from asap._asap import Scantable from asap import rcParams from asap import print_log from numarray import ones,zeros import sys class scantable(Scantable): """ The ASAP container for scans """ def __init__(self, filename, average=None, unit=None): """ Create a scantable from a saved one or make a reference Parameters: filename: the name of an asap table on disk or the name of a rpfits/sdfits/ms file (integrations within scans are auto averaged and the whole file is read) or [advanced] a reference to an existing scantable average: average all integrations withinb a scan on read. The default (True) is taken from .asaprc. unit: brightness unit; must be consistent with K or Jy. Over-rides the default selected by the reader (input rpfits/sdfits/ms) or replaces the value in existing scantables """ if average is None or type(average) is not bool: average = rcParams['scantable.autoaverage'] varlist = vars() from asap._asap import stmath self._math = stmath() from asap import asaplog if isinstance(filename, Scantable): Scantable.__init__(self, filename) if unit is not None: self.set_fluxunit(unit) else: import os.path if not os.path.exists(filename): s = "File '%s' not found." % (filename) if rcParams['verbose']: asaplog.push(s) print asaplog.pop().strip() return raise IOError(s) filename = os.path.expandvars(filename) if os.path.isdir(filename): # crude check if asap table if os.path.exists(filename+'/table.info'): Scantable.__init__(self, filename, "memory") if unit is not None: self.set_fluxunit(unit) else: msg = "The given file '%s'is not a valid asap table." % (filename) if rcParams['verbose']: print msg return else: raise IOError(msg) else: from asap._asap import stfiller ifSel = -1 beamSel = -1 r = stfiller() r._open(filename,ifSel,beamSel) asaplog.push('Importing data...') print_log() r._read() tbl = r._getdata() if unit is not None: tbl.set_fluxunit(unit) if average: asaplog.push('Auto averaging integrations...') print_log() tbl2 = self._math._average((tbl,),(),'NONE','SCAN', False) Scantable.__init__(self,tbl2) del tbl2 else: Scantable.__init__(self,tbl) del r,tbl self._add_history("scantable", varlist) print_log() def save(self, name=None, format=None, overwrite=False): """ Store the scantable on disk. This can be an asap (aips++) Table, SDFITS, Image FITS or MS2 format. Parameters: name: the name of the outputfile. For format="FITS" this is the directory file name into which all the files will be written (default is 'asap_FITS'). For format "ASCII" this is the root file name (data in 'name'.txt and header in 'name'_header.txt) format: an optional file format. Default is ASAP. Allowed are - 'ASAP' (save as ASAP [aips++] Table), 'SDFITS' (save as SDFITS file) 'FITS' (saves each row as a FITS Image) 'ASCII' (saves as ascii text file) 'MS2' (saves as an aips++ MeasurementSet V2) overwrite: If the file should be overwritten if it exists. The default False is to return with warning without writing the output. USE WITH CARE. Example: scan.save('myscan.asap') scan.save('myscan.sdfits','SDFITS') """ from os import path if format is None: format = rcParams['scantable.save'] suffix = '.'+format.lower() if name is None or name =="": name = 'scantable'+suffix from asap import asaplog msg = "No filename given. Using default name %s..." % name asaplog.push(msg) name = path.expandvars(name) if path.isfile(name) or path.isdir(name): if not overwrite: msg = "File %s exists." % name if rcParams['verbose']: print msg return else: raise IOError(msg) format2 = format.upper() if format2 == 'ASAP': self._save(name) else: print "NYI" # from asap._asap import sdwriter as _sw # w = _sw(format2) # w.write(self, name, stokes) print_log() return def copy(self): """ Return a copy of this scantable. Parameters: none Example: copiedscan = scan.copy() """ sd = scantable(Scantable._copy(self)) return sd def get_scan(self, scanid=None): """ Return a specific scan (by scanno) or collection of scans (by source name) in a new scantable. Parameters: scanid: a (list of) scanno or a source name, unix-style patterns are accepted for source name matching, e.g. '*_R' gets all 'ref scans Example: # get all scans containing the source '323p459' newscan = scan.get_scan('323p459') # get all 'off' scans refscans = scan.get_scan('*_R') # get a susbset of scans by scanno (as listed in scan.summary()) newscan = scan.get_scan([0,2,7,10]) """ if scanid is None: if rcParams['verbose']: print "Please specify a scan no or name to retrieve from the scantable" return else: raise RuntimeError("No scan given") try: bsel = self._getselection() sel = asap._asap.Selector() if type(scanid) is str: sel._setname() self._setselection(sel) scopy = self._copy() self._setselection(bsel) return scantable(scopy) elif type(scanid) is int: sel._setscans([scanid]) self._setselection(sel) scopy = self._copy() self._setselection(bsel) return scantable(scopy) elif type(scanid) is list: sel._setscans(scanid) self._setselection(sel) scopy = self._copy() self._setselection(bsel) return scantable(scopy) else: msg = "Illegal scanid type, use 'int' or 'list' if ints." if rcParams['verbose']: print msg else: raise TypeError(msg) except RuntimeError: if rcParams['verbose']: print "Couldn't find any match." else: raise def __str__(self): return Scantable._summary(self,True) def summary(self, filename=None, verbose=None): """ Print a summary of the contents of this scantable. Parameters: filename: the name of a file to write the putput to Default - no file output verbose: print extra info such as the frequency table The default (False) is taken from .asaprc """ info = Scantable._summary(self, verbose) if verbose is None: verbose = rcParams['scantable.verbosesummary'] if filename is not None: if filename is "": filename = 'scantable_summary.txt' from os.path import expandvars, isdir filename = expandvars(filename) if not isdir(filename): data = open(filename, 'w') data.write(info) data.close() else: msg = "Illegal file name '%s'." % (filename) if rcParams['verbose']: print msg else: raise IOError(msg) if rcParams['verbose']: try: from IPython.genutils import page as pager except ImportError: from pydoc import pager pager(info) else: return info def set_cursor(self, beam=0, IF=0, pol=0): """ Set the spectrum for individual operations. Parameters: beam, IF, pol: a number Example: scan.set_cursor(0,0,1) pol1sig = scan.stats(all=False) # returns std dev for beam=0 # if=0, pol=1 """ print "DEPRECATED" varlist = vars() sel = asap._asap.Selector() sel._setbeams([beam]) sel._setpols([pol]) sel._setifs([IF]) self._add_history("set_cursor", varlist) return def get_cursor(self): """ Return/print a the current 'cursor' into the Beam/IF/Pol cube. Parameters: none Returns: a list of values (currentBeam,currentIF,currentPol) Example: none """ print "DEPRECATED" sel = self._getselection() i = sel.getbeams()[0] j = sel.getifs()[0] k = sel.getpols()[0] from asap import asaplog out = "--------------------------------------------------\n" out += " Cursor position\n" out += "--------------------------------------------------\n" out += 'Beam=%d IF=%d Pol=%d ' % (i,j,k) asaplog.push(out) print_log() return i,j,k def stats(self, stat='stddev', mask=None): """ Determine the specified statistic of the current beam/if/pol Takes a 'mask' as an optional parameter to specify which channels should be excluded. Parameters: stat: 'min', 'max', 'sumsq', 'sum', 'mean' 'var', 'stddev', 'avdev', 'rms', 'median' mask: an optional mask specifying where the statistic should be determined. Example: scan.set_unit('channel') msk = scan.create_mask([100,200],[500,600]) scan.stats(stat='mean', mask=m) """ from numarray import array,zeros,Float if mask == None: mask = [] axes = ['Beam','IF','Pol','Time'] if not self._check_ifs(): raise ValueError("Cannot apply mask as the IFs have different number of channels" "Please use setselection() to select individual IFs") statvals = self._math._stats(self, mask, stat) out = '' axes = [] for i in range(self.nrow()): axis = [] axis.append(self.getscan(i)) axis.append(self.getbeam(i)) axis.append(self.getif(i)) axis.append(self.getpol(i)) axis.append(self.getcycle(i)) axes.append(axis) tm = self._gettime(i) src = self._getsourcename(i) out += 'Scan[%d] (%s) ' % (axis[0], src) out += 'Time[%s]:\n' % (tm) if self.nbeam(-1) > 1: out += ' Beam[%d] ' % (axis[1]) if self.nif(-1) > 1: out += ' IF[%d] ' % (axis[2]) if self.npol(-1) > 1: out += ' Pol[%d] ' % (axis[3]) out += '= %3.3f\n' % (statvals[i]) out += "--------------------------------------------------\n" if rcParams['verbose']: print "--------------------------------------------------" print " ",stat print "--------------------------------------------------" print out retval = { 'axesnames': ['scanno','beamno','ifno','polno','cycleno'], 'axes' : axes, 'data': statvals} return retval def stddev(self,mask=None): """ Determine the standard deviation of the current beam/if/pol Takes a 'mask' as an optional parameter to specify which channels should be excluded. Parameters: mask: an optional mask specifying where the standard deviation should be determined. Example: scan.set_unit('channel') msk = scan.create_mask([100,200],[500,600]) scan.stddev(mask=m) """ return self.stats(stat='stddev',mask=mask); def get_tsys(self): """ Return the System temperatures. Parameters: Returns: a list of Tsys values for the current