summary())
306 newscan = scan.get_scan([0, 2, 7, 10])
307
308 """
309 if scanid is None:
310 raise RuntimeError( 'Please specify a scan no or name to '
311 'retrieve from the scantable' )
312 try:
313 bsel = self.get_selection()
314 sel = selector()
315 if type(scanid) is str:
316 sel.set_name(scanid)
317 return self._select_copy(sel)
318 elif type(scanid) is int:
319 sel.set_scans([scanid])
320 return self._select_copy(sel)
321 elif type(scanid) is list:
322 sel.set_scans(scanid)
323 return self._select_copy(sel)
324 else:
325 msg = "Illegal scanid type, use 'int' or 'list' if ints."
326 raise TypeError(msg)
327 except RuntimeError:
328 raise
329
330 def __str__(self):
331 return Scantable._summary(self, True)
332
333 def summary(self, filename=None):
334 """\
335 Print a summary of the contents of this scantable.
336
337 Parameters:
338
339 filename: the name of a file to write the output to
340 Default - no file output
341
342 """
343 info = Scantable._summary(self, True)
344 if filename is not None:
345 if filename is "":
346 filename = 'scantable_summary.txt'
347 from os.path import expandvars, isdir
348 filename = expandvars(filename)
349 if not isdir(filename):
350 data = open(filename, 'w')
351 data.write(info)
352 data.close()
353 else:
354 msg = "Illegal file name '%s'." % (filename)
355 raise IOError(msg)
356 return page(info)
357
358 def get_spectrum(self, rowno):
359 """Return the spectrum for the current row in the scantable as a list.
360
361 Parameters:
362
363 rowno: the row number to retrieve the spectrum from
364
365 """
366 return self._getspectrum(rowno)
367
368 def get_mask(self, rowno):
369 """Return the mask for the current row in the scantable as a list.
370
371 Parameters:
372
373 rowno: the row number to retrieve the mask from
374
375 """
376 return self._getmask(rowno)
377
378 def set_spectrum(self, spec, rowno):
379 """Set the spectrum for the current row in the scantable.
380
381 Parameters:
382
383 spec: the new spectrum
384
385 rowno: the row number to set the spectrum for
386
387 """
388 assert(len(spec) == self.nchan())
389 return self._setspectrum(spec, rowno)
390
391 def get_coordinate(self, rowno):
392 """Return the (spectral) coordinate for a a given 'rowno'.
393
394 *Note*:
395
396 * This coordinate is only valid until a scantable method modifies
397 the frequency axis.
398 * This coordinate does contain the original frequency set-up
399 NOT the new frame. The conversions however are done using the user
400 specified frame (e.g. LSRK/TOPO). To get the 'real' coordinate,
401 use scantable.freq_align first. Without it there is no closure,
402 i.e.::
403
404 c = myscan.get_coordinate(0)
405 c.to_frequency(c.get_reference_pixel()) != c.get_reference_value()
406
407 Parameters:
408
409 rowno: the row number for the spectral coordinate
410
411 """
412 return coordinate(Scantable.get_coordinate(self, rowno))
413
414 def get_selection(self):
415 """\
416 Get the selection object currently set on this scantable.
417
418 Example::
419
420 sel = scan.get_selection()
421 sel.set_ifs(0) # select IF 0
422 scan.set_selection(sel) # apply modified selection
423
424 """
425 return selector(self._getselection())
426
427 def set_selection(self, selection=None, **kw):
428 """\
429 Select a subset of the data. All following operations on this scantable
430 are only applied to thi selection.
431
432 Parameters:
433
434 selection: a selector object (default unset the selection), or
435 any combination of "pols", "ifs", "beams", "scans",
436 "cycles", "name", "query"
437
438 Examples::
439
440 sel = selector() # create a selection object
441 self.set_scans([0, 3]) # select SCANNO 0 and 3
442 scan.set_selection(sel) # set the selection
443 scan.summary() # will only print summary of scanno 0 an 3
444 scan.set_selection() # unset the selection
445 # or the equivalent
446 scan.set_selection(scans=[0,3])
447 scan.summary() # will only print summary of scanno 0 an 3
448 scan.set_selection() # unset the selection
449
450 """
451 if selection is None:
452 # reset
453 if len(kw) == 0:
454 selection = selector()
455 else:
456 # try keywords
457 for k in kw:
458 if k not in selector.fields:
459 raise KeyError("Invalid selection key '%s', valid keys are %s" % (k, selector.fields))
460 selection = selector(**kw)
461 self._setselection(selection)
462
463 def get_row(self, row=0, insitu=None):
464 """\
465 Select a row in the scantable.
466 Return a scantable with single row.
467
468 Parameters:
469
470 row: row no of integration, default is 0.
471 insitu: if False a new scantable is returned. Otherwise, the
472 scaling is done in-situ. The default is taken from .asaprc
473 (False)
474
475 """
476 if insitu is None: insitu = rcParams['insitu']
477 if not insitu:
478 workscan = self.copy()
479 else:
480 workscan = self
481 # Select a row
482 sel=selector()
483 sel.set_scans([workscan.getscan(row)])
484 sel.set_cycles([workscan.getcycle(row)])
485 sel.set_beams([workscan.getbeam(row)])
486 sel.set_ifs([workscan.getif(row)])
487 sel.set_polarisations([workscan.getpol(row)])
488 sel.set_name(workscan._getsourcename(row))
489 workscan.set_selection(sel)
490 if not workscan.nrow() == 1:
491 msg = "Cloud not identify single row. %d rows selected."%(workscan.nrow())
492 raise RuntimeError(msg)
493 del sel
494 if insitu:
495 self._assign(workscan)
496 else:
497 return workscan
498
499 @asaplog_post_dec
500 def stats(self, stat='stddev', mask=None, form='3.3f', row=None):
501 """\
502 Determine the specified statistic of the current beam/if/pol
503 Takes a 'mask' as an optional parameter to specify which
504 channels should be excluded.
505
506 Parameters:
507
508 stat: 'min', 'max', 'min_abc', 'max_abc', 'sumsq', 'sum',
509 'mean', 'var', 'stddev', 'avdev', 'rms', 'median'
510
511 mask: an optional mask specifying where the statistic
512 should be determined.
513
514 form: format string to print statistic values
515
516 row: row number of spectrum to process.
517 (default is None: for all rows)
518
519 Example:
520 scan.set_unit('channel')
521 msk = scan.create_mask([100, 200], [500, 600])
522 scan.stats(stat='mean', mask=m)
523
524 """
525 mask = mask or []
526 if not self._check_ifs():
527 raise ValueError("Cannot apply mask as the IFs have different "
528 "number of channels. Please use setselection() "
529 "to select individual IFs")
530 rtnabc = False
531 if stat.lower().endswith('_abc'): rtnabc = True
532 getchan = False
533 if stat.lower().startswith('min') or stat.lower().startswith('max'):
534 chan = self._math._minmaxchan(self, mask, stat)
535 getchan = True
536 statvals = []
537 if not rtnabc:
538 if row == None:
539 statvals = self._math._stats(self, mask, stat)
540 else:
541 statvals = self._math._statsrow(self, mask, stat, int(row))
542
543 #def cb(i):
544 # return statvals[i]
545
546 #return self._row_callback(cb, stat)
547
548 label=stat
549 #callback=cb
550 out = ""
551 #outvec = []
552 sep = '-'*50
553
554 if row == None:
555 rows = xrange(self.nrow())
556 elif isinstance(row, int):
557 rows = [ row ]
558
559 for i in rows:
560 refstr = ''
561 statunit= ''
562 if getchan:
563 qx, qy = self.chan2data(rowno=i, chan=chan[i])
564 if rtnabc:
565 statvals.append(qx['value'])
566 refstr = ('(value: %'+form) % (qy['value'])+' ['+qy['unit']+'])'
567 statunit= '['+qx['unit']+']'
568 else:
569 refstr = ('(@ %'+form) % (qx['value'])+' ['+qx['unit']+'])'
570
571 tm = self._gettime(i)
572 src = self._getsourcename(i)
573 out += 'Scan[%d] (%s) ' % (self.getscan(i), src)
574 out += 'Time[%s]:\n' % (tm)
575 if self.nbeam(-1) > 1: out += ' Beam[%d] ' % (self.getbeam(i))
576 if self.nif(-1) > 1: out += ' IF[%d] ' % (self.getif(i))
577 if self.npol(-1) > 1: out += ' Pol[%d] ' % (self.getpol(i))
578 #outvec.append(callback(i))
579 if len(rows) > 1:
580 # out += ('= %'+form) % (outvec[i]) +' '+refstr+'\n'
581 out += ('= %'+form) % (statvals[i]) +' '+refstr+'\n'
582 else:
583 # out += ('= %'+form) % (outvec[0]) +' '+refstr+'\n'
584 out += ('= %'+form) % (statvals[0]) +' '+refstr+'\n'
585 out += sep+"\n"
586
587 import os
588 if os.environ.has_key( 'USER' ):
589 usr = os.environ['USER']
590 else:
591 import commands
592 usr = commands.getoutput( 'whoami' )
593 tmpfile = '/tmp/tmp_'+usr+'_casapy_asap_scantable_stats'
594 f = open(tmpfile,'w')
595 print >> f, sep
596 print >> f, ' %s %s' % (label, statunit)
597 print >> f, sep
598 print >> f, out
599 f.close()
600 f = open(tmpfile,'r')
601 x = f.readlines()
602 f.close()
603 asaplog.push(''.join(x), False)
604
605 return statvals
606
607 def chan2data(self, rowno=0, chan=0):
608 """\
609 Returns channel/frequency/velocity and spectral value
610 at an arbitrary row and channel in the scantable.
611
612 Parameters:
613
614 rowno: a row number in the scantable. Default is the
615 first row, i.e. rowno=0
616
617 chan: a channel in the scantable. Default is the first
618 channel, i.e. pos=0
619
620 """
621 if isinstance(rowno, int) and isinstance(chan, int):
622 qx = {'unit': self.get_unit(),
623 'value': self._getabcissa(rowno)[chan]}
624 qy = {'unit': self.get_fluxunit(),
625 'value': self._getspectrum(rowno)[chan]}
626 return qx, qy
627
628 def stddev(self, mask=None):
629 """\
630 Determine the standard deviation of the current beam/if/pol
631 Takes a 'mask' as an optional parameter to specify which
632 channels should be excluded.
