source: trunk/python/scantable.py@ 1918

Last change on this file since 1918 was 1916, checked in by Takeshi Nakazato, 14 years ago

New Development: No

JIRA Issue: No

Ready for Test: Yes

Interface Changes: No

What Interface Changed: Please list interface changes

Test Programs: sd regression tests

Put in Release Notes: No

Module(s): Module Names change impacts.

Description: Describe your changes here...

The antenna and getpt parameters for MS filler is effective again.


  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 92.7 KB
Line 
1"""This module defines the scantable class."""
2
3import os
4try:
5 from functools import wraps as wraps_dec
6except ImportError:
7 from asap.compatibility import wraps as wraps_dec
8
9from asap.env import is_casapy
10from asap._asap import Scantable
11from asap._asap import filler
12from asap.parameters import rcParams
13from asap.logging import asaplog, asaplog_post_dec
14from asap.selector import selector
15from asap.linecatalog import linecatalog
16from asap.coordinate import coordinate
17from asap.utils import _n_bools, mask_not, mask_and, mask_or, page
18from asap.asapfitter import fitter
19
20
21def preserve_selection(func):
22 @wraps_dec(func)
23 def wrap(obj, *args, **kw):
24 basesel = obj.get_selection()
25 try:
26 val = func(obj, *args, **kw)
27 finally:
28 obj.set_selection(basesel)
29 return val
30 return wrap
31
32def is_scantable(filename):
33 """Is the given file a scantable?
34
35 Parameters:
36
37 filename: the name of the file/directory to test
38
39 """
40 if ( os.path.isdir(filename)
41 and os.path.exists(filename+'/table.info')
42 and os.path.exists(filename+'/table.dat') ):
43 f=open(filename+'/table.info')
44 l=f.readline()
45 f.close()
46 #if ( l.find('Scantable') != -1 ):
47 if ( l.find('Measurement Set') == -1 ):
48 return True
49 else:
50 return False
51 else:
52 return False
53## return (os.path.isdir(filename)
54## and not os.path.exists(filename+'/table.f1')
55## and os.path.exists(filename+'/table.info'))
56
57def is_ms(filename):
58 """Is the given file a MeasurementSet?
59
60 Parameters:
61
62 filename: the name of the file/directory to test
63
64 """
65 if ( os.path.isdir(filename)
66 and os.path.exists(filename+'/table.info')
67 and os.path.exists(filename+'/table.dat') ):
68 f=open(filename+'/table.info')
69 l=f.readline()
70 f.close()
71 if ( l.find('Measurement Set') != -1 ):
72 return True
73 else:
74 return False
75 else:
76 return False
77
78class scantable(Scantable):
79 """\
80 The ASAP container for scans (single-dish data).
81 """
82
83 @asaplog_post_dec
84 #def __init__(self, filename, average=None, unit=None, getpt=None,
85 # antenna=None, parallactify=None):
86 def __init__(self, filename, average=None, unit=None, parallactify=None, **args):
87 """\
88 Create a scantable from a saved one or make a reference
89
90 Parameters:
91
92 filename: the name of an asap table on disk
93 or
94 the name of a rpfits/sdfits/ms file
95 (integrations within scans are auto averaged
96 and the whole file is read) or
97 [advanced] a reference to an existing scantable
98
99 average: average all integrations withinb a scan on read.
100 The default (True) is taken from .asaprc.
101
102 unit: brightness unit; must be consistent with K or Jy.
103 Over-rides the default selected by the filler
104 (input rpfits/sdfits/ms) or replaces the value
105 in existing scantables
106
107 getpt: for MeasurementSet input data only:
108 If True, all pointing data are filled.
109 The deafult is False, which makes time to load
110 the MS data faster in some cases.
111
112 antenna: Antenna selection. integer (id) or string (name or id).
113
114 parallactify: Indicate that the data had been parallatified. Default
115 is taken from rc file.
116
117 """
118 if average is None:
119 average = rcParams['scantable.autoaverage']
120 #if getpt is None:
121 # getpt = True
122 #if antenna is not None:
123 # asaplog.push("Antenna selection currently unsupported."
124 # "Using ''")
125 # asaplog.post('WARN')
126 #if antenna is None:
127 # antenna = ''
128 #elif type(antenna) == int:
129 # antenna = '%s' % antenna
130 #elif type(antenna) == list:
131 # tmpstr = ''
132 # for i in range( len(antenna) ):
133 # if type(antenna[i]) == int:
134 # tmpstr = tmpstr + ('%s,'%(antenna[i]))
135 # elif type(antenna[i]) == str:
136 # tmpstr=tmpstr+antenna[i]+','
137 # else:
138 # raise TypeError('Bad antenna selection.')
139 # antenna = tmpstr.rstrip(',')
140 parallactify = parallactify or rcParams['scantable.parallactify']
141 varlist = vars()
142 from asap._asap import stmath
143 self._math = stmath( rcParams['insitu'] )
144 if isinstance(filename, Scantable):
145 Scantable.__init__(self, filename)
146 else:
147 if isinstance(filename, str):
148 filename = os.path.expandvars(filename)
149 filename = os.path.expanduser(filename)
150 if not os.path.exists(filename):
151 s = "File '%s' not found." % (filename)
152 raise IOError(s)
153 if is_scantable(filename):
154 ondisk = rcParams['scantable.storage'] == 'disk'
155 Scantable.__init__(self, filename, ondisk)
156 if unit is not None:
157 self.set_fluxunit(unit)
158 # do not reset to the default freqframe
159 #self.set_freqframe(rcParams['scantable.freqframe'])
160 #elif os.path.isdir(filename) \
161 # and not os.path.exists(filename+'/table.f1'):
162 elif is_ms(filename):
163 # Measurement Set
164 opts={'ms': {}}
165 mskeys=['getpt','antenna']
166 for key in mskeys:
167 if key in args.keys():
168 opts['ms'][key] = args[key]
169 #self._fill([filename], unit, average, getpt, antenna)
170 self._fill([filename], unit, average, opts)
171 elif os.path.isfile(filename):
172 #self._fill([filename], unit, average, getpt, antenna)
173 self._fill([filename], unit, average)
174 else:
175 msg = "The given file '%s'is not a valid " \
176 "asap table." % (filename)
177 raise IOError(msg)
178 elif (isinstance(filename, list) or isinstance(filename, tuple)) \
179 and isinstance(filename[-1], str):
180 #self._fill(filename, unit, average, getpt, antenna)
181 self._fill(filename, unit, average)
182 self.parallactify(parallactify)
183 self._add_history("scantable", varlist)
184
185 @asaplog_post_dec
186 def save(self, name=None, format=None, overwrite=False):
187 """\
188 Store the scantable on disk. This can be an asap (aips++) Table,
189 SDFITS or MS2 format.
190
191 Parameters:
192
193 name: the name of the outputfile. For format "ASCII"
194 this is the root file name (data in 'name'.txt
195 and header in 'name'_header.txt)
196
197 format: an optional file format. Default is ASAP.
198 Allowed are:
199
200 * 'ASAP' (save as ASAP [aips++] Table),
201 * 'SDFITS' (save as SDFITS file)
202 * 'ASCII' (saves as ascii text file)
203 * 'MS2' (saves as an casacore MeasurementSet V2)
204 * 'FITS' (save as image FITS - not readable by class)
205 * 'CLASS' (save as FITS readable by CLASS)
206
207 overwrite: If the file should be overwritten if it exists.
208 The default False is to return with warning
209 without writing the output. USE WITH CARE.
210
211 Example::
212
213 scan.save('myscan.asap')
214 scan.save('myscan.sdfits', 'SDFITS')
215
216 """
217 from os import path
218 format = format or rcParams['scantable.save']
219 suffix = '.'+format.lower()
220 if name is None or name == "":
221 name = 'scantable'+suffix
222 msg = "No filename given. Using default name %s..." % name
223 asaplog.push(msg)
224 name = path.expandvars(name)
225 if path.isfile(name) or path.isdir(name):
226 if not overwrite:
227 msg = "File %s exists." % name
228 raise IOError(msg)
229 format2 = format.upper()
230 if format2 == 'ASAP':
231 self._save(name)
232 else:
233 from asap._asap import stwriter as stw
234 writer = stw(format2)
235 writer.write(self, name)
236 return
237
238 def copy(self):
239 """Return a copy of this scantable.
240
241 *Note*:
242
243 This makes a full (deep) copy. scan2 = scan1 makes a reference.
244
245 Example::
246
247 copiedscan = scan.copy()
248
249 """
250 sd = scantable(Scantable._copy(self))
251 return sd
252
253 def drop_scan(self, scanid=None):
254 """\
255 Return a new scantable where the specified scan number(s) has(have)
256 been dropped.
257
258 Parameters:
259
260 scanid: a (list of) scan number(s)
261
262 """
263 from asap import _is_sequence_or_number as _is_valid
264 from asap import _to_list
265 from asap import unique
266 if not _is_valid(scanid):
267 raise RuntimeError( 'Please specify a scanno to drop from the scantable' )
268 scanid = _to_list(scanid)
269 allscans = unique([ self.getscan(i) for i in range(self.nrow())])
270 for sid in scanid: allscans.remove(sid)
271 if len(allscans) == 0:
272 raise ValueError("Can't remove all scans")
273 sel = selector(scans=allscans)
274 return self._select_copy(sel)
275
276 def _select_copy(self, selection):
277 orig = self.get_selection()
278 self.set_selection(orig+selection)
279 cp = self.copy()
280 self.set_selection(orig)
281 return cp
282
283 def get_scan(self, scanid=None):
284 """\
285 Return a specific scan (by scanno) or collection of scans (by
286 source name) in a new scantable.
287
288 *Note*:
289
290 See scantable.drop_scan() for the inverse operation.
291
292 Parameters:
293
294 scanid: a (list of) scanno or a source name, unix-style
295 patterns are accepted for source name matching, e.g.
296 '*_R' gets all 'ref scans
297
298 Example::
299
300 # get all scans containing the source '323p459'
301 newscan = scan.get_scan('323p459')
302 # get all 'off' scans
303 refscans = scan.get_scan('*_R')
304 # get a susbset of scans by scanno (as listed in scan.summary())
305 newscan = scan.get_scan([0, 2, 7, 10])
306
307 """
308 if scanid is None:
309 raise RuntimeError( 'Please specify a scan no or name to '
310 'retrieve from the scantable' )
311 try:
312 bsel = self.get_selection()
313 sel = selector()
314 if type(scanid) is str:
315 sel.set_name(scanid)
316 return self._select_copy(sel)
317 elif type(scanid) is int:
318 sel.set_scans([scanid])
319 return self._select_copy(sel)
320 elif type(scanid) is list:
321 sel.set_scans(scanid)
322 return self._select_copy(sel)
323 else:
324 msg = "Illegal scanid type, use 'int' or 'list' if ints."
325 raise TypeError(msg)
326 except RuntimeError:
327 raise
328
329 def __str__(self):
330 return Scantable._summary(self, True)
331
332 def summary(self, filename=None):
333 """\
334 Print a summary of the contents of this scantable.
335
336 Parameters:
337
338 filename: the name of a file to write the putput to
339 Default - no file output
340
341 """
342 info = Scantable._summary(self, True)
343 if filename is not None:
344 if filename is "":
345 filename = 'scantable_summary.txt'
346 from os.path import expandvars, isdir
347 filename = expandvars(filename)
348 if not isdir(filename):
349 data = open(filename, 'w')
350 data.write(info)
351 data.close()
352 else:
353 msg = "Illegal file name '%s'." % (filename)
354 raise IOError(msg)
355 return page(info)
356
357 def get_spectrum(self, rowno):
358 """Return the spectrum for the current row in the scantable as a list.