selection """ return self._row_callback(self._gettsys, "Tsys") def _row_callback(self, callback, label): axes = [] axesnames = ['scanno','beamno','ifno','polno','cycleno'] out = "" outvec =[] for i in range(self.nrow()): axis = [] axis.append(self.getscan(i)) axis.append(self.getbeam(i)) axis.append(self.getif(i)) axis.append(self.getpol(i)) axis.append(self.getcycle(i)) axes.append(axis) tm = self._gettime(i) src = self._getsourcename(i) out += 'Scan[%d] (%s) ' % (axis[0], src) out += 'Time[%s]:\n' % (tm) if self.nbeam(-1) > 1: out += ' Beam[%d] ' % (axis[1]) if self.nif(-1) > 1: out += ' IF[%d] ' % (axis[2]) if self.npol(-1) > 1: out += ' Pol[%d] ' % (axis[3]) outvec.append(callback(i)) out += '= %3.3f\n' % (outvec[i]) out += "--------------------------------------------------\n" if rcParams['verbose']: print "--------------------------------------------------" print " %s" % (label) print "--------------------------------------------------" print out retval = {'axesnames': axesnames, 'axes': axes, 'data': outvec} return retval def get_time(self, row=-1): """ Get a list of time stamps for the observations. Return a string for each integration in the scantable. Parameters: row: row no of integration. Default -1 return all rows Example: none """ out = [] if row == -1: for i in range(self.nrow()): out.append(self._gettime(i)) return out else: if row < self.nrow(): return self._gettime(row) def get_sourcename(self, row=-1): """ Get a list source names for the observations. Return a string for each integration in the scantable. Parameters: row: row no of integration. Default -1 return all rows Example: none """ out = [] if row == -1: return [self._getsourcename(i) for i in range(self.nrow())] else: if 0 <= row < self.nrow(): return self._getsourcename(row) def get_elevation(self, row=-1): """ Get a list of elevations for the observations. Return a float for each integration in the scantable. Parameters: row: row no of integration. Default -1 return all rows Example: none """ out = [] if row == -1: return [self._getelevation(i) for i in range(self.nrow())] else: if 0 <= row < self.nrow(): return self._getelevation(row) def get_azimuth(self, row=-1): """ Get a list of azimuths for the observations. Return a float for each integration in the scantable. Parameters: row: row no of integration. Default -1 return all rows Example: none """ out = [] if row == -1: return [self._getazimuth(i) for i in range(self.nrow())] else: if 0 <= row < self.nrow(): return self._getazimuth(row) def get_parangle(self, row=-1): """ Get a list of parallactic angles for the observations. Return a float for each integration in the scantable. Parameters: row: row no of integration. Default -1 return all rows Example: none """ out = [] if row == -1: return [self._getparangle(i) for i in range(self.nrow())] else: if 0 <= row < self.nrow(): return self._getparangle(row) def set_unit(self, unit='channel'): """ Set the unit for all following operations on this scantable Parameters: unit: optional unit, default is 'channel' one of '*Hz','km/s','channel', '' """ varlist = vars() if unit in ['','pixel', 'channel']: unit = '' inf = list(self._getcoordinfo()) inf[0] = unit self._setcoordinfo(inf) self._add_history("set_unit",varlist) def set_instrument(self, instr): """ Set the instrument for subsequent processing Parameters: instr: Select from 'ATPKSMB', 'ATPKSHOH', 'ATMOPRA', 'DSS-43' (Tid), 'CEDUNA', and 'HOBART' """ self._setInstrument(instr) self._add_history("set_instument",vars()) print_log() def set_doppler(self, doppler='RADIO'): """ Set the doppler for all following operations on this scantable. Parameters: doppler: One of 'RADIO', 'OPTICAL', 'Z', 'BETA', 'GAMMA' """ varlist = vars() inf = list(self._getcoordinfo()) inf[2] = doppler self._setcoordinfo(inf) self._add_history("set_doppler",vars()) print_log() def set_freqframe(self, frame=None): """ Set the frame type of the Spectral Axis. Parameters: frame: an optional frame type, default 'LSRK'. Valid frames are: 'REST','TOPO','LSRD','LSRK','BARY', 'GEO','GALACTO','LGROUP','CMB' Examples: scan.set_freqframe('BARY') """ if frame is None: frame = rcParams['scantable.freqframe'] varlist = vars() valid = ['REST','TOPO','LSRD','LSRK','BARY', \ 'GEO','GALACTO','LGROUP','CMB'] if 1:#frame in valid: inf = list(self._getcoordinfo()) inf[1] = frame self._setcoordinfo(inf) self._add_history("set_freqframe",varlist) else: msg = "Please specify a valid freq type. Valid types are:\n",valid if rcParams['verbose']: print msg else: raise TypeError(msg) print_log() def get_unit(self): """ Get the default unit set in this scantable Parameters: Returns: A unit string """ inf = self._getcoordinfo() unit = inf[0] if unit == '': unit = 'channel' return unit def get_abcissa(self, rowno=0): """ Get the abcissa in the current coordinate setup for the currently selected Beam/IF/Pol Parameters: rowno: an optional row number in the scantable. Default is the first row, i.e. rowno=0 Returns: The abcissa values and it's format string (as a dictionary) """ abc = self._getabcissa(rowno) lbl = self._getabcissalabel(rowno) print_log() return abc, lbl def create_mask(self, *args, **kwargs): """ Compute and return a mask based on [min,max] windows. The specified windows are to be INCLUDED, when the mask is applied. Parameters: [min,max],[min2,max2],... Pairs of start/end points specifying the regions to be masked invert: optional argument. If specified as True, return an inverted mask, i.e. the regions specified are EXCLUDED row: create the mask using the specified row for unit conversions, default is row=0 only necessary if frequency varies over rows. Example: scan.set_unit('channel') a) msk = scan.set_mask([400,500],[800,900]) # masks everything outside 400 and 500 # and 800 and 900 in the unit 'channel' b) msk = scan.set_mask([400,500],[800,900], invert=True) # masks the regions between 400 and 500 # and 800 and 900 in the unit 'channel' """ row = 0 if kwargs.has_key("row"): row = kwargs.get("row") data = self._getabcissa(row) u = self._getcoordinfo()[0] if rcParams['verbose']: if u == "": u = "channel" from asap import asaplog msg = "The current mask window unit is %s" % u if not self._check_ifs(): msg += "\nThis mask is only valid for IF=%d" % (self.getif(i)) asaplog.push(msg) n = self.nchan() msk = zeros(n) # test if args is a 'list' or a 'normal *args - UGLY!!! ws = (isinstance(args[-1][-1],int) or isinstance(args[-1][-1],float)) and args or args[0] for window in ws: if (len(window) != 2 or window[0] > window[1] ): raise TypeError("A window needs to be defined as [min,max]") for i in range(n): if data[i] >= window[0] and data[i] < window[1]: msk[i] = 1 if kwargs.has_key('invert'): if kwargs.get('invert'): from numarray import logical_not msk = logical_not(msk) print_log() return msk def get_restfreqs(self): """ Get the restfrequency(s) stored in this scantable. The return value(s) are always of unit 'Hz' Parameters: none Returns: a list of doubles """ return list(self._getrestfreqs()) # def set_restfreqs(self, freqs=None, unit='Hz', lines=None, source=None, # theif=None): # """ # Select the restfrequency for the specified source and IF OR # replace for all IFs. If the 'freqs' argument holds a scalar, # then that rest frequency will be applied to the selected # data (and added to the list of available rest frequencies). # In this way, you can set a rest frequency for each # source and IF combination. If the 'freqs' argument holds # a vector, then it MUST be of length the number of IFs # (and the available restfrequencies will be replaced by # this vector). In this case, *all* data ('source' and # 'theif' are ignored) have the restfrequency set per IF according # to the corresponding value you give in the 'freqs' vector. # E.g. 'freqs=[1e9,2e9]' would mean IF 0 gets restfreq 1e9 and # IF 1 gets restfreq 2e9. # # You can also specify the frequencies via known line names # in the argument 'lines'. Use 'freqs' or 'lines'. 'freqs' # takes precedence. See the list of known names via function # scantable.lines() # Parameters: # freqs: list of rest frequencies # unit: unit for rest frequency (default 'Hz') # lines: list of known spectral lines names (alternative to freqs). # See possible list via scantable.lines() # source: Source name (blank means all) # theif: IF (-1 means all) # Example: # scan.set_restfreqs(freqs=1.4e9, source='NGC253', theif=2) # scan.set_restfreqs(freqs=[1.4e9,1.67e9]) # """ # varlist = vars() # if source is None: # source = "" # if theif is None: # theif = -1 # t = type(freqs) # if t is int or t is float: # freqs = [freqs] # if freqs is None: # freqs = [] # t = type(lines) # if t is str: # lines = [lines] # if lines is None: # lines = [] # self._setrestfreqs(freqs, unit, lines, source, theif) # self._add_history("set_restfreqs", varlist) # def history(self): hist = list(self._gethistory()) out = "-"*80 for h in hist: if h.startswith("---"): out += "\n"+h else: items = h.split("##") date = items[0] func = items[1] items = items[2:] out += "\n"+date+"\n" out += "Function: %s\n Parameters:" % (func) for i in items: s = i.split("=") out += "\n %s = %s" % (s[0],s[1]) out += "\n"+"-"*80 try: from IPython.genutils import page as pager except ImportError: from pydoc import pager pager(out) return # # Maths business # def average_time(self, mask=None, scanav=False, weight='tint'): """ Return the (time) average of a scan, or apply it 'insitu'. Note: in channels only The cursor of the output scan is set to 0. Parameters: one scan or comma separated scans mask: an optional mask (only used for 'var' and 'tsys' weighting) scanav: True averages each scan separately False (default) averages all scans together, weight: Weighting scheme. 