633
634 Parameters:
635
636 mask: an optional mask specifying where the standard
637 deviation should be determined.
638
639 Example::
640
641 scan.set_unit('channel')
642 msk = scan.create_mask([100, 200], [500, 600])
643 scan.stddev(mask=m)
644
645 """
646 return self.stats(stat='stddev', mask=mask);
647
648
649 def get_column_names(self):
650 """\
651 Return a list of column names, which can be used for selection.
652 """
653 return list(Scantable.get_column_names(self))
654
655 def get_tsys(self, row=-1):
656 """\
657 Return the System temperatures.
658
659 Parameters:
660
661 row: the rowno to get the information for. (default all rows)
662
663 Returns:
664
665 a list of Tsys values for the current selection
666
667 """
668 if row > -1:
669 return self._get_column(self._gettsys, row)
670 return self._row_callback(self._gettsys, "Tsys")
671
672
673 def get_weather(self, row=-1):
674 """\
675 Return the weather informations.
676
677 Parameters:
678
679 row: the rowno to get the information for. (default all rows)
680
681 Returns:
682
683 a dict or list of of dicts of values for the current selection
684
685 """
686
687 values = self._get_column(self._get_weather, row)
688 if row > -1:
689 return {'temperature': values[0],
690 'pressure': values[1], 'humidity' : values[2],
691 'windspeed' : values[3], 'windaz' : values[4]
692 }
693 else:
694 out = []
695 for r in values:
696
697 out.append({'temperature': r[0],
698 'pressure': r[1], 'humidity' : r[2],
699 'windspeed' : r[3], 'windaz' : r[4]
700 })
701 return out
702
703 def _row_callback(self, callback, label):
704 out = ""
705 outvec = []
706 sep = '-'*50
707 for i in range(self.nrow()):
708 tm = self._gettime(i)
709 src = self._getsourcename(i)
710 out += 'Scan[%d] (%s) ' % (self.getscan(i), src)
711 out += 'Time[%s]:\n' % (tm)
712 if self.nbeam(-1) > 1:
713 out += ' Beam[%d] ' % (self.getbeam(i))
714 if self.nif(-1) > 1: out += ' IF[%d] ' % (self.getif(i))
715 if self.npol(-1) > 1: out += ' Pol[%d] ' % (self.getpol(i))
716 outvec.append(callback(i))
717 out += '= %3.3f\n' % (outvec[i])
718 out += sep+'\n'
719
720 asaplog.push(sep)
721 asaplog.push(" %s" % (label))
722 asaplog.push(sep)
723 asaplog.push(out)
724 asaplog.post()
725 return outvec
726
727 def _get_column(self, callback, row=-1):
728 """
729 """
730 if row == -1:
731 return [callback(i) for i in range(self.nrow())]
732 else:
733 if 0 <= row < self.nrow():
734 return callback(row)
735
736
737 def get_time(self, row=-1, asdatetime=False):
738 """\
739 Get a list of time stamps for the observations.
740 Return a datetime object or a string (default) for each
741 integration time stamp in the scantable.
742
743 Parameters:
744
745 row: row no of integration. Default -1 return all rows
746
747 asdatetime: return values as datetime objects rather than strings
748
749 """
750 from time import strptime
751 from datetime import datetime
752 times = self._get_column(self._gettime, row)
753 if not asdatetime:
754 return times
755 format = "%Y/%m/%d/%H:%M:%S"
756 if isinstance(times, list):
757 return [datetime(*strptime(i, format)[:6]) for i in times]
758 else:
759 return datetime(*strptime(times, format)[:6])
760
761
762 def get_inttime(self, row=-1):
763 """\
764 Get a list of integration times for the observations.
765 Return a time in seconds for each integration in the scantable.
766
767 Parameters:
768
769 row: row no of integration. Default -1 return all rows.
770
771 """
772 return self._get_column(self._getinttime, row)
773
774
775 def get_sourcename(self, row=-1):
776 """\
777 Get a list source names for the observations.
778 Return a string for each integration in the scantable.
779 Parameters:
780
781 row: row no of integration. Default -1 return all rows.
782
783 """
784 return self._get_column(self._getsourcename, row)
785
786 def get_elevation(self, row=-1):
787 """\
788 Get a list of elevations for the observations.
789 Return a float for each integration in the scantable.
790
791 Parameters:
792
793 row: row no of integration. Default -1 return all rows.
794
795 """
796 return self._get_column(self._getelevation, row)
797
798 def get_azimuth(self, row=-1):
799 """\
800 Get a list of azimuths for the observations.
801 Return a float for each integration in the scantable.
802
803 Parameters:
804 row: row no of integration. Default -1 return all rows.
805
806 """
807 return self._get_column(self._getazimuth, row)
808
809 def get_parangle(self, row=-1):
810 """\
811 Get a list of parallactic angles for the observations.
812 Return a float for each integration in the scantable.
813
814 Parameters:
815
816 row: row no of integration. Default -1 return all rows.
817
818 """
819 return self._get_column(self._getparangle, row)
820
821 def get_direction(self, row=-1):
822 """
823 Get a list of Positions on the sky (direction) for the observations.
824 Return a string for each integration in the scantable.
825
826 Parameters:
827
828 row: row no of integration. Default -1 return all rows
829
830 """
831 return self._get_column(self._getdirection, row)
832
833 def get_directionval(self, row=-1):
834 """\
835 Get a list of Positions on the sky (direction) for the observations.
836 Return a float for each integration in the scantable.
837
838 Parameters:
839
840 row: row no of integration. Default -1 return all rows
841
842 """
843 return self._get_column(self._getdirectionvec, row)
844
845 @asaplog_post_dec
846 def set_unit(self, unit='channel'):
847 """\
848 Set the unit for all following operations on this scantable
849
850 Parameters:
851
852 unit: optional unit, default is 'channel'. Use one of '*Hz',
853 'km/s', 'channel' or equivalent ''
854
855 """
856 varlist = vars()
857 if unit in ['', 'pixel', 'channel']:
858 unit = ''
859 inf = list(self._getcoordinfo())
860 inf[0] = unit
861 self._setcoordinfo(inf)
862 self._add_history("set_unit", varlist)
863
864 @asaplog_post_dec
865 def set_instrument(self, instr):
866 """\
867 Set the instrument for subsequent processing.
868
869 Parameters:
870
871 instr: Select from 'ATPKSMB', 'ATPKSHOH', 'ATMOPRA',
872 'DSS-43' (Tid), 'CEDUNA', and 'HOBART'
873
874 """
875 self._setInstrument(instr)
876 self._add_history("set_instument", vars())
877
878 @asaplog_post_dec
879 def set_feedtype(self, feedtype):
880 """\
881 Overwrite the feed type, which might not be set correctly.
882
883 Parameters:
884
885 feedtype: 'linear' or 'circular'
886
887 """
888 self._setfeedtype(feedtype)
889 self._add_history("set_feedtype", vars())
890
891 @asaplog_post_dec
892 def set_doppler(self, doppler='RADIO'):
893 """\
894 Set the doppler for all following operations on this scantable.
895
896 Parameters:
897
898 doppler: One of 'RADIO', 'OPTICAL', 'Z', 'BETA', 'GAMMA'
899
900 """
901 varlist = vars()
902 inf = list(self._getcoordinfo())
903 inf[2] = doppler
904 self._setcoordinfo(inf)
905 self._add_history("set_doppler", vars())
906
907 @asaplog_post_dec
908 def set_freqframe(self, frame=None):
909 """\
910 Set the frame type of the Spectral Axis.
911
912 Parameters:
913
914 frame: an optional frame type, default 'LSRK'. Valid frames are:
915 'TOPO', 'LSRD', 'LSRK', 'BARY',
916 'GEO', 'GALACTO', 'LGROUP', 'CMB'
917
918 Example::
919
920 scan.set_freqframe('BARY')
921
922 """
923 frame = frame or rcParams['scantable.freqframe']
924 varlist = vars()
925 # "REST" is not implemented in casacore
926 #valid = ['REST', 'TOPO', 'LSRD', 'LSRK', 'BARY', \
927 # 'GEO', 'GALACTO', 'LGROUP', 'CMB']
928 valid = ['TOPO', 'LSRD', 'LSRK', 'BARY', \
929 'GEO', 'GALACTO', 'LGROUP', 'CMB']
930
931 if frame in valid:
932 inf = list(self._getcoordinfo())
933 inf[1] = frame
934 self._setcoordinfo(inf)
935 self._add_history("set_freqframe", varlist)
936 else:
937 msg = "Please specify a valid freq type. Valid types are:\n", valid
938 raise TypeError(msg)
939
940 @asaplog_post_dec
941 def set_dirframe(self, frame=""):
942 """\
943 Set the frame type of the Direction on the sky.
944
945 Parameters:
946
947 frame: an optional frame type, default ''. Valid frames are:
948 'J2000', 'B1950', 'GALACTIC'
949
950 Example:
951
952 scan.set_dirframe('GALACTIC')
953
954 """
955 varlist = vars()
956 Scantable.set_dirframe(self, frame)
957 self._add_history("set_dirframe", varlist)
958
959 def get_unit(self):
960 """\
961 Get the default unit set in this scantable
962
963 Returns:
964
965 A unit string
966
967 """
968 inf = self._getcoordinfo()
969 unit = inf[0]
970 if unit == '': unit = 'channel'
971 return unit
972
973 @asaplog_post_dec
974 def get_abcissa(self, rowno=0):
975 """\
976 Get the abcissa in the current coordinate setup for the currently
977 selected Beam/IF/Pol
978
979 Parameters:
980
981 rowno: an optional row number in the scantable. Default is the
982 first row, i.e. rowno=0
983
984 Returns:
985
986 The abcissa values and the format string (as a dictionary)
987
988 """
989 abc = self._getabcissa(rowno)
990 lbl = self._getabcissalabel(rowno)
991 return abc, lbl
992
993 @asaplog_post_dec
994 def flag(self, mask=None, unflag=False):
995 """\
996 Flag the selected data using an optional channel mask.
997
998 Parameters:
999
1000 mask: an optional channel mask, created with create_mask. Default
1001 (no mask) is all channels.