359
360 Parameters:
361
362 rowno: the row number to retrieve the spectrum from
363
364 """
365 return self._getspectrum(rowno)
366
367 def get_mask(self, rowno):
368 """Return the mask for the current row in the scantable as a list.
369
370 Parameters:
371
372 rowno: the row number to retrieve the mask from
373
374 """
375 return self._getmask(rowno)
376
377 def set_spectrum(self, spec, rowno):
378 """Return the spectrum for the current row in the scantable as a list.
379
380 Parameters:
381
382 spec: the new spectrum
383
384 rowno: the row number to set the spectrum for
385
386 """
387 assert(len(spec) == self.nchan())
388 return self._setspectrum(spec, rowno)
389
390 def get_coordinate(self, rowno):
391 """Return the (spectral) coordinate for a a given 'rowno'.
392
393 *Note*:
394
395 * This coordinate is only valid until a scantable method modifies
396 the frequency axis.
397 * This coordinate does contain the original frequency set-up
398 NOT the new frame. The conversions however are done using the user
399 specified frame (e.g. LSRK/TOPO). To get the 'real' coordinate,
400 use scantable.freq_align first. Without it there is no closure,
401 i.e.::
402
403 c = myscan.get_coordinate(0)
404 c.to_frequency(c.get_reference_pixel()) != c.get_reference_value()
405
406 Parameters:
407
408 rowno: the row number for the spectral coordinate
409
410 """
411 return coordinate(Scantable.get_coordinate(self, rowno))
412
413 def get_selection(self):
414 """\
415 Get the selection object currently set on this scantable.
416
417 Example::
418
419 sel = scan.get_selection()
420 sel.set_ifs(0) # select IF 0
421 scan.set_selection(sel) # apply modified selection
422
423 """
424 return selector(self._getselection())
425
426 def set_selection(self, selection=None, **kw):
427 """\
428 Select a subset of the data. All following operations on this scantable
429 are only applied to thi selection.
430
431 Parameters:
432
433 selection: a selector object (default unset the selection), or
434 any combination of "pols", "ifs", "beams", "scans",
435 "cycles", "name", "query"
436
437 Examples::
438
439 sel = selector() # create a selection object
440 self.set_scans([0, 3]) # select SCANNO 0 and 3
441 scan.set_selection(sel) # set the selection
442 scan.summary() # will only print summary of scanno 0 an 3
443 scan.set_selection() # unset the selection
444 # or the equivalent
445 scan.set_selection(scans=[0,3])
446 scan.summary() # will only print summary of scanno 0 an 3
447 scan.set_selection() # unset the selection
448
449 """
450 if selection is None:
451 # reset
452 if len(kw) == 0:
453 selection = selector()
454 else:
455 # try keywords
456 for k in kw:
457 if k not in selector.fields:
458 raise KeyError("Invalid selection key '%s', valid keys are %s" % (k, selector.fields))
459 selection = selector(**kw)
460 self._setselection(selection)
461
462 def get_row(self, row=0, insitu=None):
463 """\
464 Select a row in the scantable.
465 Return a scantable with single row.
466
467 Parameters:
468
469 row: row no of integration, default is 0.
470 insitu: if False a new scantable is returned. Otherwise, the
471 scaling is done in-situ. The default is taken from .asaprc
472 (False)
473
474 """
475 if insitu is None: insitu = rcParams['insitu']
476 if not insitu:
477 workscan = self.copy()
478 else:
479 workscan = self
480 # Select a row
481 sel=selector()
482 sel.set_scans([workscan.getscan(row)])
483 sel.set_cycles([workscan.getcycle(row)])
484 sel.set_beams([workscan.getbeam(row)])
485 sel.set_ifs([workscan.getif(row)])
486 sel.set_polarisations([workscan.getpol(row)])
487 sel.set_name(workscan._getsourcename(row))
488 workscan.set_selection(sel)
489 if not workscan.nrow() == 1:
490 msg = "Cloud not identify single row. %d rows selected."%(workscan.nrow())
491 raise RuntimeError(msg)
492 del sel
493 if insitu:
494 self._assign(workscan)
495 else:
496 return workscan
497
498 @asaplog_post_dec
499 def stats(self, stat='stddev', mask=None, form='3.3f', row=None):
500 """\
501 Determine the specified statistic of the current beam/if/pol
502 Takes a 'mask' as an optional parameter to specify which
503 channels should be excluded.
504
505 Parameters:
506
507 stat: 'min', 'max', 'min_abc', 'max_abc', 'sumsq', 'sum',
508 'mean', 'var', 'stddev', 'avdev', 'rms', 'median'
509
510 mask: an optional mask specifying where the statistic
511 should be determined.
512
513 form: format string to print statistic values
514
515 row: row number of spectrum to process.
516 (default is None: for all rows)
517
518 Example:
519 scan.set_unit('channel')
520 msk = scan.create_mask([100, 200], [500, 600])
521 scan.stats(stat='mean', mask=m)
522
523 """
524 mask = mask or []
525 if not self._check_ifs():
526 raise ValueError("Cannot apply mask as the IFs have different "
527 "number of channels. Please use setselection() "
528 "to select individual IFs")
529 rtnabc = False
530 if stat.lower().endswith('_abc'): rtnabc = True
531 getchan = False
532 if stat.lower().startswith('min') or stat.lower().startswith('max'):
533 chan = self._math._minmaxchan(self, mask, stat)
534 getchan = True
535 statvals = []
536 if not rtnabc:
537 if row == None:
538 statvals = self._math._stats(self, mask, stat)
539 else:
540 statvals = self._math._statsrow(self, mask, stat, int(row))
541
542 #def cb(i):
543 # return statvals[i]
544
545 #return self._row_callback(cb, stat)
546
547 label=stat
548 #callback=cb
549 out = ""
550 #outvec = []
551 sep = '-'*50
552
553 if row == None:
554 rows = xrange(self.nrow())
555 elif isinstance(row, int):
556 rows = [ row ]
557
558 for i in rows:
559 refstr = ''
560 statunit= ''
561 if getchan:
562 qx, qy = self.chan2data(rowno=i, chan=chan[i])
563 if rtnabc:
564 statvals.append(qx['value'])
565 refstr = ('(value: %'+form) % (qy['value'])+' ['+qy['unit']+'])'
566 statunit= '['+qx['unit']+']'
567 else:
568 refstr = ('(@ %'+form) % (qx['value'])+' ['+qx['unit']+'])'
569
570 tm = self._gettime(i)
571 src = self._getsourcename(i)
572 out += 'Scan[%d] (%s) ' % (self.getscan(i), src)
573 out += 'Time[%s]:\n' % (tm)
574 if self.nbeam(-1) > 1: out += ' Beam[%d] ' % (self.getbeam(i))
575 if self.nif(-1) > 1: out += ' IF[%d] ' % (self.getif(i))
576 if self.npol(-1) > 1: out += ' Pol[%d] ' % (self.getpol(i))
577 #outvec.append(callback(i))
578 if len(rows) > 1:
579 # out += ('= %'+form) % (outvec[i]) +' '+refstr+'\n'
580 out += ('= %'+form) % (statvals[i]) +' '+refstr+'\n'
581 else:
582 # out += ('= %'+form) % (outvec[0]) +' '+refstr+'\n'
583 out += ('= %'+form) % (statvals[0]) +' '+refstr+'\n'
584 out += sep+"\n"
585
586 import os
587 if os.environ.has_key( 'USER' ):
588 usr = os.environ['USER']
589 else:
590 import commands
591 usr = commands.getoutput( 'whoami' )
592 tmpfile = '/tmp/tmp_'+usr+'_casapy_asap_scantable_stats'
593 f = open(tmpfile,'w')
594 print >> f, sep
595 print >> f, ' %s %s' % (label, statunit)
596 print >> f, sep
597 print >> f, out
598 f.close()
599 f = open(tmpfile,'r')
600 x = f.readlines()
601 f.close()
602 asaplog.push(''.join(x), False)
603
604 return statvals
605
606 def chan2data(self, rowno=0, chan=0):
607 """\
608 Returns channel/frequency/velocity and spectral value
609 at an arbitrary row and channel in the scantable.
610
611 Parameters:
612
613 rowno: a row number in the scantable. Default is the
614 first row, i.e. rowno=0
615
616 chan: a channel in the scantable. Default is the first
617 channel, i.e. pos=0
618
619 """
620 if isinstance(rowno, int) and isinstance(chan, int):
621 qx = {'unit': self.get_unit(),
622 'value': self._getabcissa(rowno)[chan]}
623 qy = {'unit': self.get_fluxunit(),
624 'value': self._getspectrum(rowno)[chan]}
625 return qx, qy
626
627 def stddev(self, mask=None):
628 """\
629 Determine the standard deviation of the current beam/if/pol
630 Takes a 'mask' as an optional parameter to specify which
631 channels should be excluded.
632
633 Parameters:
634
635 mask: an optional mask specifying where the standard
636 deviation should be determined.
637
638 Example::
639
640 scan.set_unit('channel')
641 msk = scan.create_mask([100, 200], [500, 600])
642 scan.stddev(mask=m)
643
644 """
645 return self.stats(stat='stddev', mask=mask);
646
647
648 def get_column_names(self):
649 """\
650 Return a list of column names, which can be used for selection.
651 """
652 return list(Scantable.get_column_names(self))
653
654 def get_tsys(self, row=-1):
655 """\
656 Return the System temperatures.
657
658 Parameters:
659
660 row: the rowno to get the information for. (default all rows)
661
662 Returns:
663
664 a list of Tsys values for the current selection
665
666 """
667 if row > -1:
668 return self._get_column(self._gettsys, row)
669 return self._row_callback(self._gettsys, "Tsys")
670
671
672 def get_weather(self, row=-1):
673 """\
674 Return the weather informations.
675
676 Parameters:
677
678 row: the rowno to get the information for. (default all rows)
679
680 Returns:
681
682 a dict or list of of dicts of values for the current selection
683
684 """
685
686 values = self._get_column(self._get_weather, row)
687 if row > -1:
688 return {'temperature': values[0],
689 'pressure': values[1], 'humidity' : values[2],
690 'windspeed' : values[3], 'windaz' : values[4]
691 }
692 else:
693 out = []
694 for r in values:
695
696 out.append({'temperature': r[0],
697 'pressure': r[1], 'humidity' : r[2],
698 'windspeed' : r[3], 'windaz' : r[4]
699 })
700 return out
701
702 def _row_callback(self, callback, label):
703 out = ""
704 outvec = []
705 sep = '-'*50
706 for i in range(self.nrow()):
707 tm = self._gettime(i)
708 src = self._getsourcename(i)
709 out += 'Scan[%d] (%s) ' % (self.getscan(i), src)
710 out += 'Time[%s]:\n' % (tm)
711 if self.nbeam(-1) > 1:
712 out += ' Beam[%d] ' % (self.getbeam(i))
713 if self.nif(-1) > 1: out += ' IF[%d] ' % (self.getif(i))
714 if self.npol(-1) > 1: out += ' Pol[%d] ' % (self.getpol(i))
715 outvec.append(callback(i))
716 out += '= %3.3f\n' % (outvec[i])
717 out += sep+'\n'
718
719 asaplog.push(sep)
720 asaplog.push(" %s" % (label))
721 asaplog.push(sep)
722 asaplog.push(out)
723 asaplog.post()
724 return outvec
725
726 def _get_column(self, callback, row=-1):
727 """
728 """
729 if row == -1:
730 return [callback(i) for i in range(self.nrow())]
731 else:
732 if 0 <= row < self.nrow():
733 return callback(row)
734
735
736 def get_time(self, row=-1, asdatetime=False):
737 """\
738 Get a list of time stamps for the observations.
739 Return a datetime object for each integration time stamp in the scantable.
740
741 Parameters:
742
743 row: row no of integration. Default -1 return all rows
744
745 asdatetime: return values as datetime objects rather than strings
746
747 """
748 from time import strptime
749 from datetime import datetime
750 times = self._get_column(self._gettime, row)
751 if not asdatetime:
752 return times
753 format = "%Y/%m/%d/%H:%M:%S"
754 if isinstance(times, list):
755 return [datetime(*strptime(i, format)[:6]) for i in times]
756 else:
757 return datetime(*strptime(times, format)[:6])
758
759
760 def get_inttime(self, row=-1):
761 """\
762 Get a list of integration times for the observations.
763 Return a time in seconds for each integration in the scantable.
764
765 Parameters:
766
767 row: row no of integration. Default -1 return all rows.