1002
1003 unflag: if True, unflag the data
1004
1005 """
1006 varlist = vars()
1007 mask = mask or []
1008 self._flag(mask, unflag)
1009 self._add_history("flag", varlist)
1010
1011 @asaplog_post_dec
1012 def flag_row(self, rows=[], unflag=False):
1013 """\
1014 Flag the selected data in row-based manner.
1015
1016 Parameters:
1017
1018 rows: list of row numbers to be flagged. Default is no row
1019 (must be explicitly specified to execute row-based flagging).
1020
1021 unflag: if True, unflag the data.
1022
1023 """
1024 varlist = vars()
1025 self._flag_row(rows, unflag)
1026 self._add_history("flag_row", varlist)
1027
1028 @asaplog_post_dec
1029 def clip(self, uthres=None, dthres=None, clipoutside=True, unflag=False):
1030 """\
1031 Flag the selected data outside a specified range (in channel-base)
1032
1033 Parameters:
1034
1035 uthres: upper threshold.
1036
1037 dthres: lower threshold
1038
1039 clipoutside: True for flagging data outside the range [dthres:uthres].
1040 False for flagging data inside the range.
1041
1042 unflag: if True, unflag the data.
1043
1044 """
1045 varlist = vars()
1046 self._clip(uthres, dthres, clipoutside, unflag)
1047 self._add_history("clip", varlist)
1048
1049 @asaplog_post_dec
1050 def lag_flag(self, start, end, unit="MHz", insitu=None):
1051 """\
1052 Flag the data in 'lag' space by providing a frequency to remove.
1053 Flagged data in the scantable gets interpolated over the region.
1054 No taper is applied.
1055
1056 Parameters:
1057
1058 start: the start frequency (really a period within the
1059 bandwidth) or period to remove
1060
1061 end: the end frequency or period to remove
1062
1063 unit: the frequency unit (default "MHz") or "" for
1064 explicit lag channels
1065
1066 *Notes*:
1067
1068 It is recommended to flag edges of the band or strong
1069 signals beforehand.
1070
1071 """
1072 if insitu is None: insitu = rcParams['insitu']
1073 self._math._setinsitu(insitu)
1074 varlist = vars()
1075 base = { "GHz": 1000000000., "MHz": 1000000., "kHz": 1000., "Hz": 1.}
1076 if not (unit == "" or base.has_key(unit)):
1077 raise ValueError("%s is not a valid unit." % unit)
1078 if unit == "":
1079 s = scantable(self._math._lag_flag(self, start, end, "lags"))
1080 else:
1081 s = scantable(self._math._lag_flag(self, start*base[unit],
1082 end*base[unit], "frequency"))
1083 s._add_history("lag_flag", varlist)
1084 if insitu:
1085 self._assign(s)
1086 else:
1087 return s
1088
1089 @asaplog_post_dec
1090 def create_mask(self, *args, **kwargs):
1091 """\
1092 Compute and return a mask based on [min, max] windows.
1093 The specified windows are to be INCLUDED, when the mask is
1094 applied.
1095
1096 Parameters:
1097
1098 [min, max], [min2, max2], ...
1099 Pairs of start/end points (inclusive)specifying the regions
1100 to be masked
1101
1102 invert: optional argument. If specified as True,
1103 return an inverted mask, i.e. the regions
1104 specified are EXCLUDED
1105
1106 row: create the mask using the specified row for
1107 unit conversions, default is row=0
1108 only necessary if frequency varies over rows.
1109
1110 Examples::
1111
1112 scan.set_unit('channel')
1113 # a)
1114 msk = scan.create_mask([400, 500], [800, 900])
1115 # masks everything outside 400 and 500
1116 # and 800 and 900 in the unit 'channel'
1117
1118 # b)
1119 msk = scan.create_mask([400, 500], [800, 900], invert=True)
1120 # masks the regions between 400 and 500
1121 # and 800 and 900 in the unit 'channel'
1122
1123 # c)
1124 #mask only channel 400
1125 msk = scan.create_mask([400])
1126
1127 """
1128 row = kwargs.get("row", 0)
1129 data = self._getabcissa(row)
1130 u = self._getcoordinfo()[0]
1131 if u == "":
1132 u = "channel"
1133 msg = "The current mask window unit is %s" % u
1134 i = self._check_ifs()
1135 if not i:
1136 msg += "\nThis mask is only valid for IF=%d" % (self.getif(i))
1137 asaplog.push(msg)
1138 n = self.nchan()
1139 msk = _n_bools(n, False)
1140 # test if args is a 'list' or a 'normal *args - UGLY!!!
1141
1142 ws = (isinstance(args[-1][-1], int) or isinstance(args[-1][-1], float)) \
1143 and args or args[0]
1144 for window in ws:
1145 if len(window) == 1:
1146 window = [window[0], window[0]]
1147 if len(window) == 0 or len(window) > 2:
1148 raise ValueError("A window needs to be defined as [start(, end)]")
1149 if window[0] > window[1]:
1150 tmp = window[0]
1151 window[0] = window[1]
1152 window[1] = tmp
1153 for i in range(n):
1154 if data[i] >= window[0] and data[i] <= window[1]:
1155 msk[i] = True
1156 if kwargs.has_key('invert'):
1157 if kwargs.get('invert'):
1158 msk = mask_not(msk)
1159 return msk
1160
1161 def get_masklist(self, mask=None, row=0):
1162 """\
1163 Compute and return a list of mask windows, [min, max].
1164
1165 Parameters:
1166
1167 mask: channel mask, created with create_mask.
1168
1169 row: calcutate the masklist using the specified row
1170 for unit conversions, default is row=0
1171 only necessary if frequency varies over rows.
1172
1173 Returns:
1174
1175 [min, max], [min2, max2], ...
1176 Pairs of start/end points (inclusive)specifying
1177 the masked regions
1178
1179 """
1180 if not (isinstance(mask,list) or isinstance(mask, tuple)):
1181 raise TypeError("The mask should be list or tuple.")
1182 if len(mask) < 2:
1183 raise TypeError("The mask elements should be > 1")
1184 if self.nchan() != len(mask):
1185 msg = "Number of channels in scantable != number of mask elements"
1186 raise TypeError(msg)
1187 data = self._getabcissa(row)
1188 u = self._getcoordinfo()[0]
1189 if u == "":
1190 u = "channel"
1191 msg = "The current mask window unit is %s" % u
1192 i = self._check_ifs()
1193 if not i:
1194 msg += "\nThis mask is only valid for IF=%d" % (self.getif(i))
1195 asaplog.push(msg)
1196 masklist=[]
1197 ist, ien = None, None
1198 ist, ien=self.get_mask_indices(mask)
1199 if ist is not None and ien is not None:
1200 for i in xrange(len(ist)):
1201 range=[data[ist[i]],data[ien[i]]]
1202 range.sort()
1203 masklist.append([range[0],range[1]])
1204 return masklist
1205
1206 def get_mask_indices(self, mask=None):
1207 """\
1208 Compute and Return lists of mask start indices and mask end indices.
1209
1210 Parameters:
1211
1212 mask: channel mask, created with create_mask.
1213
1214 Returns:
1215
1216 List of mask start indices and that of mask end indices,
1217 i.e., [istart1,istart2,....], [iend1,iend2,....].
1218
1219 """
1220 if not (isinstance(mask,list) or isinstance(mask, tuple)):
1221 raise TypeError("The mask should be list or tuple.")
1222 if len(mask) < 2:
1223 raise TypeError("The mask elements should be > 1")
1224 istart=[]
1225 iend=[]
1226 if mask[0]: istart.append(0)
1227 for i in range(len(mask)-1):
1228 if not mask[i] and mask[i+1]:
1229 istart.append(i+1)
1230 elif mask[i] and not mask[i+1]:
1231 iend.append(i)
1232 if mask[len(mask)-1]: iend.append(len(mask)-1)
1233 if len(istart) != len(iend):
1234 raise RuntimeError("Numbers of mask start != mask end.")
1235 for i in range(len(istart)):
1236 if istart[i] > iend[i]:
1237 raise RuntimeError("Mask start index > mask end index")
1238 break
1239 return istart,iend
1240
1241# def get_restfreqs(self):
1242# """
1243# Get the restfrequency(s) stored in this scantable.
1244# The return value(s) are always of unit 'Hz'
1245# Parameters:
1246# none
1247# Returns:
1248# a list of doubles
1249# """
1250# return list(self._getrestfreqs())
1251
1252 def get_restfreqs(self, ids=None):
1253 """\
1254 Get the restfrequency(s) stored in this scantable.
1255 The return value(s) are always of unit 'Hz'
1256
1257 Parameters:
1258
1259 ids: (optional) a list of MOLECULE_ID for that restfrequency(s) to
1260 be retrieved
1261
1262 Returns:
1263
1264 dictionary containing ids and a list of doubles for each id
1265
1266 """
1267 if ids is None:
1268 rfreqs={}
1269 idlist = self.getmolnos()
1270 for i in idlist:
1271 rfreqs[i]=list(self._getrestfreqs(i))
1272 return rfreqs
1273 else:
1274 if type(ids)==list or type(ids)==tuple:
1275 rfreqs={}
1276 for i in ids:
1277 rfreqs[i]=list(self._getrestfreqs(i))
1278 return rfreqs
1279 else:
1280 return list(self._getrestfreqs(ids))
1281 #return list(self._getrestfreqs(ids))
1282
1283 def set_restfreqs(self, freqs=None, unit='Hz'):
1284 """\
1285 Set or replace the restfrequency specified and
1286 if the 'freqs' argument holds a scalar,
1287 then that rest frequency will be applied to all the selected
1288 data. If the 'freqs' argument holds
1289 a vector, then it MUST be of equal or smaller length than
1290 the number of IFs (and the available restfrequencies will be
1291 replaced by this vector). In this case, *all* data have
1292 the restfrequency set per IF according
1293 to the corresponding value you give in the 'freqs' vector.
1294 E.g. 'freqs=[1e9, 2e9]' would mean IF 0 gets restfreq 1e9 and
1295 IF 1 gets restfreq 2e9.
1296
1297 You can also specify the frequencies via a linecatalog.
1298
1299 Parameters:
1300
1301 freqs: list of rest frequency values or string idenitfiers
1302
1303 unit: unit for rest frequency (default 'Hz')
1304
1305
1306 Example::
1307
1308 # set the given restfrequency for the all currently selected IFs
1309 scan.set_restfreqs(freqs=1.4e9)
1310 # set restfrequencies for the n IFs (n > 1) in the order of the
1311 # list, i.e
1312 # IF0 -> 1.4e9, IF1 -> 1.41e9, IF3 -> 1.42e9
1313 # len(list_of_restfreqs) == nIF
1314 # for nIF == 1 the following will set multiple restfrequency for
1315 # that IF
1316 scan.set_restfreqs(freqs=[1.4e9, 1.41e9, 1.42e9])
1317 # set multiple restfrequencies per IF. as a list of lists where
1318 # the outer list has nIF elements, the inner s arbitrary
1319 scan.set_restfreqs(freqs=[[1.4e9, 1.41e9], [1.67e9]])
1320
1321 *Note*:
1322
1323 To do more sophisticate Restfrequency setting, e.g. on a
1324 source and IF basis, use scantable.set_selection() before using
1325 this function::
1326
1327 # provided your scantable is called scan
1328 selection = selector()
1329 selection.set_name("ORION*")
1330 selection.set_ifs([1])
1331 scan.set_selection(selection)
1332 scan.set_restfreqs(freqs=86.6e9)
1333
1334 """
1335 varlist = vars()
1336 from asap import linecatalog
1337 # simple value
1338 if isinstance(freqs, int) or isinstance(freqs, float):
1339 self._setrestfreqs([freqs], [""], unit)
1340 # list of values
1341 elif isinstance(freqs, list) or isinstance(freqs, tuple):
1342 # list values are scalars
1343 if isinstance(freqs[-1], int) or isinstance(freqs[-1], float):
1344 if len(freqs) == 1:
1345 self._setrestfreqs(freqs, [""], unit)
1346 else:
1347 # allow the 'old' mode of setting mulitple IFs
1348 sel = selector()
1349 savesel = self._getselection()
1350 iflist = self.getifnos()
1351 if len(freqs)>len(iflist):
1352 raise ValueError("number of elements in list of list "
1353 "exeeds the current IF selections")
1354 iflist = self.getifnos()
1355 for i, fval in enumerate(freqs):
1356 sel.set_ifs(iflist[i])
1357 self._setselection(sel)
1358 self._setrestfreqs([fval], [""], unit)
1359 self._setselection(savesel)
1360
1361 # list values are dict, {'value'=, 'name'=)
1362 elif isinstance(freqs[-1], dict):
1363 values = []
1364 names = []
1365 for d in freqs:
1366 values.append(d["value"])
1367 names.append(d["name"])
1368 self._setrestfreqs(values, names, unit)
1369 elif isinstance(freqs[-1], list) or isinstance(freqs[-1], tuple):
1370 sel = selector()
1371 savesel = self._getselection()
1372 iflist = self.getifnos()
1373 if len(freqs)>len(iflist):
1374 raise ValueError("number of elements in list of list exeeds"
1375 " the current IF selections")
1376 for i, fval in enumerate(freqs):
1377 sel.set_ifs(iflist[i])
1378 self._setselection(sel)
1379 self._setrestfreqs(fval, [""], unit)
1380 self._setselection(savesel)
1381 # freqs are to be taken from a linecatalog
1382 elif isinstance(freqs, linecatalog):
1383 sel = selector()
1384 savesel = self._getselection()
1385 for i in xrange(freqs.nrow()):
1386 sel.set_ifs(iflist[i])
1387 self._setselection(sel)
1388 self._setrestfreqs([freqs.get_frequency(i)],
1389 [freqs.get_name(i)], "MHz")
1390 # ensure that we are not iterating past nIF
1391 if i == self.nif()-1: break
1392 self._setselection(savesel)
1393 else:
1394 return
1395 self._add_history("set_restfreqs", varlist)
1396
1397 def shift_refpix(self, delta):
1398 """\
1399 Shift the reference pixel of the Spectra Coordinate by an
1400 integer amount.
1401
1402 Parameters:
1403
1404 delta: the amount to shift by
1405
1406 *Note*:
1407
1408 Be careful using this with broadband data.
1409
1410 """
1411 Scantable.shift_refpix(self, delta)
1412
1413 @asaplog_post_dec
1414 def history(self, filename=None):
1415 """\
1416 Print the history. Optionally to a file.
1417
1418 Parameters:
1419
1420 filename: The name of the file to save the history to.
1421
1422 """
1423 hist = list(self._gethistory())
1424 out = "-"*80
1425 for h in hist:
1426 if h.startswith("---"):
1427 out = "\n".join([out, h])
1428 else:
1429 items = h.split("##")
1430 date = items[0]
1431 func = items[1]
1432 items = items[2:]
1433 out += "\n"+date+"\n"
1434 out += "Function: %s\n Parameters:" % (func)
1435 for i in items:
1436 if i == '':
1437 continue
1438 s = i.split("=")
1439 out += "\n %s = %s" % (s[0], s[1])
1440 out = "\n".join([out, "-"*80])
1441 if filename is not None:
1442 if filename is "":
1443 filename = 'scantable_history.txt'
1444 import os
1445 filename = os.path.expandvars(os.path.expanduser(filename))
1446 if not os.path.isdir(filename):
1447 data = open(filename, 'w')
1448 data.write(out)
1449 data.close()
1450 else:
1451 msg = "Illegal file name '%s'." % (filename)
1452 raise IOError(msg)
1453 return page(out)
1454 #
1455 # Maths business
1456 #
1457 @asaplog_post_dec
1458 def average_time(self, mask=None, scanav=False, weight='tint', align=False):
1459 """\
1460 Return the (time) weighted average of a scan.
1461
1462 *Note*:
1463
1464 in channels only - align if necessary
1465
1466 Parameters:
1467
1468 mask: an optional mask (only used for 'var' and 'tsys'
1469 weighting)
1470
1471 scanav: True averages each scan separately
1472 False (default) averages all scans together,
1473
1474 weight: Weighting scheme.
1475 'none' (mean no weight)
1476 'var' (1/var(spec) weighted)
1477 'tsys' (1/Tsys**2 weighted)
1478 'tint' (integration time weighted)
1479 'tintsys' (Tint/Tsys**2)
1480 'median' ( median averaging)
1481 The default is 'tint'
1482
1483 align: align the spectra in velocity before averaging. It takes
1484 the time of the first spectrum as reference time.
1485
1486 Example::
1487
1488 # time average the scantable without using a mask
1489 newscan = scan.average_time()
1490
1491 """
1492 varlist = vars()
1493 weight = weight or 'TINT'
1494 mask = mask or ()
1495 scanav = (scanav and 'SCAN') or 'NONE'
1496 scan = (self, )
1497
1498 if align:
1499 scan = (self.freq_align(insitu=False), )
1500 s = None
1501 if weight.upper() == 'MEDIAN':
1502 s = scantable(self._math._averagechannel(scan[0], 'MEDIAN',
1503 scanav))
1504 else:
1505 s = scantable(self._math._average(scan, mask, weight.upper(),
1506 scanav))
1507 s._add_history("average_time", varlist)
1508 return s
1509
1510 @asaplog_post_dec
1511 def convert_flux(self, jyperk=None, eta=None, d=None, insitu=None):
1512 """\
1513 Return a scan where all spectra are converted to either
1514 Jansky or Kelvin depending upon the flux units of the scan table.
1515 By default the function tries to look the values up internally.
1516 If it can't find them (or if you want to over-ride), you must
1517 specify EITHER jyperk OR eta (and D which it will try to look up
1518 also if you don't set it). jyperk takes precedence if you set both.
1519
1520 Parameters:
1521
1522 jyperk: the Jy / K conversion factor
1523
1524 eta: the aperture efficiency
1525
1526 d: the geometric diameter (metres)
1527
1528 insitu: if False a new scantable is returned.
1529 Otherwise, the scaling is done in-situ
1530 The default is taken from .asaprc (False)
1531
1532 """
1533 if insitu is None: insitu = rcParams['insitu']
1534 self._math._setinsitu(insitu)
1535 varlist = vars()
1536 jyperk = jyperk or -1.0
1537 d = d or -1.0
1538 eta = eta or -1.0
1539 s = scantable(self._math._convertflux(self, d, eta, jyperk))
1540 s._add_history("convert_flux", varlist)
1541 if insitu: self._assign(s)
1542 else: return s
1543
1544 @asaplog_post_dec
1545 def gain_el(self, poly=None, filename="", method="linear", insitu=None):
1546 """\
1547 Return a scan after applying a gain-elevation correction.
1548 The correction can be made via either a polynomial or a
1549 table-based interpolation (and extrapolation if necessary).
1550 You specify polynomial coefficients, an ascii table or neither.
1551 If you specify neither, then a polynomial correction will be made
1552 with built in coefficients known for certain telescopes (an error
1553 will occur if the instrument is not known).
1554 The data and Tsys are *divided* by the scaling factors.
1555
1556 Parameters:
1557
1558 poly: Polynomial coefficients (default None) to compute a
1559 gain-elevation correction as a function of
1560 elevation (in degrees).
1561
1562 filename: The name of an ascii file holding correction factors.
1563 The first row of the ascii file must give the column
1564 names and these MUST include columns
1565 "ELEVATION" (degrees) and "FACTOR" (multiply data
1566 by this) somewhere.
1567 The second row must give the data type of the
1568 column. Use 'R' for Real and 'I' for Integer.