768
769 """
770 return self._get_column(self._getinttime, row)
771
772
773 def get_sourcename(self, row=-1):
774 """\
775 Get a list source names for the observations.
776 Return a string for each integration in the scantable.
777 Parameters:
778
779 row: row no of integration. Default -1 return all rows.
780
781 """
782 return self._get_column(self._getsourcename, row)
783
784 def get_elevation(self, row=-1):
785 """\
786 Get a list of elevations for the observations.
787 Return a float for each integration in the scantable.
788
789 Parameters:
790
791 row: row no of integration. Default -1 return all rows.
792
793 """
794 return self._get_column(self._getelevation, row)
795
796 def get_azimuth(self, row=-1):
797 """\
798 Get a list of azimuths for the observations.
799 Return a float for each integration in the scantable.
800
801 Parameters:
802 row: row no of integration. Default -1 return all rows.
803
804 """
805 return self._get_column(self._getazimuth, row)
806
807 def get_parangle(self, row=-1):
808 """\
809 Get a list of parallactic angles for the observations.
810 Return a float for each integration in the scantable.
811
812 Parameters:
813
814 row: row no of integration. Default -1 return all rows.
815
816 """
817 return self._get_column(self._getparangle, row)
818
819 def get_direction(self, row=-1):
820 """
821 Get a list of Positions on the sky (direction) for the observations.
822 Return a string for each integration in the scantable.
823
824 Parameters:
825
826 row: row no of integration. Default -1 return all rows
827
828 """
829 return self._get_column(self._getdirection, row)
830
831 def get_directionval(self, row=-1):
832 """\
833 Get a list of Positions on the sky (direction) for the observations.
834 Return a float for each integration in the scantable.
835
836 Parameters:
837
838 row: row no of integration. Default -1 return all rows
839
840 """
841 return self._get_column(self._getdirectionvec, row)
842
843 @asaplog_post_dec
844 def set_unit(self, unit='channel'):
845 """\
846 Set the unit for all following operations on this scantable
847
848 Parameters:
849
850 unit: optional unit, default is 'channel'. Use one of '*Hz',
851 'km/s', 'channel' or equivalent ''
852
853 """
854 varlist = vars()
855 if unit in ['', 'pixel', 'channel']:
856 unit = ''
857 inf = list(self._getcoordinfo())
858 inf[0] = unit
859 self._setcoordinfo(inf)
860 self._add_history("set_unit", varlist)
861
862 @asaplog_post_dec
863 def set_instrument(self, instr):
864 """\
865 Set the instrument for subsequent processing.
866
867 Parameters:
868
869 instr: Select from 'ATPKSMB', 'ATPKSHOH', 'ATMOPRA',
870 'DSS-43' (Tid), 'CEDUNA', and 'HOBART'
871
872 """
873 self._setInstrument(instr)
874 self._add_history("set_instument", vars())
875
876 @asaplog_post_dec
877 def set_feedtype(self, feedtype):
878 """\
879 Overwrite the feed type, which might not be set correctly.
880
881 Parameters:
882
883 feedtype: 'linear' or 'circular'
884
885 """
886 self._setfeedtype(feedtype)
887 self._add_history("set_feedtype", vars())
888
889 @asaplog_post_dec
890 def set_doppler(self, doppler='RADIO'):
891 """\
892 Set the doppler for all following operations on this scantable.
893
894 Parameters:
895
896 doppler: One of 'RADIO', 'OPTICAL', 'Z', 'BETA', 'GAMMA'
897
898 """
899 varlist = vars()
900 inf = list(self._getcoordinfo())
901 inf[2] = doppler
902 self._setcoordinfo(inf)
903 self._add_history("set_doppler", vars())
904
905 @asaplog_post_dec
906 def set_freqframe(self, frame=None):
907 """\
908 Set the frame type of the Spectral Axis.
909
910 Parameters:
911
912 frame: an optional frame type, default 'LSRK'. Valid frames are:
913 'TOPO', 'LSRD', 'LSRK', 'BARY',
914 'GEO', 'GALACTO', 'LGROUP', 'CMB'
915
916 Example::
917
918 scan.set_freqframe('BARY')
919
920 """
921 frame = frame or rcParams['scantable.freqframe']
922 varlist = vars()
923 # "REST" is not implemented in casacore
924 #valid = ['REST', 'TOPO', 'LSRD', 'LSRK', 'BARY', \
925 # 'GEO', 'GALACTO', 'LGROUP', 'CMB']
926 valid = ['TOPO', 'LSRD', 'LSRK', 'BARY', \
927 'GEO', 'GALACTO', 'LGROUP', 'CMB']
928
929 if frame in valid:
930 inf = list(self._getcoordinfo())
931 inf[1] = frame
932 self._setcoordinfo(inf)
933 self._add_history("set_freqframe", varlist)
934 else:
935 msg = "Please specify a valid freq type. Valid types are:\n", valid
936 raise TypeError(msg)
937
938 @asaplog_post_dec
939 def set_dirframe(self, frame=""):
940 """\
941 Set the frame type of the Direction on the sky.
942
943 Parameters:
944
945 frame: an optional frame type, default ''. Valid frames are:
946 'J2000', 'B1950', 'GALACTIC'
947
948 Example:
949
950 scan.set_dirframe('GALACTIC')
951
952 """
953 varlist = vars()
954 Scantable.set_dirframe(self, frame)
955 self._add_history("set_dirframe", varlist)
956
957 def get_unit(self):
958 """\
959 Get the default unit set in this scantable
960
961 Returns:
962
963 A unit string
964
965 """
966 inf = self._getcoordinfo()
967 unit = inf[0]
968 if unit == '': unit = 'channel'
969 return unit
970
971 @asaplog_post_dec
972 def get_abcissa(self, rowno=0):
973 """\
974 Get the abcissa in the current coordinate setup for the currently
975 selected Beam/IF/Pol
976
977 Parameters:
978
979 rowno: an optional row number in the scantable. Default is the
980 first row, i.e. rowno=0
981
982 Returns:
983
984 The abcissa values and the format string (as a dictionary)
985
986 """
987 abc = self._getabcissa(rowno)
988 lbl = self._getabcissalabel(rowno)
989 return abc, lbl
990
991 @asaplog_post_dec
992 def flag(self, mask=None, unflag=False):
993 """\
994 Flag the selected data using an optional channel mask.
995
996 Parameters:
997
998 mask: an optional channel mask, created with create_mask. Default
999 (no mask) is all channels.
1000
1001 unflag: if True, unflag the data
1002
1003 """
1004 varlist = vars()
1005 mask = mask or []
1006 self._flag(mask, unflag)
1007 self._add_history("flag", varlist)
1008
1009 @asaplog_post_dec
1010 def flag_row(self, rows=[], unflag=False):
1011 """\
1012 Flag the selected data in row-based manner.
1013
1014 Parameters:
1015
1016 rows: list of row numbers to be flagged. Default is no row
1017 (must be explicitly specified to execute row-based flagging).
1018
1019 unflag: if True, unflag the data.
1020
1021 """
1022 varlist = vars()
1023 self._flag_row(rows, unflag)
1024 self._add_history("flag_row", varlist)
1025
1026 @asaplog_post_dec
1027 def clip(self, uthres=None, dthres=None, clipoutside=True, unflag=False):
1028 """\
1029 Flag the selected data outside a specified range (in channel-base)
1030
1031 Parameters:
1032
1033 uthres: upper threshold.
1034
1035 dthres: lower threshold
1036
1037 clipoutside: True for flagging data outside the range [dthres:uthres].
1038 False for glagging data inside the range.
1039
1040 unflag: if True, unflag the data.
1041
1042 """
1043 varlist = vars()
1044 self._clip(uthres, dthres, clipoutside, unflag)
1045 self._add_history("clip", varlist)
1046
1047 @asaplog_post_dec
1048 def lag_flag(self, start, end, unit="MHz", insitu=None):
1049 """\
1050 Flag the data in 'lag' space by providing a frequency to remove.
1051 Flagged data in the scantable gets interpolated over the region.
1052 No taper is applied.
1053
1054 Parameters:
1055
1056 start: the start frequency (really a period within the
1057 bandwidth) or period to remove
1058
1059 end: the end frequency or period to remove
1060
1061 unit: the frequency unit (default "MHz") or "" for
1062 explicit lag channels
1063
1064 *Notes*:
1065
1066 It is recommended to flag edges of the band or strong
1067 signals beforehand.
1068
1069 """
1070 if insitu is None: insitu = rcParams['insitu']
1071 self._math._setinsitu(insitu)
1072 varlist = vars()
1073 base = { "GHz": 1000000000., "MHz": 1000000., "kHz": 1000., "Hz": 1.}
1074 if not (unit == "" or base.has_key(unit)):
1075 raise ValueError("%s is not a valid unit." % unit)
1076 if unit == "":
1077 s = scantable(self._math._lag_flag(self, start, end, "lags"))
1078 else:
1079 s = scantable(self._math._lag_flag(self, start*base[unit],
1080 end*base[unit], "frequency"))
1081 s._add_history("lag_flag", varlist)
1082 if insitu:
1083 self._assign(s)
1084 else:
1085 return s
1086
1087 @asaplog_post_dec
1088 def create_mask(self, *args, **kwargs):
1089 """\
1090 Compute and return a mask based on [min, max] windows.
1091 The specified windows are to be INCLUDED, when the mask is
1092 applied.
1093
1094 Parameters:
1095
1096 [min, max], [min2, max2], ...
1097 Pairs of start/end points (inclusive)specifying the regions
1098 to be masked
1099
1100 invert: optional argument. If specified as True,
1101 return an inverted mask, i.e. the regions
1102 specified are EXCLUDED
1103
1104 row: create the mask using the specified row for
1105 unit conversions, default is row=0
1106 only necessary if frequency varies over rows.