1569 An example file would be
1570 (actual factors are arbitrary) :
1571
1572 TIME ELEVATION FACTOR
1573 R R R
1574 0.1 0 0.8
1575 0.2 20 0.85
1576 0.3 40 0.9
1577 0.4 60 0.85
1578 0.5 80 0.8
1579 0.6 90 0.75
1580
1581 method: Interpolation method when correcting from a table.
1582 Values are "nearest", "linear" (default), "cubic"
1583 and "spline"
1584
1585 insitu: if False a new scantable is returned.
1586 Otherwise, the scaling is done in-situ
1587 The default is taken from .asaprc (False)
1588
1589 """
1590
1591 if insitu is None: insitu = rcParams['insitu']
1592 self._math._setinsitu(insitu)
1593 varlist = vars()
1594 poly = poly or ()
1595 from os.path import expandvars
1596 filename = expandvars(filename)
1597 s = scantable(self._math._gainel(self, poly, filename, method))
1598 s._add_history("gain_el", varlist)
1599 if insitu:
1600 self._assign(s)
1601 else:
1602 return s
1603
1604 @asaplog_post_dec
1605 def freq_align(self, reftime=None, method='cubic', insitu=None):
1606 """\
1607 Return a scan where all rows have been aligned in frequency/velocity.
1608 The alignment frequency frame (e.g. LSRK) is that set by function
1609 set_freqframe.
1610
1611 Parameters:
1612
1613 reftime: reference time to align at. By default, the time of
1614 the first row of data is used.
1615
1616 method: Interpolation method for regridding the spectra.
1617 Choose from "nearest", "linear", "cubic" (default)
1618 and "spline"
1619
1620 insitu: if False a new scantable is returned.
1621 Otherwise, the scaling is done in-situ
1622 The default is taken from .asaprc (False)
1623
1624 """
1625 if insitu is None: insitu = rcParams["insitu"]
1626 self._math._setinsitu(insitu)
1627 varlist = vars()
1628 reftime = reftime or ""
1629 s = scantable(self._math._freq_align(self, reftime, method))
1630 s._add_history("freq_align", varlist)
1631 if insitu: self._assign(s)
1632 else: return s
1633
1634 @asaplog_post_dec
1635 def opacity(self, tau=None, insitu=None):
1636 """\
1637 Apply an opacity correction. The data
1638 and Tsys are multiplied by the correction factor.
1639
1640 Parameters:
1641
1642 tau: (list of) opacity from which the correction factor is
1643 exp(tau*ZD)
1644 where ZD is the zenith-distance.
1645 If a list is provided, it has to be of length nIF,
1646 nIF*nPol or 1 and in order of IF/POL, e.g.
1647 [opif0pol0, opif0pol1, opif1pol0 ...]
1648 if tau is `None` the opacities are determined from a
1649 model.
1650
1651 insitu: if False a new scantable is returned.
1652 Otherwise, the scaling is done in-situ
1653 The default is taken from .asaprc (False)
1654
1655 """
1656 if insitu is None: insitu = rcParams['insitu']
1657 self._math._setinsitu(insitu)
1658 varlist = vars()
1659 if not hasattr(tau, "__len__"):
1660 tau = [tau]
1661 s = scantable(self._math._opacity(self, tau))
1662 s._add_history("opacity", varlist)
1663 if insitu: self._assign(s)
1664 else: return s
1665
1666 @asaplog_post_dec
1667 def bin(self, width=5, insitu=None):
1668 """\
1669 Return a scan where all spectra have been binned up.
1670
1671 Parameters:
1672
1673 width: The bin width (default=5) in pixels
1674
1675 insitu: if False a new scantable is returned.
1676 Otherwise, the scaling is done in-situ
1677 The default is taken from .asaprc (False)
1678
1679 """
1680 if insitu is None: insitu = rcParams['insitu']
1681 self._math._setinsitu(insitu)
1682 varlist = vars()
1683 s = scantable(self._math._bin(self, width))
1684 s._add_history("bin", varlist)
1685 if insitu:
1686 self._assign(s)
1687 else:
1688 return s
1689
1690 @asaplog_post_dec
1691 def resample(self, width=5, method='cubic', insitu=None):
1692 """\
1693 Return a scan where all spectra have been binned up.
1694
1695 Parameters:
1696
1697 width: The bin width (default=5) in pixels
1698
1699 method: Interpolation method when correcting from a table.
1700 Values are "nearest", "linear", "cubic" (default)
1701 and "spline"
1702
1703 insitu: if False a new scantable is returned.
1704 Otherwise, the scaling is done in-situ
1705 The default is taken from .asaprc (False)
1706
1707 """
1708 if insitu is None: insitu = rcParams['insitu']
1709 self._math._setinsitu(insitu)
1710 varlist = vars()
1711 s = scantable(self._math._resample(self, method, width))
1712 s._add_history("resample", varlist)
1713 if insitu: self._assign(s)
1714 else: return s
1715
1716 @asaplog_post_dec
1717 def average_pol(self, mask=None, weight='none'):
1718 """\
1719 Average the Polarisations together.
1720
1721 Parameters:
1722
1723 mask: An optional mask defining the region, where the
1724 averaging will be applied. The output will have all
1725 specified points masked.
1726
1727 weight: Weighting scheme. 'none' (default), 'var' (1/var(spec)
1728 weighted), or 'tsys' (1/Tsys**2 weighted)
1729
1730 """
1731 varlist = vars()
1732 mask = mask or ()
1733 s = scantable(self._math._averagepol(self, mask, weight.upper()))
1734 s._add_history("average_pol", varlist)
1735 return s
1736
1737 @asaplog_post_dec
1738 def average_beam(self, mask=None, weight='none'):
1739 """\
1740 Average the Beams together.
1741
1742 Parameters:
1743 mask: An optional mask defining the region, where the
1744 averaging will be applied. The output will have all
1745 specified points masked.
1746
1747 weight: Weighting scheme. 'none' (default), 'var' (1/var(spec)
1748 weighted), or 'tsys' (1/Tsys**2 weighted)
1749
1750 """
1751 varlist = vars()
1752 mask = mask or ()
1753 s = scantable(self._math._averagebeams(self, mask, weight.upper()))
1754 s._add_history("average_beam", varlist)
1755 return s
1756
1757 def parallactify(self, pflag):
1758 """\
1759 Set a flag to indicate whether this data should be treated as having
1760 been 'parallactified' (total phase == 0.0)
1761
1762 Parameters:
1763
1764 pflag: Bool indicating whether to turn this on (True) or
1765 off (False)
1766
1767 """
1768 varlist = vars()
1769 self._parallactify(pflag)
1770 self._add_history("parallactify", varlist)
1771
1772 @asaplog_post_dec
1773 def convert_pol(self, poltype=None):
1774 """\
1775 Convert the data to a different polarisation type.
1776 Note that you will need cross-polarisation terms for most conversions.
1777
1778 Parameters:
1779
1780 poltype: The new polarisation type. Valid types are:
1781 "linear", "circular", "stokes" and "linpol"
1782
1783 """
1784 varlist = vars()
1785 s = scantable(self._math._convertpol(self, poltype))
1786 s._add_history("convert_pol", varlist)
1787 return s
1788
1789 @asaplog_post_dec
1790 def smooth(self, kernel="hanning", width=5.0, order=2, plot=False, insitu=None):
1791 """\
1792 Smooth the spectrum by the specified kernel (conserving flux).
1793
1794 Parameters:
1795
1796 kernel: The type of smoothing kernel. Select from
1797 'hanning' (default), 'gaussian', 'boxcar', 'rmedian'
1798 or 'poly'
1799
1800 width: The width of the kernel in pixels. For hanning this is
1801 ignored otherwise it defauls to 5 pixels.
1802 For 'gaussian' it is the Full Width Half
1803 Maximum. For 'boxcar' it is the full width.
1804 For 'rmedian' and 'poly' it is the half width.
1805
1806 order: Optional parameter for 'poly' kernel (default is 2), to
1807 specify the order of the polnomial. Ignored by all other
1808 kernels.
1809
1810 plot: plot the original and the smoothed spectra.
1811 In this each indivual fit has to be approved, by
1812 typing 'y' or 'n'
1813
1814 insitu: if False a new scantable is returned.
1815 Otherwise, the scaling is done in-situ
1816 The default is taken from .asaprc (False)
1817
1818 """
1819 if insitu is None: insitu = rcParams['insitu']
1820 self._math._setinsitu(insitu)
1821 varlist = vars()
1822
1823 if plot: orgscan = self.copy()
1824
1825 s = scantable(self._math._smooth(self, kernel.lower(), width, order))
1826 s._add_history("smooth", varlist)
1827
1828 if plot:
1829 if rcParams['plotter.gui']:
1830 from asap.asaplotgui import asaplotgui as asaplot
1831 else:
1832 from asap.asaplot import asaplot
1833 self._p=asaplot()
1834 self._p.set_panels()
1835 ylab=s._get_ordinate_label()
1836 #self._p.palette(0,["#777777","red"])
1837 for r in xrange(s.nrow()):
1838 xsm=s._getabcissa(r)
1839 ysm=s._getspectrum(r)
1840 xorg=orgscan._getabcissa(r)
1841 yorg=orgscan._getspectrum(r)
1842 self._p.clear()
1843 self._p.hold()
1844 self._p.set_axes('ylabel',ylab)
1845 self._p.set_axes('xlabel',s._getabcissalabel(r))
1846 self._p.set_axes('title',s._getsourcename(r))
1847 self._p.set_line(label='Original',color="#777777")
1848 self._p.plot(xorg,yorg)
1849 self._p.set_line(label='Smoothed',color="red")
1850 self._p.plot(xsm,ysm)
1851 ### Ugly part for legend
1852 for i in [0,1]:
1853 self._p.subplots[0]['lines'].append([self._p.subplots[0]['axes'].lines[i]])
1854 self._p.release()
1855 ### Ugly part for legend
1856 self._p.subplots[0]['lines']=[]
1857 res = raw_input("Accept smoothing ([y]/n): ")
1858 if res.upper() == 'N':
1859 s._setspectrum(yorg, r)
1860 self._p.unmap()
1861 self._p = None
1862 del orgscan
1863
1864 if insitu: self._assign(s)
1865 else: return s
1866
1867 @asaplog_post_dec
1868 def old_poly_baseline(self, mask=None, order=0, plot=False, uselin=False, insitu=None, rows=None):
1869 """\
1870 Return a scan which has been baselined (all rows) by a polynomial.
1871
1872 Parameters:
1873
1874 mask: an optional mask
1875
1876 order: the order of the polynomial (default is 0)
1877
1878 plot: plot the fit and the residual. In this each
1879 indivual fit has to be approved, by typing 'y'
1880 or 'n'
1881
1882 uselin: use linear polynomial fit
1883
1884 insitu: if False a new scantable is returned.
1885 Otherwise, the scaling is done in-situ
1886 The default is taken from .asaprc (False)
1887
1888 rows: row numbers of spectra to be processed.
1889 (default is None: for all rows)
1890
1891 Example:
1892 # return a scan baselined by a third order polynomial,
1893 # not using a mask
1894 bscan = scan.poly_baseline(order=3)
1895
1896 """
1897 if insitu is None: insitu = rcParams['insitu']
1898 if not insitu:
1899 workscan = self.copy()
1900 else:
1901 workscan = self
1902 varlist = vars()
1903 if mask is None:
1904 mask = [True for i in xrange(self.nchan())]
1905
1906 try:
1907 f = fitter()
1908 if uselin:
1909 f.set_function(lpoly=order)
1910 else:
1911 f.set_function(poly=order)
1912
1913 if rows == None:
1914 rows = xrange(workscan.nrow())
1915 elif isinstance(rows, int):
1916 rows = [ rows ]
1917
1918 if len(rows) > 0:
1919 self.blpars = []
1920 self.masklists = []
1921 self.actualmask = []
1922
1923 for r in rows:
1924 f.x = workscan._getabcissa(r)
1925 f.y = workscan._getspectrum(r)
1926 f.mask = mask_and(mask, workscan._getmask(r)) # (CAS-1434)
1927 f.data = None
1928 f.fit()
1929 if plot:
1930 f.plot(residual=True)
1931 x = raw_input("Accept fit ( [y]/n ): ")
1932 if x.upper() == 'N':
1933 self.blpars.append(None)
1934 self.masklists.append(None)
1935 self.actualmask.append(None)
1936 continue
1937 workscan._setspectrum(f.fitter.getresidual(), r)
1938 self.blpars.append(f.get_parameters())
1939 self.masklists.append(workscan.get_masklist(f.mask, row=r))
1940 self.actualmask.append(f.mask)
1941
1942 if plot:
1943 f._p.unmap()
1944 f._p = None
1945 workscan._add_history("poly_baseline", varlist)
1946 if insitu:
1947 self._assign(workscan)
1948 else:
1949 return workscan
1950 except RuntimeError:
1951 msg = "The fit failed, possibly because it didn't converge."
1952 raise RuntimeError(msg)
1953
1954
1955 def poly_baseline(self, mask=None, order=0, plot=False, batch=False, insitu=None, rows=None):
1956 """\
1957 Return a scan which has been baselined (all rows) by a polynomial.
1958 Parameters:
1959 mask: an optional mask
1960 order: the order of the polynomial (default is 0)
1961 plot: plot the fit and the residual. In this each
1962 indivual fit has to be approved, by typing 'y'
1963 or 'n'. Ignored if batch = True.
1964 batch: if True a faster algorithm is used and logs
1965 including the fit results are not output
1966 (default is False)
1967 insitu: if False a new scantable is returned.
1968 Otherwise, the scaling is done in-situ
1969 The default is taken from .asaprc (False)
1970 rows: row numbers of spectra to be processed.
1971 (default is None: for all rows)
1972 Example:
1973 # return a scan baselined by a third order polynomial,
1974 # not using a mask
1975 bscan = scan.poly_baseline(order=3)
1976 """
1977 if insitu is None: insitu = rcParams["insitu"]
1978 if insitu:
1979 workscan = self
1980 else:
1981 workscan = self.copy()
1982
1983 varlist = vars()
1984 nchan = workscan.nchan()
1985
1986 if mask is None:
1987 mask = [True for i in xrange(nchan)]
1988
1989 try:
1990 if rows == None:
1991 rows = xrange(workscan.nrow())
1992 elif isinstance(rows, int):
1993 rows = [ rows ]
1994
1995 if len(rows) > 0:
1996 self.blpars = []
1997 self.masklists = []
1998 self.actualmask = []
1999
2000 if batch:
2001 for r in rows:
2002 workscan._poly_baseline_batch(mask, order, r)
2003 elif plot:
2004 f = fitter()
2005 f.set_function(lpoly=order)
2006 for r in rows:
2007 f.x = workscan._getabcissa(r)
2008 f.y = workscan._getspectrum(r)
2009 f.mask = mask_and(mask, workscan._getmask(r)) # (CAS-1434)
2010 f.data = None
2011 f.fit()
2012
2013 f.plot(residual=True)
2014 accept_fit = raw_input("Accept fit ( [y]/n ): ")
2015 if accept_fit.upper() == "N":
2016 self.blpars.append(None)
2017 self.masklists.append(None)
2018 self.actualmask.append(None)
2019 continue
2020 workscan._setspectrum(f.fitter.getresidual(), r)
2021 self.blpars.append(f.get_parameters())
2022 self.masklists.append(workscan.get_masklist(f.mask, row=r))
2023 self.actualmask.append(f.mask)
2024
2025 f._p.unmap()
2026 f._p = None
2027 else:
2028 import array
2029 for r in rows:
2030 pars = array.array("f", [0.0 for i in range(order+1)])
2031 pars_adr = pars.buffer_info()[0]
2032 pars_len = pars.buffer_info()[1]
2033
2034 errs = array.array("f", [0.0 for i in range(order+1)])
2035 errs_adr = errs.buffer_info()[0]
2036 errs_len = errs.buffer_info()[1]
2037
2038 fmsk = array.array("i", [1 for i in range(nchan)])
2039 fmsk_adr = fmsk.buffer_info()[0]
2040 fmsk_len = fmsk.buffer_info()[1]
2041
2042 workscan._poly_baseline(mask, order, r, pars_adr, pars_len, errs_adr, errs_len, fmsk_adr, fmsk_len)
2043
2044 params = pars.tolist()
2045 fmtd = ""
2046 for i in xrange(len(params)): fmtd += " p%d= %3.6f," % (i, params[i])
2047 fmtd = fmtd[:-1] # remove trailing ","
2048 errors = errs.tolist()
2049 fmask = fmsk.tolist()
2050 for i in xrange(len(fmask)): fmask[i] = (fmask[i] > 0) # transform (1/0) -> (True/False)
2051
2052 self.blpars.append({"params":params, "fixed":[], "formatted":fmtd, "errors":errors})
2053 self.masklists.append(workscan.get_masklist(fmask, r))
2054 self.actualmask.append(fmask)
2055
2056 asaplog.push(str(fmtd))
2057
2058 workscan._add_history("poly_baseline", varlist)
2059
2060 if insitu:
2061 self._assign(workscan)
2062 else:
2063 return workscan
2064
2065 except RuntimeError, e:
2066 msg = "The fit failed, possibly because it didn't converge."
2067 if rcParams["verbose"]:
2068 asaplog.push(str(e))
2069 asaplog.push(str(msg))
2070 return
2071 else:
2072 raise RuntimeError(str(e)+'\n'+msg)
2073
2074
2075 def auto_poly_baseline(self, mask=None, edge=(0, 0), order=0,
2076 threshold=3, chan_avg_limit=1, plot=False,
2077 insitu=None, rows=None):
2078 """\
2079 Return a scan which has been baselined (all rows by default)
2080 by a polynomial.
2081 Spectral lines are detected first using linefinder and masked out
2082 to avoid them affecting the baseline solution.
2083
2084 Parameters:
2085
2086 mask: an optional mask retreived from scantable
2087
2088 edge: an optional number of channel to drop at the edge of
2089 spectrum. If only one value is
2090 specified, the same number will be dropped from
2091 both sides of the spectrum. Default is to keep
2092 all channels. Nested tuples represent individual
2093 edge selection for different IFs (a number of spectral
2094 channels can be different)
2095
2096 order: the order of the polynomial (default is 0)
2097
2098 threshold: the threshold used by line finder. It is better to
2099 keep it large as only strong lines affect the
2100 baseline solution.
2101
2102 chan_avg_limit:
2103 a maximum number of consequtive spectral channels to
2104 average during the search of weak and broad lines.
2105 The default is no averaging (and no search for weak
2106 lines). If such lines can affect the fitted baseline
2107 (e.g. a high order polynomial is fitted), increase this
2108 parameter (usually values up to 8 are reasonable). Most
2109 users of this method should find the default value
2110 sufficient.
2111
2112 plot: plot the fit and the residual. In this each
2113 indivual fit has to be approved, by typing 'y'
2114 or 'n'
2115
2116 insitu: if False a new scantable is returned.
2117 Otherwise, the scaling is done in-situ
2118 The default is taken from .asaprc (False)
2119 rows: row numbers of spectra to be processed.
2120 (default is None: for all rows)
2121
2122
2123 Example::
2124
2125 scan2 = scan.auto_poly_baseline(order=7, insitu=False)
2126
2127 """
2128 if insitu is None: insitu = rcParams['insitu']
2129 varlist = vars()
2130 from asap.asaplinefind import linefinder
2131 from asap import _is_sequence_or_number as _is_valid
2132
2133 # check whether edge is set up for each IF individually
2134 individualedge = False;
2135 if len(edge) > 1:
2136 if isinstance(edge[0], list) or isinstance(edge[0], tuple):
2137 individualedge = True;
2138
2139 if not _is_valid(edge, int) and not individualedge:
2140 raise ValueError, "Parameter 'edge' has to be an integer or a \
2141 pair of integers specified as a tuple. Nested tuples are allowed \
2142 to make individual selection for different IFs."