1107
1108 Examples::
1109
1110 scan.set_unit('channel')
1111 # a)
1112 msk = scan.create_mask([400, 500], [800, 900])
1113 # masks everything outside 400 and 500
1114 # and 800 and 900 in the unit 'channel'
1115
1116 # b)
1117 msk = scan.create_mask([400, 500], [800, 900], invert=True)
1118 # masks the regions between 400 and 500
1119 # and 800 and 900 in the unit 'channel'
1120
1121 # c)
1122 #mask only channel 400
1123 msk = scan.create_mask([400])
1124
1125 """
1126 row = kwargs.get("row", 0)
1127 data = self._getabcissa(row)
1128 u = self._getcoordinfo()[0]
1129 if u == "":
1130 u = "channel"
1131 msg = "The current mask window unit is %s" % u
1132 i = self._check_ifs()
1133 if not i:
1134 msg += "\nThis mask is only valid for IF=%d" % (self.getif(i))
1135 asaplog.push(msg)
1136 n = self.nchan()
1137 msk = _n_bools(n, False)
1138 # test if args is a 'list' or a 'normal *args - UGLY!!!
1139
1140 ws = (isinstance(args[-1][-1], int) or isinstance(args[-1][-1], float)) \
1141 and args or args[0]
1142 for window in ws:
1143 if len(window) == 1:
1144 window = [window[0], window[0]]
1145 if len(window) == 0 or len(window) > 2:
1146 raise ValueError("A window needs to be defined as [start(, end)]")
1147 if window[0] > window[1]:
1148 tmp = window[0]
1149 window[0] = window[1]
1150 window[1] = tmp
1151 for i in range(n):
1152 if data[i] >= window[0] and data[i] <= window[1]:
1153 msk[i] = True
1154 if kwargs.has_key('invert'):
1155 if kwargs.get('invert'):
1156 msk = mask_not(msk)
1157 return msk
1158
1159 def get_masklist(self, mask=None, row=0):
1160 """\
1161 Compute and return a list of mask windows, [min, max].
1162
1163 Parameters:
1164
1165 mask: channel mask, created with create_mask.
1166
1167 row: calcutate the masklist using the specified row
1168 for unit conversions, default is row=0
1169 only necessary if frequency varies over rows.
1170
1171 Returns:
1172
1173 [min, max], [min2, max2], ...
1174 Pairs of start/end points (inclusive)specifying
1175 the masked regions
1176
1177 """
1178 if not (isinstance(mask,list) or isinstance(mask, tuple)):
1179 raise TypeError("The mask should be list or tuple.")
1180 if len(mask) < 2:
1181 raise TypeError("The mask elements should be > 1")
1182 if self.nchan() != len(mask):
1183 msg = "Number of channels in scantable != number of mask elements"
1184 raise TypeError(msg)
1185 data = self._getabcissa(row)
1186 u = self._getcoordinfo()[0]
1187 if u == "":
1188 u = "channel"
1189 msg = "The current mask window unit is %s" % u
1190 i = self._check_ifs()
1191 if not i:
1192 msg += "\nThis mask is only valid for IF=%d" % (self.getif(i))
1193 asaplog.push(msg)
1194 masklist=[]
1195 ist, ien = None, None
1196 ist, ien=self.get_mask_indices(mask)
1197 if ist is not None and ien is not None:
1198 for i in xrange(len(ist)):
1199 range=[data[ist[i]],data[ien[i]]]
1200 range.sort()
1201 masklist.append([range[0],range[1]])
1202 return masklist
1203
1204 def get_mask_indices(self, mask=None):
1205 """\
1206 Compute and Return lists of mask start indices and mask end indices.
1207
1208 Parameters:
1209
1210 mask: channel mask, created with create_mask.
1211
1212 Returns:
1213
1214 List of mask start indices and that of mask end indices,
1215 i.e., [istart1,istart2,....], [iend1,iend2,....].
1216
1217 """
1218 if not (isinstance(mask,list) or isinstance(mask, tuple)):
1219 raise TypeError("The mask should be list or tuple.")
1220 if len(mask) < 2:
1221 raise TypeError("The mask elements should be > 1")
1222 istart=[]
1223 iend=[]
1224 if mask[0]: istart.append(0)
1225 for i in range(len(mask)-1):
1226 if not mask[i] and mask[i+1]:
1227 istart.append(i+1)
1228 elif mask[i] and not mask[i+1]:
1229 iend.append(i)
1230 if mask[len(mask)-1]: iend.append(len(mask)-1)
1231 if len(istart) != len(iend):
1232 raise RuntimeError("Numbers of mask start != mask end.")
1233 for i in range(len(istart)):
1234 if istart[i] > iend[i]:
1235 raise RuntimeError("Mask start index > mask end index")
1236 break
1237 return istart,iend
1238
1239# def get_restfreqs(self):
1240# """
1241# Get the restfrequency(s) stored in this scantable.
1242# The return value(s) are always of unit 'Hz'
1243# Parameters:
1244# none
1245# Returns:
1246# a list of doubles
1247# """
1248# return list(self._getrestfreqs())
1249
1250 def get_restfreqs(self, ids=None):
1251 """\
1252 Get the restfrequency(s) stored in this scantable.
1253 The return value(s) are always of unit 'Hz'
1254
1255 Parameters:
1256
1257 ids: (optional) a list of MOLECULE_ID for that restfrequency(s) to
1258 be retrieved
1259
1260 Returns:
1261
1262 dictionary containing ids and a list of doubles for each id
1263
1264 """
1265 if ids is None:
1266 rfreqs={}
1267 idlist = self.getmolnos()
1268 for i in idlist:
1269 rfreqs[i]=list(self._getrestfreqs(i))
1270 return rfreqs
1271 else:
1272 if type(ids)==list or type(ids)==tuple:
1273 rfreqs={}
1274 for i in ids:
1275 rfreqs[i]=list(self._getrestfreqs(i))
1276 return rfreqs
1277 else:
1278 return list(self._getrestfreqs(ids))
1279 #return list(self._getrestfreqs(ids))
1280
1281 def set_restfreqs(self, freqs=None, unit='Hz'):
1282 """\
1283 Set or replace the restfrequency specified and
1284 If the 'freqs' argument holds a scalar,
1285 then that rest frequency will be applied to all the selected
1286 data. If the 'freqs' argument holds
1287 a vector, then it MUST be of equal or smaller length than
1288 the number of IFs (and the available restfrequencies will be
1289 replaced by this vector). In this case, *all* data have
1290 the restfrequency set per IF according
1291 to the corresponding value you give in the 'freqs' vector.
1292 E.g. 'freqs=[1e9, 2e9]' would mean IF 0 gets restfreq 1e9 and
1293 IF 1 gets restfreq 2e9.
1294
1295 You can also specify the frequencies via a linecatalog.
1296
1297 Parameters:
1298
1299 freqs: list of rest frequency values or string idenitfiers
1300
1301 unit: unit for rest frequency (default 'Hz')
1302
1303
1304 Example::
1305
1306 # set the given restfrequency for the all currently selected IFs
1307 scan.set_restfreqs(freqs=1.4e9)
1308 # set restfrequencies for the n IFs (n > 1) in the order of the
1309 # list, i.e
1310 # IF0 -> 1.4e9, IF1 -> 1.41e9, IF3 -> 1.42e9
1311 # len(list_of_restfreqs) == nIF
1312 # for nIF == 1 the following will set multiple restfrequency for
1313 # that IF
1314 scan.set_restfreqs(freqs=[1.4e9, 1.41e9, 1.42e9])
1315 # set multiple restfrequencies per IF. as a list of lists where
1316 # the outer list has nIF elements, the inner s arbitrary
1317 scan.set_restfreqs(freqs=[[1.4e9, 1.41e9], [1.67e9]])
1318
1319 *Note*:
1320
1321 To do more sophisticate Restfrequency setting, e.g. on a
1322 source and IF basis, use scantable.set_selection() before using
1323 this function::
1324
1325 # provided your scantable is called scan
1326 selection = selector()
1327 selection.set_name("ORION*")
1328 selection.set_ifs([1])
1329 scan.set_selection(selection)
1330 scan.set_restfreqs(freqs=86.6e9)
1331
1332 """
1333 varlist = vars()
1334 from asap import linecatalog
1335 # simple value
1336 if isinstance(freqs, int) or isinstance(freqs, float):
1337 self._setrestfreqs([freqs], [""], unit)
1338 # list of values
1339 elif isinstance(freqs, list) or isinstance(freqs, tuple):
1340 # list values are scalars
1341 if isinstance(freqs[-1], int) or isinstance(freqs[-1], float):
1342 if len(freqs) == 1:
1343 self._setrestfreqs(freqs, [""], unit)
1344 else:
1345 # allow the 'old' mode of setting mulitple IFs
1346 sel = selector()
1347 savesel = self._getselection()
1348 iflist = self.getifnos()
1349 if len(freqs)>len(iflist):
1350 raise ValueError("number of elements in list of list "
1351 "exeeds the current IF selections")
1352 iflist = self.getifnos()
1353 for i, fval in enumerate(freqs):
1354 sel.set_ifs(iflist[i])
1355 self._setselection(sel)
1356 self._setrestfreqs([fval], [""], unit)
1357 self._setselection(savesel)
1358
1359 # list values are dict, {'value'=, 'name'=)
1360 elif isinstance(freqs[-1], dict):
1361 values = []
1362 names = []
1363 for d in freqs:
1364 values.append(d["value"])
1365 names.append(d["name"])
1366 self._setrestfreqs(values, names, unit)
1367 elif isinstance(freqs[-1], list) or isinstance(freqs[-1], tuple):
1368 sel = selector()
1369 savesel = self._getselection()
1370 iflist = self.getifnos()
1371 if len(freqs)>len(iflist):
1372 raise ValueError("number of elements in list of list exeeds"
1373 " the current IF selections")
1374 for i, fval in enumerate(freqs):
1375 sel.set_ifs(iflist[i])
1376 self._setselection(sel)
1377 self._setrestfreqs(fval, [""], unit)
1378 self._setselection(savesel)
1379 # freqs are to be taken from a linecatalog
1380 elif isinstance(freqs, linecatalog):
1381 sel = selector()
1382 savesel = self._getselection()
1383 for i in xrange(freqs.nrow()):
1384 sel.set_ifs(iflist[i])
1385 self._setselection(sel)
1386 self._setrestfreqs([freqs.get_frequency(i)],
1387 [freqs.get_name(i)], "MHz")
1388 # ensure that we are not iterating past nIF
1389 if i == self.nif()-1: break
1390 self._setselection(savesel)
1391 else:
1392 return
1393 self._add_history("set_restfreqs", varlist)
1394
1395 def shift_refpix(self, delta):
1396 """\
1397 Shift the reference pixel of the Spectra Coordinate by an
1398 integer amount.
1399
1400 Parameters:
1401
1402 delta: the amount to shift by
1403
1404 *Note*:
1405
1406 Be careful using this with broadband data.
1407
1408 """
1409 Scantable.shift_refpix(self, delta)
1410
1411 @asaplog_post_dec
1412 def history(self, filename=None):
1413 """\
1414 Print the history. Optionally to a file.
1415
1416 Parameters:
1417
1418 filename: The name of the file to save the history to.
1419
1420 """
1421 hist = list(self._gethistory())
1422 out = "-"*80
1423 for h in hist:
1424 if h.startswith("---"):
1425 out = "\n".join([out, h])
1426 else:
1427 items = h.split("##")
1428 date = items[0]
1429 func = items[1]
1430 items = items[2:]
1431 out += "\n"+date+"\n"
1432 out += "Function: %s\n Parameters:" % (func)
1433 for i in items:
1434 s = i.split("=")
1435 out += "\n %s = %s" % (s[0], s[1])
1436 out = "\n".join([out, "-"*80])
1437 if filename is not None:
1438 if filename is "":
1439 filename = 'scantable_history.txt'
1440 import os
1441 filename = os.path.expandvars(os.path.expanduser(filename))
1442 if not os.path.isdir(filename):
1443 data = open(filename, 'w')
1444 data.write(out)
1445 data.close()
1446 else:
1447 msg = "Illegal file name '%s'." % (filename)
1448 raise IOError(msg)
1449 return page(out)
1450 #
1451 # Maths business
1452 #
1453 @asaplog_post_dec
1454 def average_time(self, mask=None, scanav=False, weight='tint', align=False):
1455 """\
1456 Return the (time) weighted average of a scan.
1457
1458 *Note*:
1459
1460 in channels only - align if necessary
1461
1462 Parameters:
1463
1464 mask: an optional mask (only used for 'var' and 'tsys'
1465 weighting)
1466
1467 scanav: True averages each scan separately
1468 False (default) averages all scans together,
1469
1470 weight: Weighting scheme.
1471 'none' (mean no weight)
1472 'var' (1/var(spec) weighted)
1473 'tsys' (1/Tsys**2 weighted)
1474 'tint' (integration time weighted)
1475 'tintsys' (Tint/Tsys**2)
1476 'median' ( median averaging)
1477 The default is 'tint'
1478
1479 align: align the spectra in velocity before averaging. It takes
1480 the time of the first spectrum as reference time.
1481
1482 Example::
1483
1484 # time average the scantable without using a mask
1485 newscan = scan.average_time()
1486
1487 """
1488 varlist = vars()
1489 weight = weight or 'TINT'
1490 mask = mask or ()
1491 scanav = (scanav and 'SCAN') or 'NONE'
1492 scan = (self, )
1493
1494 if align:
1495 scan = (self.freq_align(insitu=False), )
1496 s = None
1497 if weight.upper() == 'MEDIAN':
1498 s = scantable(self._math._averagechannel(scan[0], 'MEDIAN',
1499 scanav))
1500 else:
1501 s = scantable(self._math._average(scan, mask, weight.upper(),
1502 scanav))
1503 s._add_history("average_time", varlist)
1504 return s
1505
1506 @asaplog_post_dec
1507 def convert_flux(self, jyperk=None, eta=None, d=None, insitu=None):
1508 """\
1509 Return a scan where all spectra are converted to either
1510 Jansky or Kelvin depending upon the flux units of the scan table.
1511 By default the function tries to look the values up internally.
1512 If it can't find them (or if you want to over-ride), you must
1513 specify EITHER jyperk OR eta (and D which it will try to look up
1514 also if you don't set it). jyperk takes precedence if you set both.
1515
1516 Parameters:
1517
1518 jyperk: the Jy / K conversion factor
1519
1520 eta: the aperture efficiency
1521
1522 d: the geomtric diameter (metres)
1523
1524 insitu: if False a new scantable is returned.
1525 Otherwise, the scaling is done in-situ
1526 The default is taken from .asaprc (False)
1527
1528 """
1529 if insitu is None: insitu = rcParams['insitu']
1530 self._math._setinsitu(insitu)
1531 varlist = vars()
1532 jyperk = jyperk or -1.0
1533 d = d or -1.0
1534 eta = eta or -1.0
1535 s = scantable(self._math._convertflux(self, d, eta, jyperk))
1536 s._add_history("convert_flux", varlist)
1537 if insitu: self._assign(s)
1538 else: return s
1539
1540 @asaplog_post_dec
1541 def gain_el(self, poly=None, filename="", method="linear", insitu=None):
1542 """\
1543 Return a scan after applying a gain-elevation correction.
1544 The correction can be made via either a polynomial or a
1545 table-based interpolation (and extrapolation if necessary).
1546 You specify polynomial coefficients, an ascii table or neither.
1547 If you specify neither, then a polynomial correction will be made
1548 with built in coefficients known for certain telescopes (an error
1549 will occur if the instrument is not known).
1550 The data and Tsys are *divided* by the scaling factors.
1551
1552 Parameters:
1553
1554 poly: Polynomial coefficients (default None) to compute a
1555 gain-elevation correction as a function of
1556 elevation (in degrees).
1557
1558 filename: The name of an ascii file holding correction factors.
1559 The first row of the ascii file must give the column
1560 names and these MUST include columns
1561 "ELEVATION" (degrees) and "FACTOR" (multiply data
1562 by this) somewhere.
1563 The second row must give the data type of the
1564 column. Use 'R' for Real and 'I' for Integer.
1565 An example file would be
1566 (actual factors are arbitrary) :
1567
1568 TIME ELEVATION FACTOR
1569 R R R
1570 0.1 0 0.8
1571 0.2 20 0.85
1572 0.3 40 0.9
1573 0.4 60 0.85
1574 0.5 80 0.8
1575 0.6 90 0.75
1576
1577 method: Interpolation method when correcting from a table.
1578 Values are "nearest", "linear" (default), "cubic"
1579 and "spline"
1580
1581 insitu: if False a new scantable is returned.
1582 Otherwise, the scaling is done in-situ
1583 The default is taken from .asaprc (False)
1584
1585 """
1586
1587 if insitu is None: insitu = rcParams['insitu']
1588 self._math._setinsitu(insitu)
1589 varlist = vars()
1590 poly = poly or ()
1591 from os.path import expandvars
1592 filename = expandvars(filename)
1593 s = scantable(self._math._gainel(self, poly, filename, method))
1594 s._add_history("gain_el", varlist)
1595 if insitu:
1596 self._assign(s)
1597 else:
1598 return s
1599
1600 @asaplog_post_dec
1601 def freq_align(self, reftime=None, method='cubic', insitu=None):
1602 """\
1603 Return a scan where all rows have been aligned in frequency/velocity.
1604 The alignment frequency frame (e.g. LSRK) is that set by function
1605 set_freqframe.
1606
1607 Parameters:
1608
1609 reftime: reference time to align at. By default, the time of
1610 the first row of data is used.
1611
1612 method: Interpolation method for regridding the spectra.
1613 Choose from "nearest", "linear", "cubic" (default)
1614 and "spline"
1615
1616 insitu: if False a new scantable is returned.
1617 Otherwise, the scaling is done in-situ
1618 The default is taken from .asaprc (False)
1619
1620 """
1621 if insitu is None: insitu = rcParams["insitu"]
1622 self._math._setinsitu(insitu)
1623 varlist = vars()
1624 reftime = reftime or ""
1625 s = scantable(self._math._freq_align(self, reftime, method))
1626 s._add_history("freq_align", varlist)
1627 if insitu: self._assign(s)
1628 else: return s
1629
1630 @asaplog_post_dec
1631 def opacity(self, tau=None, insitu=None):
1632 """\
1633 Apply an opacity correction. The data
1634 and Tsys are multiplied by the correction factor.
1635
1636 Parameters:
1637
1638 tau: (list of) opacity from which the correction factor is
1639 exp(tau*ZD)
1640 where ZD is the zenith-distance.
1641 If a list is provided, it has to be of length nIF,
1642 nIF*nPol or 1 and in order of IF/POL, e.g.
1643 [opif0pol0, opif0pol1, opif1pol0 ...]
1644 if tau is `None` the opacities are determined from a
1645 model.
1646
1647 insitu: if False a new scantable is returned.
1648 Otherwise, the scaling is done in-situ
1649 The default is taken from .asaprc (False)
1650
1651 """
1652 if insitu is None: insitu = rcParams['insitu']
1653 self._math._setinsitu(insitu)
1654 varlist = vars()
1655 if not hasattr(tau, "__len__"):
1656 tau = [tau]
1657 s = scantable(self._math._opacity(self, tau))
1658 s._add_history("opacity", varlist)
1659 if insitu: self._assign(s)
1660 else: return s
1661
1662 @asaplog_post_dec
1663 def bin(self, width=5, insitu=None):
1664 """\
1665 Return a scan where all spectra have been binned up.
1666
1667 Parameters:
1668
1669 width: The bin width (default=5) in pixels
1670
1671 insitu: if False a new scantable is returned.
1672 Otherwise, the scaling is done in-situ
1673 The default is taken from .asaprc (False)
1674
1675 """
1676 if insitu is None: insitu = rcParams['insitu']
1677 self._math._setinsitu(insitu)
1678 varlist = vars()
1679 s = scantable(self._math._bin(self, width))
1680 s._add_history("bin", varlist)
1681 if insitu:
1682 self._assign(s)
1683 else:
1684 return s
1685
1686 @asaplog_post_dec
1687 def resample(self, width=5, method='cubic', insitu=None):
1688 """\
1689 Return a scan where all spectra have been binned up.
1690
1691 Parameters:
1692
1693 width: The bin width (default=5) in pixels
1694
1695 method: Interpolation method when correcting from a table.
1696 Values are "nearest", "linear", "cubic" (default)
1697 and "spline"
1698
1699 insitu: if False a new scantable is returned.
1700 Otherwise, the scaling is done in-situ
1701 The default is taken from .asaprc (False)
1702
1703 """
1704 if insitu is None: insitu = rcParams['insitu']
1705 self._math._setinsitu(insitu)
1706 varlist = vars()
1707 s = scantable(self._math._resample(self, method, width))
1708 s._add_history("resample", varlist)
1709 if insitu: self._assign(s)
1710 else: return s
1711
1712 @asaplog_post_dec
1713 def average_pol(self, mask=None, weight='none'):
1714 """\
1715 Average the Polarisations together.
1716
1717 Parameters:
1718
1719 mask: An optional mask defining the region, where the
1720 averaging will be applied. The output will have all
1721 specified points masked.
1722
1723 weight: Weighting scheme. 'none' (default), 'var' (1/var(spec)
1724 weighted), or 'tsys' (1/Tsys**2 weighted)
1725
1726 """
1727 varlist = vars()
1728 mask = mask or ()
1729 s = scantable(self._math._averagepol(self, mask, weight.upper()))
1730 s._add_history("average_pol", varlist)
1731 return s
1732
1733 @asaplog_post_dec
1734 def average_beam(self, mask=None, weight='none'):
1735 """\
1736 Average the Beams together.
1737
1738 Parameters:
1739 mask: An optional mask defining the region, where the
1740 averaging will be applied. The output will have all
1741 specified points masked.