2143
2144 curedge = (0, 0)
2145 if individualedge:
2146 for edgepar in edge:
2147 if not _is_valid(edgepar, int):
2148 raise ValueError, "Each element of the 'edge' tuple has \
2149 to be a pair of integers or an integer."
2150 else:
2151 curedge = edge;
2152
2153 if not insitu:
2154 workscan = self.copy()
2155 else:
2156 workscan = self
2157
2158 # setup fitter
2159 f = fitter()
2160 f.set_function(lpoly=order)
2161
2162 # setup line finder
2163 fl = linefinder()
2164 fl.set_options(threshold=threshold,avg_limit=chan_avg_limit)
2165
2166 fl.set_scan(workscan)
2167
2168 if mask is None:
2169 mask = _n_bools(workscan.nchan(), True)
2170
2171 if rows is None:
2172 rows = xrange(workscan.nrow())
2173 elif isinstance(rows, int):
2174 rows = [ rows ]
2175
2176 # Save parameters of baseline fits & masklists as a class attribute.
2177 # NOTICE: It does not reflect changes in scantable!
2178 if len(rows) > 0:
2179 self.blpars=[]
2180 self.masklists=[]
2181 self.actualmask=[]
2182 asaplog.push("Processing:")
2183 for r in rows:
2184 msg = " Scan[%d] Beam[%d] IF[%d] Pol[%d] Cycle[%d]" % \
2185 (workscan.getscan(r), workscan.getbeam(r), workscan.getif(r), \
2186 workscan.getpol(r), workscan.getcycle(r))
2187 asaplog.push(msg, False)
2188
2189 # figure out edge parameter
2190 if individualedge:
2191 if len(edge) >= workscan.getif(r):
2192 raise RuntimeError, "Number of edge elements appear to " \
2193 "be less than the number of IFs"
2194 curedge = edge[workscan.getif(r)]
2195
2196 actualmask = mask_and(mask, workscan._getmask(r)) # (CAS-1434)
2197
2198 # setup line finder
2199 fl.find_lines(r, actualmask, curedge)
2200
2201 f.x = workscan._getabcissa(r)
2202 f.y = workscan._getspectrum(r)
2203 f.mask = fl.get_mask()
2204 f.data = None
2205 f.fit()
2206
2207 # Show mask list
2208 masklist=workscan.get_masklist(f.mask, row=r)
2209 msg = "mask range: "+str(masklist)
2210 asaplog.push(msg, False)
2211
2212 if plot:
2213 f.plot(residual=True)
2214 x = raw_input("Accept fit ( [y]/n ): ")
2215 if x.upper() == 'N':
2216 self.blpars.append(None)
2217 self.masklists.append(None)
2218 self.actualmask.append(None)
2219 continue
2220
2221 workscan._setspectrum(f.fitter.getresidual(), r)
2222 self.blpars.append(f.get_parameters())
2223 self.masklists.append(masklist)
2224 self.actualmask.append(f.mask)
2225 if plot:
2226 f._p.unmap()
2227 f._p = None
2228 workscan._add_history("auto_poly_baseline", varlist)
2229 if insitu:
2230 self._assign(workscan)
2231 else:
2232 return workscan
2233
2234 @asaplog_post_dec
2235 def rotate_linpolphase(self, angle):
2236 """\
2237 Rotate the phase of the complex polarization O=Q+iU correlation.
2238 This is always done in situ in the raw data. So if you call this
2239 function more than once then each call rotates the phase further.
2240
2241 Parameters:
2242
2243 angle: The angle (degrees) to rotate (add) by.
2244
2245 Example::
2246
2247 scan.rotate_linpolphase(2.3)
2248
2249 """
2250 varlist = vars()
2251 self._math._rotate_linpolphase(self, angle)
2252 self._add_history("rotate_linpolphase", varlist)
2253 return
2254
2255 @asaplog_post_dec
2256 def rotate_xyphase(self, angle):
2257 """\
2258 Rotate the phase of the XY correlation. This is always done in situ
2259 in the data. So if you call this function more than once
2260 then each call rotates the phase further.
2261
2262 Parameters:
2263
2264 angle: The angle (degrees) to rotate (add) by.
2265
2266 Example::
2267
2268 scan.rotate_xyphase(2.3)
2269
2270 """
2271 varlist = vars()
2272 self._math._rotate_xyphase(self, angle)
2273 self._add_history("rotate_xyphase", varlist)
2274 return
2275
2276 @asaplog_post_dec
2277 def swap_linears(self):
2278 """\
2279 Swap the linear polarisations XX and YY, or better the first two
2280 polarisations as this also works for ciculars.
2281 """
2282 varlist = vars()
2283 self._math._swap_linears(self)
2284 self._add_history("swap_linears", varlist)
2285 return
2286
2287 @asaplog_post_dec
2288 def invert_phase(self):
2289 """\
2290 Invert the phase of the complex polarisation
2291 """
2292 varlist = vars()
2293 self._math._invert_phase(self)
2294 self._add_history("invert_phase", varlist)
2295 return
2296
2297 @asaplog_post_dec
2298 def add(self, offset, insitu=None):
2299 """\
2300 Return a scan where all spectra have the offset added
2301
2302 Parameters:
2303
2304 offset: the offset
2305
2306 insitu: if False a new scantable is returned.
2307 Otherwise, the scaling is done in-situ
2308 The default is taken from .asaprc (False)
2309
2310 """
2311 if insitu is None: insitu = rcParams['insitu']
2312 self._math._setinsitu(insitu)
2313 varlist = vars()
2314 s = scantable(self._math._unaryop(self, offset, "ADD", False))
2315 s._add_history("add", varlist)
2316 if insitu:
2317 self._assign(s)
2318 else:
2319 return s
2320
2321 @asaplog_post_dec
2322 def scale(self, factor, tsys=True, insitu=None):
2323 """\
2324
2325 Return a scan where all spectra are scaled by the given 'factor'
2326
2327 Parameters:
2328
2329 factor: the scaling factor (float or 1D float list)
2330
2331 insitu: if False a new scantable is returned.
2332 Otherwise, the scaling is done in-situ
2333 The default is taken from .asaprc (False)
2334
2335 tsys: if True (default) then apply the operation to Tsys
2336 as well as the data
2337
2338 """
2339 if insitu is None: insitu = rcParams['insitu']
2340 self._math._setinsitu(insitu)
2341 varlist = vars()
2342 s = None
2343 import numpy
2344 if isinstance(factor, list) or isinstance(factor, numpy.ndarray):
2345 if isinstance(factor[0], list) or isinstance(factor[0], numpy.ndarray):
2346 from asapmath import _array2dOp
2347 s = _array2dOp( self.copy(), factor, "MUL", tsys )
2348 else:
2349 s = scantable( self._math._arrayop( self.copy(), factor, "MUL", tsys ) )
2350 else:
2351 s = scantable(self._math._unaryop(self.copy(), factor, "MUL", tsys))
2352 s._add_history("scale", varlist)
2353 if insitu:
2354 self._assign(s)
2355 else:
2356 return s
2357
2358 def set_sourcetype(self, match, matchtype="pattern",
2359 sourcetype="reference"):
2360 """\
2361 Set the type of the source to be an source or reference scan
2362 using the provided pattern.
2363
2364 Parameters:
2365
2366 match: a Unix style pattern, regular expression or selector
2367
2368 matchtype: 'pattern' (default) UNIX style pattern or
2369 'regex' regular expression
2370
2371 sourcetype: the type of the source to use (source/reference)
2372
2373 """
2374 varlist = vars()
2375 basesel = self.get_selection()
2376 stype = -1
2377 if sourcetype.lower().startswith("r"):
2378 stype = 1
2379 elif sourcetype.lower().startswith("s"):
2380 stype = 0
2381 else:
2382 raise ValueError("Illegal sourcetype use s(ource) or r(eference)")
2383 if matchtype.lower().startswith("p"):
2384 matchtype = "pattern"
2385 elif matchtype.lower().startswith("r"):
2386 matchtype = "regex"
2387 else:
2388 raise ValueError("Illegal matchtype, use p(attern) or r(egex)")
2389 sel = selector()
2390 if isinstance(match, selector):
2391 sel = match
2392 else:
2393 sel.set_query("SRCNAME == %s('%s')" % (matchtype, match))
2394 self.set_selection(basesel+sel)
2395 self._setsourcetype(stype)
2396 self.set_selection(basesel)
2397 self._add_history("set_sourcetype", varlist)
2398
2399 @asaplog_post_dec
2400 @preserve_selection
2401 def auto_quotient(self, preserve=True, mode='paired', verify=False):
2402 """\
2403 This function allows to build quotients automatically.
2404 It assumes the observation to have the same number of
2405 "ons" and "offs"
2406
2407 Parameters:
2408
2409 preserve: you can preserve (default) the continuum or
2410 remove it. The equations used are
2411
2412 preserve: Output = Toff * (on/off) - Toff
2413
2414 remove: Output = Toff * (on/off) - Ton
2415
2416 mode: the on/off detection mode
2417 'paired' (default)
2418 identifies 'off' scans by the
2419 trailing '_R' (Mopra/Parkes) or
2420 '_e'/'_w' (Tid) and matches
2421 on/off pairs from the observing pattern
2422 'time'
2423 finds the closest off in time
2424
2425 .. todo:: verify argument is not implemented
2426
2427 """
2428 varlist = vars()
2429 modes = ["time", "paired"]
2430 if not mode in modes:
2431 msg = "please provide valid mode. Valid modes are %s" % (modes)
2432 raise ValueError(msg)
2433 s = None
2434 if mode.lower() == "paired":
2435 sel = self.get_selection()
2436 sel.set_query("SRCTYPE==psoff")
2437 self.set_selection(sel)
2438 offs = self.copy()
2439 sel.set_query("SRCTYPE==pson")
2440 self.set_selection(sel)
2441 ons = self.copy()
2442 s = scantable(self._math._quotient(ons, offs, preserve))
2443 elif mode.lower() == "time":
2444 s = scantable(self._math._auto_quotient(self, mode, preserve))
2445 s._add_history("auto_quotient", varlist)
2446 return s
2447
2448 @asaplog_post_dec
2449 def mx_quotient(self, mask = None, weight='median', preserve=True):
2450 """\
2451 Form a quotient using "off" beams when observing in "MX" mode.
2452
2453 Parameters:
2454
2455 mask: an optional mask to be used when weight == 'stddev'
2456
2457 weight: How to average the off beams. Default is 'median'.