1742
1743 weight: Weighting scheme. 'none' (default), 'var' (1/var(spec)
1744 weighted), or 'tsys' (1/Tsys**2 weighted)
1745
1746 """
1747 varlist = vars()
1748 mask = mask or ()
1749 s = scantable(self._math._averagebeams(self, mask, weight.upper()))
1750 s._add_history("average_beam", varlist)
1751 return s
1752
1753 def parallactify(self, pflag):
1754 """\
1755 Set a flag to indicate whether this data should be treated as having
1756 been 'parallactified' (total phase == 0.0)
1757
1758 Parameters:
1759
1760 pflag: Bool indicating whether to turn this on (True) or
1761 off (False)
1762
1763 """
1764 varlist = vars()
1765 self._parallactify(pflag)
1766 self._add_history("parallactify", varlist)
1767
1768 @asaplog_post_dec
1769 def convert_pol(self, poltype=None):
1770 """\
1771 Convert the data to a different polarisation type.
1772 Note that you will need cross-polarisation terms for most conversions.
1773
1774 Parameters:
1775
1776 poltype: The new polarisation type. Valid types are:
1777 "linear", "circular", "stokes" and "linpol"
1778
1779 """
1780 varlist = vars()
1781 s = scantable(self._math._convertpol(self, poltype))
1782 s._add_history("convert_pol", varlist)
1783 return s
1784
1785 @asaplog_post_dec
1786 def smooth(self, kernel="hanning", width=5.0, order=2, plot=False, insitu=None):
1787 """\
1788 Smooth the spectrum by the specified kernel (conserving flux).
1789
1790 Parameters:
1791
1792 kernel: The type of smoothing kernel. Select from
1793 'hanning' (default), 'gaussian', 'boxcar', 'rmedian'
1794 or 'poly'
1795
1796 width: The width of the kernel in pixels. For hanning this is
1797 ignored otherwise it defauls to 5 pixels.
1798 For 'gaussian' it is the Full Width Half
1799 Maximum. For 'boxcar' it is the full width.
1800 For 'rmedian' and 'poly' it is the half width.
1801
1802 order: Optional parameter for 'poly' kernel (default is 2), to
1803 specify the order of the polnomial. Ignored by all other
1804 kernels.
1805
1806 plot: plot the original and the smoothed spectra.
1807 In this each indivual fit has to be approved, by
1808 typing 'y' or 'n'
1809
1810 insitu: if False a new scantable is returned.
1811 Otherwise, the scaling is done in-situ
1812 The default is taken from .asaprc (False)
1813
1814 """
1815 if insitu is None: insitu = rcParams['insitu']
1816 self._math._setinsitu(insitu)
1817 varlist = vars()
1818
1819 if plot: orgscan = self.copy()
1820
1821 s = scantable(self._math._smooth(self, kernel.lower(), width, order))
1822 s._add_history("smooth", varlist)
1823
1824 if plot:
1825 if rcParams['plotter.gui']:
1826 from asap.asaplotgui import asaplotgui as asaplot
1827 else:
1828 from asap.asaplot import asaplot
1829 self._p=asaplot()
1830 self._p.set_panels()
1831 ylab=s._get_ordinate_label()
1832 #self._p.palette(0,["#777777","red"])
1833 for r in xrange(s.nrow()):
1834 xsm=s._getabcissa(r)
1835 ysm=s._getspectrum(r)
1836 xorg=orgscan._getabcissa(r)
1837 yorg=orgscan._getspectrum(r)
1838 self._p.clear()
1839 self._p.hold()
1840 self._p.set_axes('ylabel',ylab)
1841 self._p.set_axes('xlabel',s._getabcissalabel(r))
1842 self._p.set_axes('title',s._getsourcename(r))
1843 self._p.set_line(label='Original',color="#777777")
1844 self._p.plot(xorg,yorg)
1845 self._p.set_line(label='Smoothed',color="red")
1846 self._p.plot(xsm,ysm)
1847 ### Ugly part for legend
1848 for i in [0,1]:
1849 self._p.subplots[0]['lines'].append([self._p.subplots[0]['axes'].lines[i]])
1850 self._p.release()
1851 ### Ugly part for legend
1852 self._p.subplots[0]['lines']=[]
1853 res = raw_input("Accept smoothing ([y]/n): ")
1854 if res.upper() == 'N':
1855 s._setspectrum(yorg, r)
1856 self._p.unmap()
1857 self._p = None
1858 del orgscan
1859
1860 if insitu: self._assign(s)
1861 else: return s
1862
1863 @asaplog_post_dec
1864 def old_poly_baseline(self, mask=None, order=0, plot=False, uselin=False, insitu=None, rows=None):
1865 """\
1866 Return a scan which has been baselined (all rows) by a polynomial.
1867
1868 Parameters:
1869
1870 mask: an optional mask
1871
1872 order: the order of the polynomial (default is 0)
1873
1874 plot: plot the fit and the residual. In this each
1875 indivual fit has to be approved, by typing 'y'
1876 or 'n'
1877
1878 uselin: use linear polynomial fit
1879
1880 insitu: if False a new scantable is returned.
1881 Otherwise, the scaling is done in-situ
1882 The default is taken from .asaprc (False)
1883
1884 rows: row numbers of spectra to be processed.
1885 (default is None: for all rows)
1886
1887 Example:
1888 # return a scan baselined by a third order polynomial,
1889 # not using a mask
1890 bscan = scan.poly_baseline(order=3)
1891
1892 """
1893 if insitu is None: insitu = rcParams['insitu']
1894 if not insitu:
1895 workscan = self.copy()
1896 else:
1897 workscan = self
1898 varlist = vars()
1899 if mask is None:
1900 mask = [True for i in xrange(self.nchan())]
1901
1902 try:
1903 f = fitter()
1904 if uselin:
1905 f.set_function(lpoly=order)
1906 else:
1907 f.set_function(poly=order)
1908
1909 if rows == None:
1910 rows = xrange(workscan.nrow())
1911 elif isinstance(rows, int):
1912 rows = [ rows ]
1913
1914 if len(rows) > 0:
1915 self.blpars = []
1916 self.masklists = []
1917 self.actualmask = []
1918
1919 for r in rows:
1920 f.x = workscan._getabcissa(r)
1921 f.y = workscan._getspectrum(r)
1922 f.mask = mask_and(mask, workscan._getmask(r)) # (CAS-1434)
1923 f.data = None
1924 f.fit()
1925 if plot:
1926 f.plot(residual=True)
1927 x = raw_input("Accept fit ( [y]/n ): ")
1928 if x.upper() == 'N':
1929 self.blpars.append(None)
1930 self.masklists.append(None)
1931 self.actualmask.append(None)
1932 continue
1933 workscan._setspectrum(f.fitter.getresidual(), r)
1934 self.blpars.append(f.get_parameters())
1935 self.masklists.append(workscan.get_masklist(f.mask, row=r))
1936 self.actualmask.append(f.mask)
1937
1938 if plot:
1939 f._p.unmap()
1940 f._p = None
1941 workscan._add_history("poly_baseline", varlist)
1942 if insitu:
1943 self._assign(workscan)
1944 else:
1945 return workscan
1946 except RuntimeError:
1947 msg = "The fit failed, possibly because it didn't converge."
1948 raise RuntimeError(msg)
1949
1950
1951 def poly_baseline(self, mask=None, order=0, plot=False, batch=False, insitu=None, rows=None):
1952 """\
1953 Return a scan which has been baselined (all rows) by a polynomial.
1954 Parameters:
1955 mask: an optional mask
1956 order: the order of the polynomial (default is 0)
1957 plot: plot the fit and the residual. In this each
1958 indivual fit has to be approved, by typing 'y'
1959 or 'n'. Ignored if batch = True.
1960 batch: if True a faster algorithm is used and logs
1961 including the fit results are not output
1962 (default is False)
1963 insitu: if False a new scantable is returned.
1964 Otherwise, the scaling is done in-situ
1965 The default is taken from .asaprc (False)
1966 rows: row numbers of spectra to be processed.
1967 (default is None: for all rows)
1968 Example:
1969 # return a scan baselined by a third order polynomial,
1970 # not using a mask
1971 bscan = scan.poly_baseline(order=3)
1972 """
1973 if insitu is None: insitu = rcParams["insitu"]
1974 if insitu:
1975 workscan = self
1976 else:
1977 workscan = self.copy()
1978
1979 varlist = vars()
1980 nchan = workscan.nchan()
1981
1982 if mask is None:
1983 mask = [True for i in xrange(nchan)]
1984
1985 try:
1986 if rows == None:
1987 rows = xrange(workscan.nrow())
1988 elif isinstance(rows, int):
1989 rows = [ rows ]
1990
1991 if len(rows) > 0:
1992 self.blpars = []
1993 self.masklists = []
1994 self.actualmask = []
1995
1996 if batch:
1997 for r in rows:
1998 workscan._poly_baseline_batch(mask, order, r)
1999 elif plot:
2000 f = fitter()
2001 f.set_function(lpoly=order)
2002 for r in rows:
2003 f.x = workscan._getabcissa(r)
2004 f.y = workscan._getspectrum(r)
2005 f.mask = mask_and(mask, workscan._getmask(r)) # (CAS-1434)
2006 f.data = None
2007 f.fit()
2008
2009 f.plot(residual=True)
2010 accept_fit = raw_input("Accept fit ( [y]/n ): ")
2011 if accept_fit.upper() == "N":
2012 self.blpars.append(None)
2013 self.masklists.append(None)
2014 self.actualmask.append(None)
2015 continue
2016 workscan._setspectrum(f.fitter.getresidual(), r)
2017 self.blpars.append(f.get_parameters())
2018 self.masklists.append(workscan.get_masklist(f.mask, row=r))
2019 self.actualmask.append(f.mask)
2020
2021 f._p.unmap()
2022 f._p = None
2023 else:
2024 import array
2025 for r in rows:
2026 pars = array.array("f", [0.0 for i in range(order+1)])
2027 pars_adr = pars.buffer_info()[0]
2028 pars_len = pars.buffer_info()[1]
2029
2030 errs = array.array("f", [0.0 for i in range(order+1)])
2031 errs_adr = errs.buffer_info()[0]
2032 errs_len = errs.buffer_info()[1]
2033
2034 fmsk = array.array("i", [1 for i in range(nchan)])
2035 fmsk_adr = fmsk.buffer_info()[0]
2036 fmsk_len = fmsk.buffer_info()[1]
2037
2038 workscan._poly_baseline(mask, order, r, pars_adr, pars_len, errs_adr, errs_len, fmsk_adr, fmsk_len)
2039
2040 params = pars.tolist()
2041 fmtd = ""
2042 for i in xrange(len(params)): fmtd += " p%d= %3.6f," % (i, params[i])
2043 fmtd = fmtd[:-1] # remove trailing ","
2044 errors = errs.tolist()
2045 fmask = fmsk.tolist()
2046 for i in xrange(len(fmask)): fmask[i] = (fmask[i] > 0) # transform (1/0) -> (True/False)
2047
2048 self.blpars.append({"params":params, "fixed":[], "formatted":fmtd, "errors":errors})
2049 self.masklists.append(workscan.get_masklist(fmask, r))
2050 self.actualmask.append(fmask)
2051
2052 asaplog.push(str(fmtd))
2053
2054 workscan._add_history("poly_baseline", varlist)
2055
2056 if insitu:
2057 self._assign(workscan)
2058 else:
2059 return workscan
2060
2061 except RuntimeError:
2062 msg = "The fit failed, possibly because it didn't converge."
2063 if rcParams["verbose"]:
2064 asaplog.push(str(msg))
2065 return
2066 else:
2067 raise RuntimeError(msg)
2068
2069
2070 def auto_poly_baseline(self, mask=None, edge=(0, 0), order=0,
2071 threshold=3, chan_avg_limit=1, plot=False,
2072 insitu=None, rows=None):
2073 """\
2074 Return a scan which has been baselined (all rows) by a polynomial.
2075 Spectral lines are detected first using linefinder and masked out
2076 to avoid them affecting the baseline solution.
2077
2078 Parameters:
2079
2080 mask: an optional mask retreived from scantable
2081
2082 edge: an optional number of channel to drop at the edge of
2083 spectrum. If only one value is
2084 specified, the same number will be dropped from
2085 both sides of the spectrum. Default is to keep
2086 all channels. Nested tuples represent individual
2087 edge selection for different IFs (a number of spectral
2088 channels can be different)
2089
2090 order: the order of the polynomial (default is 0)
2091
2092 threshold: the threshold used by line finder. It is better to
2093 keep it large as only strong lines affect the
2094 baseline solution.
2095
2096 chan_avg_limit:
2097 a maximum number of consequtive spectral channels to
2098 average during the search of weak and broad lines.
2099 The default is no averaging (and no search for weak
2100 lines). If such lines can affect the fitted baseline
2101 (e.g. a high order polynomial is fitted), increase this
2102 parameter (usually values up to 8 are reasonable). Most
2103 users of this method should find the default value
2104 sufficient.
2105
2106 plot: plot the fit and the residual. In this each
2107 indivual fit has to be approved, by typing 'y'
2108 or 'n'
2109
2110 insitu: if False a new scantable is returned.
2111 Otherwise, the scaling is done in-situ
2112 The default is taken from .asaprc (False)
2113 rows: row numbers of spectra to be processed.
2114 (default is None: for all rows)
2115
2116
2117 Example::
2118
2119 scan2 = scan.auto_poly_baseline(order=7, insitu=False)
2120
2121 """
2122 if insitu is None: insitu = rcParams['insitu']
2123 varlist = vars()
2124 from asap.asaplinefind import linefinder
2125 from asap import _is_sequence_or_number as _is_valid
2126
2127 # check whether edge is set up for each IF individually
2128 individualedge = False;
2129 if len(edge) > 1:
2130 if isinstance(edge[0], list) or isinstance(edge[0], tuple):
2131 individualedge = True;
2132
2133 if not _is_valid(edge, int) and not individualedge:
2134 raise ValueError, "Parameter 'edge' has to be an integer or a \
2135 pair of integers specified as a tuple. Nested tuples are allowed \
2136 to make individual selection for different IFs."
2137
2138 curedge = (0, 0)
2139 if individualedge:
2140 for edgepar in edge:
2141 if not _is_valid(edgepar, int):
2142 raise ValueError, "Each element of the 'edge' tuple has \
2143 to be a pair of integers or an integer."
2144 else:
2145 curedge = edge;
2146
2147 if not insitu:
2148 workscan = self.copy()
2149 else:
2150 workscan = self
2151
2152 # setup fitter
2153 f = fitter()
2154 f.set_function(lpoly=order)
2155
2156 # setup line finder
2157 fl = linefinder()
2158 fl.set_options(threshold=threshold,avg_limit=chan_avg_limit)
2159
2160 fl.set_scan(workscan)
2161
2162 if mask is None:
2163 mask = _n_bools(workscan.nchan(), True)
2164
2165 if rows is None:
2166 rows = xrange(workscan.nrow())
2167 elif isinstance(rows, int):
2168 rows = [ rows ]
2169
2170 # Save parameters of baseline fits & masklists as a class attribute.
2171 # NOTICE: It does not reflect changes in scantable!
2172 if len(rows) > 0:
2173 self.blpars=[]
2174 self.masklists=[]
2175 self.actualmask=[]
2176 asaplog.push("Processing:")
2177 for r in rows:
2178 msg = " Scan[%d] Beam[%d] IF[%d] Pol[%d] Cycle[%d]" % \
2179 (workscan.getscan(r), workscan.getbeam(r), workscan.getif(r), \
2180 workscan.getpol(r), workscan.getcycle(r))
2181 asaplog.push(msg, False)
2182
2183 # figure out edge parameter
2184 if individualedge:
2185 if len(edge) >= workscan.getif(r):
2186 raise RuntimeError, "Number of edge elements appear to " \
2187 "be less than the number of IFs"
2188 curedge = edge[workscan.getif(r)]
2189
2190 actualmask = mask_and(mask, workscan._getmask(r)) # (CAS-1434)
2191
2192 # setup line finder
2193 fl.find_lines(r, actualmask, curedge)
2194
2195 f.x = workscan._getabcissa(r)
2196 f.y = workscan._getspectrum(r)
2197 f.mask = fl.get_mask()
2198 f.data = None
2199 f.fit()
2200
2201 # Show mask list
2202 masklist=workscan.get_masklist(f.mask, row=r)
2203 msg = "mask range: "+str(masklist)
2204 asaplog.push(msg, False)
2205
2206 if plot:
2207 f.plot(residual=True)
2208 x = raw_input("Accept fit ( [y]/n ): ")
2209 if x.upper() == 'N':
2210 self.blpars.append(None)
2211 self.masklists.append(None)
2212 self.actualmask.append(None)
2213 continue
2214
2215 workscan._setspectrum(f.fitter.getresidual(), r)
2216 self.blpars.append(f.get_parameters())
2217 self.masklists.append(masklist)
2218 self.actualmask.append(f.mask)
2219 if plot:
2220 f._p.unmap()
2221 f._p = None
2222 workscan._add_history("auto_poly_baseline", varlist)
2223 if insitu:
2224 self._assign(workscan)
2225 else:
2226 return workscan
2227
2228 @asaplog_post_dec
2229 def rotate_linpolphase(self, angle):
2230 """\
2231 Rotate the phase of the complex polarization O=Q+iU correlation.
2232 This is always done in situ in the raw data. So if you call this
2233 function more than once then each call rotates the phase further.
2234
2235 Parameters:
2236
2237 angle: The angle (degrees) to rotate (add) by.
2238
2239 Example::
2240
2241 scan.rotate_linpolphase(2.3)
2242
2243 """
2244 varlist = vars()
2245 self._math._rotate_linpolphase(self, angle)
2246 self._add_history("rotate_linpolphase", varlist)
2247 return
2248
2249 @asaplog_post_dec
2250 def rotate_xyphase(self, angle):
2251 """\
2252 Rotate the phase of the XY correlation. This is always done in situ
2253 in the data. So if you call this function more than once
2254 then each call rotates the phase further.
2255
2256 Parameters:
2257
2258 angle: The angle (degrees) to rotate (add) by.
2259
2260 Example::
2261
2262 scan.rotate_xyphase(2.3)
2263
2264 """
2265 varlist = vars()
2266 self._math._rotate_xyphase(self, angle)
2267 self._add_history("rotate_xyphase", varlist)
2268 return
2269
2270 @asaplog_post_dec
2271 def swap_linears(self):
2272 """\
2273 Swap the linear polarisations XX and YY, or better the first two
2274 polarisations as this also works for ciculars.
2275 """
2276 varlist = vars()
2277 self._math._swap_linears(self)
2278 self._add_history("swap_linears", varlist)
2279 return
2280
2281 @asaplog_post_dec
2282 def invert_phase(self):
2283 """\
2284 Invert the phase of the complex polarisation
2285 """
2286 varlist = vars()
2287 self._math._invert_phase(self)
2288 self._add_history("invert_phase", varlist)
2289 return
2290
2291 @asaplog_post_dec
2292 def add(self, offset, insitu=None):
2293 """\
2294 Return a scan where all spectra have the offset added
2295
2296 Parameters:
2297
2298 offset: the offset
2299
2300 insitu: if False a new scantable is returned.
2301 Otherwise, the scaling is done in-situ
2302 The default is taken from .asaprc (False)
2303
2304 """
2305 if insitu is None: insitu = rcParams['insitu']
2306 self._math._setinsitu(insitu)
2307 varlist = vars()
2308 s = scantable(self._math._unaryop(self, offset, "ADD", False))
2309 s._add_history("add", varlist)
2310 if insitu:
2311 self._assign(s)
2312 else:
2313 return s
2314
2315 @asaplog_post_dec
2316 def scale(self, factor, tsys=True, insitu=None):
2317 """\
2318
2319 Return a scan where all spectra are scaled by the give 'factor'
2320
2321 Parameters:
2322
2323 factor: the scaling factor (float or 1D float list)
2324
2325 insitu: if False a new scantable is returned.
2326 Otherwise, the scaling is done in-situ
2327 The default is taken from .asaprc (False)
2328
2329 tsys: if True (default) then apply the operation to Tsys
2330 as well as the data
2331
2332 """
2333 if insitu is None: insitu = rcParams['insitu']
2334 self._math._setinsitu(insitu)
2335 varlist = vars()
2336 s = None
2337 import numpy
2338 if isinstance(factor, list) or isinstance(factor, numpy.ndarray):
2339 if isinstance(factor[0], list) or isinstance(factor[0], numpy.ndarray):
2340 from asapmath import _array2dOp
2341 s = _array2dOp( self.copy(), factor, "MUL", tsys )
2342 else:
2343 s = scantable( self._math._arrayop( self.copy(), factor, "MUL", tsys ) )
2344 else:
2345 s = scantable(self._math._unaryop(self.copy(), factor, "MUL", tsys))
2346 s._add_history("scale", varlist)
2347 if insitu:
2348 self._assign(s)
2349 else:
2350 return s
2351
2352 def set_sourcetype(self, match, matchtype="pattern",
2353 sourcetype="reference"):
2354 """\
2355 Set the type of the source to be an source or reference scan
2356 using the provided pattern.
2357
2358 Parameters:
2359
2360 match: a Unix style pattern, regular expression or selector
2361
2362 matchtype: 'pattern' (default) UNIX style pattern or
2363 'regex' regular expression
2364
2365 sourcetype: the type of the source to use (source/reference)
2366
2367 """
2368 varlist = vars()
2369 basesel = self.get_selection()
2370 stype = -1
2371 if sourcetype.lower().startswith("r"):
2372 stype = 1
2373 elif sourcetype.lower().startswith("s"):
2374 stype = 0
2375 else:
2376 raise ValueError("Illegal sourcetype use s(ource) or r(eference)")
2377 if matchtype.lower().startswith("p"):
2378 matchtype = "pattern"
2379 elif matchtype.lower().startswith("r"):
2380 matchtype = "regex"
2381 else:
2382 raise ValueError("Illegal matchtype, use p(attern) or r(egex)")
2383 sel = selector()
2384 if isinstance(match, selector):
2385 sel = match
2386 else:
2387 sel.set_query("SRCNAME == %s('%s')" % (matchtype, match))
2388 self.set_selection(basesel+sel)
2389 self._setsourcetype(stype)
2390 self.set_selection(basesel)
2391 self._add_history("set_sourcetype", varlist)
2392
2393 @asaplog_post_dec
2394 @preserve_selection
2395 def auto_quotient(self, preserve=True, mode='paired', verify=False):
2396 """\
2397 This function allows to build quotients automatically.
2398 It assumes the observation to have the same number of
2399 "ons" and "offs"
2400
2401 Parameters:
2402
2403 preserve: you can preserve (default) the continuum or
2404 remove it. The equations used are
2405
2406 preserve: Output = Toff * (on/off) - Toff
2407
2408 remove: Output = Toff * (on/off) - Ton
2409
2410 mode: the on/off detection mode
2411 'paired' (default)
2412 identifies 'off' scans by the
2413 trailing '_R' (Mopra/Parkes) or
2414 '_e'/'_w' (Tid) and matches
2415 on/off pairs from the observing pattern
2416 'time'
2417 finds the closest off in time
2418
2419 .. todo:: verify argument is not implemented
2420
2421 """
2422 varlist = vars()
2423 modes = ["time", "paired"]
2424 if not mode in modes:
2425 msg = "please provide valid mode. Valid modes are %s" % (modes)
2426 raise ValueError(msg)
2427 s = None
2428 if mode.lower() == "paired":
2429 sel = self.get_selection()
2430 sel.set_query("SRCTYPE==psoff")
2431 self.set_selection(sel)
2432 offs = self.copy()
2433 sel.set_query("SRCTYPE==pson")
2434 self.set_selection(sel)
2435 ons = self.copy()
2436 s = scantable(self._math._quotient(ons, offs, preserve))
2437 elif mode.lower() == "time":
2438 s = scantable(self._math._auto_quotient(self, mode, preserve))
2439 s._add_history("auto_quotient", varlist)
2440 return s
2441
2442 @asaplog_post_dec
2443 def mx_quotient(self, mask = None, weight='median', preserve=True):
2444 """\
2445 Form a quotient using "off" beams when observing in "MX" mode.
2446
2447 Parameters:
2448
2449 mask: an optional mask to be used when weight == 'stddev'
2450
2451 weight: How to average the off beams. Default is 'median'.