2458
2459 preserve: you can preserve (default) the continuum or
2460 remove it. The equations used are:
2461
2462 preserve: Output = Toff * (on/off) - Toff
2463
2464 remove: Output = Toff * (on/off) - Ton
2465
2466 """
2467 mask = mask or ()
2468 varlist = vars()
2469 on = scantable(self._math._mx_extract(self, 'on'))
2470 preoff = scantable(self._math._mx_extract(self, 'off'))
2471 off = preoff.average_time(mask=mask, weight=weight, scanav=False)
2472 from asapmath import quotient
2473 q = quotient(on, off, preserve)
2474 q._add_history("mx_quotient", varlist)
2475 return q
2476
2477 @asaplog_post_dec
2478 def freq_switch(self, insitu=None):
2479 """\
2480 Apply frequency switching to the data.
2481
2482 Parameters:
2483
2484 insitu: if False a new scantable is returned.
2485 Otherwise, the swictching is done in-situ
2486 The default is taken from .asaprc (False)
2487
2488 """
2489 if insitu is None: insitu = rcParams['insitu']
2490 self._math._setinsitu(insitu)
2491 varlist = vars()
2492 s = scantable(self._math._freqswitch(self))
2493 s._add_history("freq_switch", varlist)
2494 if insitu:
2495 self._assign(s)
2496 else:
2497 return s
2498
2499 @asaplog_post_dec
2500 def recalc_azel(self):
2501 """Recalculate the azimuth and elevation for each position."""
2502 varlist = vars()
2503 self._recalcazel()
2504 self._add_history("recalc_azel", varlist)
2505 return
2506
2507 @asaplog_post_dec
2508 def __add__(self, other):
2509 varlist = vars()
2510 s = None
2511 if isinstance(other, scantable):
2512 s = scantable(self._math._binaryop(self, other, "ADD"))
2513 elif isinstance(other, float):
2514 s = scantable(self._math._unaryop(self, other, "ADD", False))
2515 else:
2516 raise TypeError("Other input is not a scantable or float value")
2517 s._add_history("operator +", varlist)
2518 return s
2519
2520 @asaplog_post_dec
2521 def __sub__(self, other):
2522 """
2523 implicit on all axes and on Tsys
2524 """
2525 varlist = vars()
2526 s = None
2527 if isinstance(other, scantable):
2528 s = scantable(self._math._binaryop(self, other, "SUB"))
2529 elif isinstance(other, float):
2530 s = scantable(self._math._unaryop(self, other, "SUB", False))
2531 else:
2532 raise TypeError("Other input is not a scantable or float value")
2533 s._add_history("operator -", varlist)
2534 return s
2535
2536 @asaplog_post_dec
2537 def __mul__(self, other):
2538 """
2539 implicit on all axes and on Tsys
2540 """
2541 varlist = vars()
2542 s = None
2543 if isinstance(other, scantable):
2544 s = scantable(self._math._binaryop(self, other, "MUL"))
2545 elif isinstance(other, float):
2546 s = scantable(self._math._unaryop(self, other, "MUL", False))
2547 else:
2548 raise TypeError("Other input is not a scantable or float value")
2549 s._add_history("operator *", varlist)
2550 return s
2551
2552
2553 @asaplog_post_dec
2554 def __div__(self, other):
2555 """
2556 implicit on all axes and on Tsys
2557 """
2558 varlist = vars()
2559 s = None
2560 if isinstance(other, scantable):
2561 s = scantable(self._math._binaryop(self, other, "DIV"))
2562 elif isinstance(other, float):
2563 if other == 0.0:
2564 raise ZeroDivisionError("Dividing by zero is not recommended")
2565 s = scantable(self._math._unaryop(self, other, "DIV", False))
2566 else:
2567 raise TypeError("Other input is not a scantable or float value")
2568 s._add_history("operator /", varlist)
2569 return s
2570
2571 @asaplog_post_dec
2572 def get_fit(self, row=0):
2573 """\
2574 Print or return the stored fits for a row in the scantable
2575
2576 Parameters:
2577
2578 row: the row which the fit has been applied to.
2579
2580 """
2581 if row > self.nrow():
2582 return
2583 from asap.asapfit import asapfit
2584 fit = asapfit(self._getfit(row))
2585 asaplog.push( '%s' %(fit) )
2586 return fit.as_dict()
2587
2588 def flag_nans(self):
2589 """\
2590 Utility function to flag NaN values in the scantable.
2591 """
2592 import numpy
2593 basesel = self.get_selection()
2594 for i in range(self.nrow()):
2595 sel = self.get_row_selector(i)
2596 self.set_selection(basesel+sel)
2597 nans = numpy.isnan(self._getspectrum(0))
2598 if numpy.any(nans):
2599 bnans = [ bool(v) for v in nans]
2600 self.flag(bnans)
2601 self.set_selection(basesel)
2602
2603 def get_row_selector(self, rowno):
2604 return selector(beams=self.getbeam(rowno),
2605 ifs=self.getif(rowno),
2606 pols=self.getpol(rowno),
2607 scans=self.getscan(rowno),
2608 cycles=self.getcycle(rowno))
2609
2610 def _add_history(self, funcname, parameters):
2611 if not rcParams['scantable.history']:
2612 return
2613 # create date
2614 sep = "##"
2615 from datetime import datetime
2616 dstr = datetime.now().strftime('%Y/%m/%d %H:%M:%S')
2617 hist = dstr+sep
2618 hist += funcname+sep#cdate+sep
2619 if parameters.has_key('self'): del parameters['self']
2620 for k, v in parameters.iteritems():
2621 if type(v) is dict:
2622 for k2, v2 in v.iteritems():
2623 hist += k2
2624 hist += "="
2625 if isinstance(v2, scantable):
2626 hist += 'scantable'
2627 elif k2 == 'mask':
2628 if isinstance(v2, list) or isinstance(v2, tuple):
2629 hist += str(self._zip_mask(v2))
2630 else:
2631 hist += str(v2)
2632 else:
2633 hist += str(v2)
2634 else:
2635 hist += k
2636 hist += "="
2637 if isinstance(v, scantable):
2638 hist += 'scantable'
2639 elif k == 'mask':
2640 if isinstance(v, list) or isinstance(v, tuple):
2641 hist += str(self._zip_mask(v))
2642 else:
2643 hist += str(v)
2644 else:
2645 hist += str(v)
2646 hist += sep
2647 hist = hist[:-2] # remove trailing '##'
2648 self._addhistory(hist)
2649
2650
2651 def _zip_mask(self, mask):
2652 mask = list(mask)
2653 i = 0
2654 segments = []
2655 while mask[i:].count(1):
2656 i += mask[i:].index(1)
2657 if mask[i:].count(0):
2658 j = i + mask[i:].index(0)
2659 else:
2660 j = len(mask)
2661 segments.append([i, j])
2662 i = j
2663 return segments
2664
2665 def _get_ordinate_label(self):
2666 fu = "("+self.get_fluxunit()+")"
2667 import re
2668 lbl = "Intensity"
2669 if re.match(".K.", fu):
2670 lbl = "Brightness Temperature "+ fu
2671 elif re.match(".Jy.", fu):
2672 lbl = "Flux density "+ fu
2673 return lbl
2674
2675 def _check_ifs(self):
2676 nchans = [self.nchan(i) for i in range(self.nif(-1))]
2677 nchans = filter(lambda t: t > 0, nchans)
2678 return (sum(nchans)/len(nchans) == nchans[0])
2679
2680 @asaplog_post_dec
2681 #def _fill(self, names, unit, average, getpt, antenna):
2682 def _fill(self, names, unit, average, opts={}):
2683 first = True
2684 fullnames = []
2685 for name in names:
2686 name = os.path.expandvars(name)
2687 name = os.path.expanduser(name)
2688 if not os.path.exists(name):
2689 msg = "File '%s' does not exists" % (name)
2690 raise IOError(msg)
2691 fullnames.append(name)
2692 if average:
2693 asaplog.push('Auto averaging integrations')
2694 stype = int(rcParams['scantable.storage'].lower() == 'disk')
2695 for name in fullnames:
2696 tbl = Scantable(stype)
2697 r = filler(tbl)
2698 rx = rcParams['scantable.reference']
2699 r.setreferenceexpr(rx)
2700 msg = "Importing %s..." % (name)
2701 asaplog.push(msg, False)
2702 #opts = {'ms': {'antenna' : antenna, 'getpt': getpt} }
2703 r.open(name, opts)# antenna, -1, -1, getpt)
2704 r.fill()
2705 if average:
2706 tbl = self._math._average((tbl, ), (), 'NONE', 'SCAN')
2707 if not first:
2708 tbl = self._math._merge([self, tbl])
2709 Scantable.__init__(self, tbl)
2710 r.close()
2711 del r, tbl
2712 first = False
2713 #flush log
2714 asaplog.post()
2715 if unit is not None:
2716 self.set_fluxunit(unit)
2717 if not is_casapy():
2718 self.set_freqframe(rcParams['scantable.freqframe'])
2719
2720 def __getitem__(self, key):
2721 if key < 0:
2722 key += self.nrow()
2723 if key >= self.nrow():
2724 raise IndexError("Row index out of range.")
2725 return self._getspectrum(key)
2726
2727 def __setitem__(self, key, value):
2728 if key < 0:
2729 key += self.nrow()
2730 if key >= self.nrow():
2731 raise IndexError("Row index out of range.")
2732 if not hasattr(value, "__len__") or \
2733 len(value) > self.nchan(self.getif(key)):
2734 raise ValueError("Spectrum length doesn't match.")
2735 return self._setspectrum(value, key)
2736
2737 def __len__(self):
2738 return self.nrow()
2739
2740 def __iter__(self):
2741 for i in range(len(self)):
2742 yield self[i]
Note: See TracBrowser for help on using the repository browser.