2452
2453 preserve: you can preserve (default) the continuum or
2454 remove it. The equations used are:
2455
2456 preserve: Output = Toff * (on/off) - Toff
2457
2458 remove: Output = Toff * (on/off) - Ton
2459
2460 """
2461 mask = mask or ()
2462 varlist = vars()
2463 on = scantable(self._math._mx_extract(self, 'on'))
2464 preoff = scantable(self._math._mx_extract(self, 'off'))
2465 off = preoff.average_time(mask=mask, weight=weight, scanav=False)
2466 from asapmath import quotient
2467 q = quotient(on, off, preserve)
2468 q._add_history("mx_quotient", varlist)
2469 return q
2470
2471 @asaplog_post_dec
2472 def freq_switch(self, insitu=None):
2473 """\
2474 Apply frequency switching to the data.
2475
2476 Parameters:
2477
2478 insitu: if False a new scantable is returned.
2479 Otherwise, the swictching is done in-situ
2480 The default is taken from .asaprc (False)
2481
2482 """
2483 if insitu is None: insitu = rcParams['insitu']
2484 self._math._setinsitu(insitu)
2485 varlist = vars()
2486 s = scantable(self._math._freqswitch(self))
2487 s._add_history("freq_switch", varlist)
2488 if insitu:
2489 self._assign(s)
2490 else:
2491 return s
2492
2493 @asaplog_post_dec
2494 def recalc_azel(self):
2495 """Recalculate the azimuth and elevation for each position."""
2496 varlist = vars()
2497 self._recalcazel()
2498 self._add_history("recalc_azel", varlist)
2499 return
2500
2501 @asaplog_post_dec
2502 def __add__(self, other):
2503 varlist = vars()
2504 s = None
2505 if isinstance(other, scantable):
2506 s = scantable(self._math._binaryop(self, other, "ADD"))
2507 elif isinstance(other, float):
2508 s = scantable(self._math._unaryop(self, other, "ADD", False))
2509 else:
2510 raise TypeError("Other input is not a scantable or float value")
2511 s._add_history("operator +", varlist)
2512 return s
2513
2514 @asaplog_post_dec
2515 def __sub__(self, other):
2516 """
2517 implicit on all axes and on Tsys
2518 """
2519 varlist = vars()
2520 s = None
2521 if isinstance(other, scantable):
2522 s = scantable(self._math._binaryop(self, other, "SUB"))
2523 elif isinstance(other, float):
2524 s = scantable(self._math._unaryop(self, other, "SUB", False))
2525 else:
2526 raise TypeError("Other input is not a scantable or float value")
2527 s._add_history("operator -", varlist)
2528 return s
2529
2530 @asaplog_post_dec
2531 def __mul__(self, other):
2532 """
2533 implicit on all axes and on Tsys
2534 """
2535 varlist = vars()
2536 s = None
2537 if isinstance(other, scantable):
2538 s = scantable(self._math._binaryop(self, other, "MUL"))
2539 elif isinstance(other, float):
2540 s = scantable(self._math._unaryop(self, other, "MUL", False))
2541 else:
2542 raise TypeError("Other input is not a scantable or float value")
2543 s._add_history("operator *", varlist)
2544 return s
2545
2546
2547 @asaplog_post_dec
2548 def __div__(self, other):
2549 """
2550 implicit on all axes and on Tsys
2551 """
2552 varlist = vars()
2553 s = None
2554 if isinstance(other, scantable):
2555 s = scantable(self._math._binaryop(self, other, "DIV"))
2556 elif isinstance(other, float):
2557 if other == 0.0:
2558 raise ZeroDivisionError("Dividing by zero is not recommended")
2559 s = scantable(self._math._unaryop(self, other, "DIV", False))
2560 else:
2561 raise TypeError("Other input is not a scantable or float value")
2562 s._add_history("operator /", varlist)
2563 return s
2564
2565 @asaplog_post_dec
2566 def get_fit(self, row=0):
2567 """\
2568 Print or return the stored fits for a row in the scantable
2569
2570 Parameters:
2571
2572 row: the row which the fit has been applied to.
2573
2574 """
2575 if row > self.nrow():
2576 return
2577 from asap.asapfit import asapfit
2578 fit = asapfit(self._getfit(row))
2579 asaplog.push( '%s' %(fit) )
2580 return fit.as_dict()
2581
2582 def flag_nans(self):
2583 """\
2584 Utility function to flag NaN values in the scantable.
2585 """
2586 import numpy
2587 basesel = self.get_selection()
2588 for i in range(self.nrow()):
2589 sel = self.get_row_selector(i)
2590 self.set_selection(basesel+sel)
2591 nans = numpy.isnan(self._getspectrum(0))
2592 if numpy.any(nans):
2593 bnans = [ bool(v) for v in nans]
2594 self.flag(bnans)
2595 self.set_selection(basesel)
2596
2597 def get_row_selector(self, rowno):
2598 return selector(beams=self.getbeam(rowno),
2599 ifs=self.getif(rowno),
2600 pols=self.getpol(rowno),
2601 scans=self.getscan(rowno),
2602 cycles=self.getcycle(rowno))
2603
2604 def _add_history(self, funcname, parameters):
2605 if not rcParams['scantable.history']:
2606 return
2607 # create date
2608 sep = "##"
2609 from datetime import datetime
2610 dstr = datetime.now().strftime('%Y/%m/%d %H:%M:%S')
2611 hist = dstr+sep
2612 hist += funcname+sep#cdate+sep
2613 if parameters.has_key('self'): del parameters['self']
2614 for k, v in parameters.iteritems():
2615 if type(v) is dict:
2616 for k2, v2 in v.iteritems():
2617 hist += k2
2618 hist += "="
2619 if isinstance(v2, scantable):
2620 hist += 'scantable'
2621 elif k2 == 'mask':
2622 if isinstance(v2, list) or isinstance(v2, tuple):
2623 hist += str(self._zip_mask(v2))
2624 else:
2625 hist += str(v2)
2626 else:
2627 hist += str(v2)
2628 else:
2629 hist += k
2630 hist += "="
2631 if isinstance(v, scantable):
2632 hist += 'scantable'
2633 elif k == 'mask':
2634 if isinstance(v, list) or isinstance(v, tuple):
2635 hist += str(self._zip_mask(v))
2636 else:
2637 hist += str(v)
2638 else:
2639 hist += str(v)
2640 hist += sep
2641 hist = hist[:-2] # remove trailing '##'
2642 self._addhistory(hist)
2643
2644
2645 def _zip_mask(self, mask):
2646 mask = list(mask)
2647 i = 0
2648 segments = []
2649 while mask[i:].count(1):
2650 i += mask[i:].index(1)
2651 if mask[i:].count(0):
2652 j = i + mask[i:].index(0)
2653 else:
2654 j = len(mask)
2655 segments.append([i, j])
2656 i = j
2657 return segments
2658
2659 def _get_ordinate_label(self):
2660 fu = "("+self.get_fluxunit()+")"
2661 import re
2662 lbl = "Intensity"
2663 if re.match(".K.", fu):
2664 lbl = "Brightness Temperature "+ fu
2665 elif re.match(".Jy.", fu):
2666 lbl = "Flux density "+ fu
2667 return lbl
2668
2669 def _check_ifs(self):
2670 nchans = [self.nchan(i) for i in range(self.nif(-1))]
2671 nchans = filter(lambda t: t > 0, nchans)
2672 return (sum(nchans)/len(nchans) == nchans[0])
2673
2674 @asaplog_post_dec
2675 #def _fill(self, names, unit, average, getpt, antenna):
2676 def _fill(self, names, unit, average, opts={}):
2677 first = True
2678 fullnames = []
2679 for name in names:
2680 name = os.path.expandvars(name)
2681 name = os.path.expanduser(name)
2682 if not os.path.exists(name):
2683 msg = "File '%s' does not exists" % (name)
2684 raise IOError(msg)
2685 fullnames.append(name)
2686 if average:
2687 asaplog.push('Auto averaging integrations')
2688 stype = int(rcParams['scantable.storage'].lower() == 'disk')
2689 for name in fullnames:
2690 tbl = Scantable(stype)
2691 r = filler(tbl)
2692 rx = rcParams['scantable.reference']
2693 r.setreferenceexpr(rx)
2694 msg = "Importing %s..." % (name)
2695 asaplog.push(msg, False)
2696 #opts = {'ms': {'antenna' : antenna, 'getpt': getpt} }
2697 r.open(name, opts)# antenna, -1, -1, getpt)
2698 r.fill()
2699 if average:
2700 tbl = self._math._average((tbl, ), (), 'NONE', 'SCAN')
2701 if not first:
2702 tbl = self._math._merge([self, tbl])
2703 Scantable.__init__(self, tbl)
2704 r.close()
2705 del r, tbl
2706 first = False
2707 #flush log
2708 asaplog.post()
2709 if unit is not None:
2710 self.set_fluxunit(unit)
2711 if not is_casapy():
2712 self.set_freqframe(rcParams['scantable.freqframe'])
2713
2714 def __getitem__(self, key):
2715 if key < 0:
2716 key += self.nrow()
2717 if key >= self.nrow():
2718 raise IndexError("Row index out of range.")
2719 return self._getspectrum(key)
2720
2721 def __setitem__(self, key, value):
2722 if key < 0:
2723 key += self.nrow()
2724 if key >= self.nrow():
2725 raise IndexError("Row index out of range.")
2726 if not hasattr(value, "__len__") or \
2727 len(value) > self.nchan(self.getif(key)):
2728 raise ValueError("Spectrum length doesn't match.")
2729 return self._setspectrum(value, key)
2730
2731 def __len__(self):
2732 return self.nrow()
2733
2734 def __iter__(self):
2735 for i in range(len(self)):
2736 yield self[i]
Note: See TracBrowser for help on using the repository browser.