'none', 'var' (1/var(spec) weighted), 'tsys' (1/Tsys**2 weighted), 'tint' (integration time weighted) or 'tintsys' (Tint/Tsys**2). The default is 'tint' Example: # time average the scantable without using a mask newscan = scan.average_time() """ varlist = vars() if weight is None: weight = 'tint' if mask is None: mask = () if scanav: scanav = "SCAN" else: scanav = "NONE" s = scantable(self._math._average((self,), mask, weight, scanav, False)) s._add_history("average_time",varlist) print_log() return s def convert_flux(self, jyperk=None, eta=None, d=None, insitu=None): """ Return a scan where all spectra are converted to either Jansky or Kelvin depending upon the flux units of the scan table. By default the function tries to look the values up internally. If it can't find them (or if you want to over-ride), you must specify EITHER jyperk OR eta (and D which it will try to look up also if you don't set it). jyperk takes precedence if you set both. Parameters: jyperk: the Jy / K conversion factor eta: the aperture efficiency d: the geomtric diameter (metres) insitu: if False a new scantable is returned. Otherwise, the scaling is done in-situ The default is taken from .asaprc (False) allaxes: if True apply to all spectra. Otherwise apply only to the selected (beam/pol/if)spectra only The default is taken from .asaprc (True if none) """ if insitu is None: insitu = rcParams['insitu'] self._math._setinsitu(insitu) varlist = vars() if jyperk is None: jyperk = -1.0 if d is None: d = -1.0 if eta is None: eta = -1.0 s = scantable(self._math._convertflux(self, d, eta, jyperk)) s._add_history("convert_flux", varlist) print_log() if insitu: self._assign(s) else: return s def gain_el(self, poly=None, filename="", method="linear", insitu=None): """ Return a scan after applying a gain-elevation correction. The correction can be made via either a polynomial or a table-based interpolation (and extrapolation if necessary). You specify polynomial coefficients, an ascii table or neither. If you specify neither, then a polynomial correction will be made with built in coefficients known for certain telescopes (an error will occur if the instrument is not known). The data and Tsys are *divided* by the scaling factors. Parameters: poly: Polynomial coefficients (default None) to compute a gain-elevation correction as a function of elevation (in degrees). filename: The name of an ascii file holding correction factors. The first row of the ascii file must give the column names and these MUST include columns "ELEVATION" (degrees) and "FACTOR" (multiply data by this) somewhere. The second row must give the data type of the column. Use 'R' for Real and 'I' for Integer. An example file would be (actual factors are arbitrary) : TIME ELEVATION FACTOR R R R 0.1 0 0.8 0.2 20 0.85 0.3 40 0.9 0.4 60 0.85 0.5 80 0.8 0.6 90 0.75 method: Interpolation method when correcting from a table. Values are "nearest", "linear" (default), "cubic" and "spline" insitu: if False a new scantable is returned. Otherwise, the scaling is done in-situ The default is taken from .asaprc (False) """ if insitu is None: insitu = rcParams['insitu'] self._math._setinsitu(insitu) varlist = vars() if poly is None: poly = () from os.path import expandvars filename = expandvars(filename) s = scantable(self._math._gainel(self, poly, filename, method)) s._add_history("gain_el", varlist) print_log() if insitu: self._assign(s) else: return s def freq_align(self, reftime=None, method='cubic', perif=False, insitu=None): """ Return a scan where all rows have been aligned in frequency/velocity. The alignment frequency frame (e.g. LSRK) is that set by function set_freqframe. Parameters: reftime: reference time to align at. By default, the time of the first row of data is used. method: Interpolation method for regridding the spectra. Choose from "nearest", "linear", "cubic" (default) and "spline" perif: Generate aligners per freqID (no doppler tracking) or per IF (scan-based doppler tracking) insitu: if False a new scantable is returned. Otherwise, the scaling is done in-situ The default is taken from .asaprc (False) """ print "Not yet implemented" return if insitu is None: insitu = rcParams['insitu'] self._math._setinsitu(insitu) varlist = vars() if reftime is None: reftime = '' perfreqid = not perif s = scantable(self._math._freqalign(self, reftime, method, perfreqid)) s._add_history("freq_align", varlist) print_log() if insitu: self._assign(s) else: return s def opacity(self, tau, insitu=None): """ Apply an opacity correction. The data and Tsys are multiplied by the correction factor. Parameters: tau: Opacity from which the correction factor is exp(tau*ZD) where ZD is the zenith-distance insitu: if False a new scantable is returned. Otherwise, the scaling is done in-situ The default is taken from .asaprc (False) """ if insitu is None: insitu = rcParams['insitu'] self._math._setinsitu(insitu) varlist = vars() s = scantable(self._math._opacity(self, tau)) s._add_history("opacity", varlist) print_log() if insitu: self._assign(s) else: return s def bin(self, width=5, insitu=None): """ Return a scan where all spectra have been binned up. width: The bin width (default=5) in pixels insitu: if False a new scantable is returned. Otherwise, the scaling is done in-situ The default is taken from .asaprc (False) """ if insitu is None: insitu = rcParams['insitu'] self._math._setinsitu(insitu) varlist = vars() s = scantable(self._math._bin(self, width)) s._add_history("bin",varlist) print_log() if insitu: self._assign(s) else: return s def resample(self, width=5, method='cubic', insitu=None): """ Return a scan where all spectra have been binned up width: The bin width (default=5) in pixels method: Interpolation method when correcting from a table. Values are "nearest", "linear", "cubic" (default) and "spline" insitu: if False a new scantable is returned. Otherwise, the scaling is done in-situ The default is taken from .asaprc (False) """ if insitu is None: insitu = rcParams['insitu'] self._math._setinsitu(insitu) varlist = vars() s = scantable(self._math._resample(self, method, width)) s._add_history("resample",varlist) print_log() if insitu: self._assign(s) else: return s # def average_pol(self, mask=None, weight='none', insitu=None): # """ # Average the Polarisations together. # The polarisation cursor of the output scan is set to 0 # Parameters: # mask: An optional mask defining the region, where the # averaging will be applied. The output will have all # specified points masked. # weight: Weighting scheme. 'none' (default), 'var' (1/var(spec) # weighted), or 'tsys' (1/Tsys**2 weighted) # insitu: if False a new scantable is returned. # Otherwise, the scaling is done in-situ # The default is taken from .asaprc (False) # """ # if insitu is None: insitu = rcParams['insitu'] # self._math._setinsitu(insitu) # varlist = vars() # # if mask is None: # mask = () # s = self._math._averagepol(self, mask, weight) # s._add_history("average_pol",varlist) # print_log() # if insitu: self._assign(s) # else: return scantable(s) def smooth(self, kernel="hanning", width=5.0, insitu=None): """ Smooth the spectrum by the specified kernel (conserving flux). Parameters: scan: The input scan kernel: The type of smoothing kernel. Select from 'hanning' (default), 'gaussian' and 'boxcar'. The first three characters are sufficient. width: The width of the kernel in pixels. For hanning this is ignored otherwise it defauls to 5 pixels. For 'gaussian' it is the Full Width Half Maximum. For 'boxcar' it is the full width. insitu: if False a new scantable is returned. Otherwise, the scaling is done in-situ The default is taken from .asaprc (False) Example: none """ if insitu is None: insitu = rcParams['insitu'] self._math._setinsitu(insitu) varlist = vars() s = scantable(self._math._smooth(self,kernel,width)) s._add_history("smooth", varlist) print_log() if insitu: self._assign(s) else: return s def poly_baseline(self, mask=None, order=0, insitu=None): """ Return a scan which has been baselined (all rows) by a polynomial. Parameters: scan: a scantable mask: an optional mask order: the order of the polynomial (default is 0) insitu: if False a new scantable is returned. Otherwise, the scaling is done in-situ The default is taken from .asaprc (False) allaxes: If True (default) apply to all spectra. Otherwise apply only to the selected (beam/pol/if)spectra only The default is taken from .asaprc (True if none) Example: # return a scan baselined by a third order polynomial, # not using a mask bscan = scan.poly_baseline(order=3) """ if insitu is None: insitu = rcParams['insitu'] varlist = vars() if mask is None: from numarray import ones mask = list(ones(self.nchan(-1))) from asap.asapfitter import fitter f = fitter() f.set_scan(self, mask) f.set_function(poly=order) s = f.auto_fit(insitu) s._add_history("poly_baseline", varlist) print_log() if insitu: self._assign(s) else: return s def auto_poly_baseline(self, mask=None, edge=(0,0), order=0, threshold=3, insitu=None): """ Return a scan which has been baselined (all rows) by a polynomial. Spectral lines are detected first using linefinder and masked out to avoid them affecting the baseline solution. Parameters: mask: an optional mask retreived from scantable edge: an optional number of channel to drop at the edge of spectrum. If only one value is specified, the same number will be dropped from both sides of the spectrum. Default is to keep all channels. Nested tuples represent individual edge selection for different IFs (a number of spectral channels can be different) order: the order of the polynomial (default is 0) threshold: the threshold used by line finder. It is better to keep it large as only strong lines affect the baseline solution. insitu: if False a new scantable is returned. Otherwise, the scaling is done in-situ The default is taken from .asaprc (False) Example: scan2=scan.auto_poly_baseline(order=7) """ if insitu is None: insitu = rcParams['insitu'] varlist = vars() from asap.asapfitter import fitter from asap.asaplinefind import linefinder from asap import _is_sequence_or_number as _is_valid # check whether edge is set up for each IF individually individualEdge = False; if len(edge)>1: if isinstance(edge[0],list) or isinstance(edge[0],tuple): individualEdge = True; if not _is_valid(edge, int) and not individualEdge: raise ValueError, "Parameter 'edge' has to be an integer or a \ pair of integers specified as a tuple. Nested tuples are allowed \ to make individual selection for different IFs." curedge = (0,0) if individualEdge: for edge_par in edge: if not _is_valid(edge,int): raise ValueError, "Each element of the 'edge' tuple has \ to be a pair of integers or an integer." else: curedge = edge; # setup fitter f = fitter() f.set_function(poly=order) # setup line finder fl=linefinder() fl.set_options(threshold=threshold) if not insitu: workscan=self.copy() else: workscan=self fl.set_scan(workscan) rows=range(workscan.nrow()) from asap import asaplog asaplog.push("Processing:") for r in rows: msg = " Scan[%d] Beam[%d] IF[%d] Pol[%d] Cycle[%d]" % (workscan.getscan(r),workscan.getbeam(r),workscan.getif(r),workscan.getpol(r), workscan.getcycle(r)) asaplog.push(msg, False) # figure out edge parameter if individualEdge: if len(edge)>=workscan.getif(r): raise RuntimeError, "Number of edge elements appear to be less than the number of IFs" curedge = edge[workscan.getif(r)] # setup line finder fl.find_lines(r,mask,curedge) f.set_scan(workscan, fl.get_mask()) f.x = workscan._getabcissa(r) f.y = workscan._getspectrum(r) f.data = None f.fit() x = f.get_parameters() workscan._setspectrum(f.fitter.getresidual(), r) workscan._add_history("poly_baseline", varlist) if insitu: self._assign(workscan) else: return workscan def rotate_linpolphase(self, angle): """ Rotate the phase of the complex polarization O=Q+iU correlation. This is always done in situ in the raw data. So if you call this function more than once then each call rotates the phase further. Parameters: angle: The angle (degrees) to rotate (add) by. Examples: scan.rotate_linpolphase(2.3) """ varlist = vars() self.stm._rotate_linpolphase(self, angle) self._add_history("rotate_linpolphase", varlist) print_log() return def rotate_xyphase(self, angle): """ Rotate the phase of the XY correlation. This is always done in situ in the data. So if you call this function more than once then each call rotates the phase further. Parameters: angle: The angle (degrees) to rotate (add) by. Examples: scan.rotate_xyphase(2.3) """ varlist = vars() self.stm._rotate_xyphase(self, angle, allaxes) self._add_history("rotate_xyphase", varlist) print_log() return def swap_linears(self): """ Swap the linear polarisations XX and YY """ varlist = vars() self.stm._swap_linears(self) self._add_history("swap_linears", varlist) print_log() return def invert_phase(self): """ Invert the phase of the complex polarisation """ varlist = vars() self.stm._invert_phase(self) self._add_history("invert_phase", varlist) print_log() return def add(self, offset, insitu=None): """ Return a scan where all spectra have the offset added Parameters: offset: the offset insitu: if False a new scantable is returned. Otherwise, the scaling is done in-situ The default is taken from .asaprc (False) """ if insitu is None: insitu = rcParams['insitu'] self._math._setinsitu(insitu) varlist = vars() s = scantable(self._math._unaryop(self, offset, "ADD", False)) s._add_history("add",varlist) print_log() if insitu: self._assign(s) else: return s def scale(self, factor, tsys=True, insitu=None,): """ Return a scan where all spectra are scaled by the give 'factor' Parameters: factor: the scaling factor insitu: if False a new scantable is returned. Otherwise, the scaling is done in-situ The default is taken from .asaprc (False) tsys: if True (default) then apply the operation to Tsys as well as the data """ if insitu is None: insitu = rcParams['insitu'] self._math._setinsitu(insitu) varlist = vars() s = scantable(self._math._unaryop(self, factor, "MUL", tsys)) s._add_history("scale",varlist) print_log() if insitu: self._assign(s) else: return s def auto_quotient(self, mode='time', preserve=True): """ This function allows to build quotients automatically. It assumes the observation to have the same numer of "ons" and "offs" It will support "closest off in time" in the future Parameters: mode: the on/off detection mode; 'suffix' (default) 'suffix' identifies 'off' scans by the trailing '_R' (Mopra/Parkes) or '_e'/'_w' (Tid) preserve: you can preserve (default) the continuum or remove it. The equations used are preserve: Output = Toff * (on/off) - Toff remove: Output = Tref * (on/off) - Ton """ modes = ["time"] if not mode in modes: msg = "please provide valid mode. Valid modes are %s" % (modes) raise ValueError(msg) varlist = vars() s = scantable(self._math._quotient(self, mode, preserve)) s._add_history("auto_quotient",varlist) print_log() return s def freq_switch(self, insitu=None): """ Apply frequency switching to the data. Parameters: insitu: if False a new scantable is returned. Otherwise, the swictching is done in-situ The default is taken from .asaprc (False) Example: none """ if insitu is None: insitu = rcParams['insitu'] self._math._setinsitu(insitu) varlist = vars() s = scantable(self._math._freqswitch(self)) s._add_history("freq_switch",varlist) print_log() if insitu: self._assign(s) else: return s def recalc_azel(self): """ Recalculate the azimuth and elevation for each position. Parameters: none Example: """ varlist = vars() self._recalcazel() self._add_history("recalc_azel", varlist) print_log() return def __add__(self, other): varlist = vars() s = None if isinstance(other, scantable): print "scantable + scantable NYI" return elif isinstance(other, float): s = scantable(self._math._unaryop(self, other, "ADD", False)) else: raise TypeError("Other input is not a scantable or float value") s._add_history("operator +", varlist) print_log() return s def __sub__(self, other): """ implicit on all axes and on Tsys """ varlist = vars() s = None if isinstance(other, scantable): print "scantable - scantable NYI" return elif isinstance(other, float): s = scantable(self._math._unaryop(self, other, "SUB", False)) else: raise TypeError("Other input is not a scantable or float value") s._add_history("operator -", varlist) print_log() return s def __mul__(self, other): """ implicit on all axes and on Tsys """ varlist = vars() s = None if isinstance(other, scantable): print "scantable * scantable NYI" return elif isinstance(other, float): s = scantable(self._math._unaryop(self, other, "MUL", False)) else: raise TypeError("Other input is not a scantable or float value") s._add_history("operator *", varlist) print_log() return s def __div__(self, other): """ implicit on all axes and on Tsys """ varlist = vars() s = None if isinstance(other, scantable): print "scantable / scantable NYI" return elif isinstance(other, float): if other == 0.0: raise ZeroDivisionError("Dividing by zero is not recommended") s = scantable(self._math._unaryop(self, other, "DIV", False)) else: raise TypeError("Other input is not a scantable or float value") s._add_history("operator /", varlist) print_log() return s def get_fit(self, row=0): """ Print or return the stored fits for a row in the scantable Parameters: row: the row which the fit has been applied to. """ if row > self.nrow(): return from asap import asapfit fit = asapfit(self._getfit(row)) if rcParams['verbose']: print fit return else: return fit.as_dict() def _add_history(self, funcname, parameters): # create date sep = "##" from datetime import datetime dstr = datetime.now().strftime('%Y/%m/%d %H:%M:%S') hist = dstr+sep hist += funcname+sep#cdate+sep if parameters.has_key('self'): del parameters['self'] for k,v in parameters.iteritems(): if type(v) is dict: for k2,v2 in v.iteritems(): hist += k2 hist += "=" if isinstance(v2,scantable): hist += 'scantable' elif k2 == 'mask': if isinstance(v2,list) or isinstance(v2,tuple): hist += str(self._zip_mask(v2)) else: hist += str(v2) else: hist += str(v2) else: hist += k hist += "=" if isinstance(v,scantable): hist += 'scantable' elif k == 'mask': if isinstance(v,list) or isinstance(v,tuple): hist += str(self._zip_mask(v)) else: hist += str(v) else: hist += str(v) hist += sep hist = hist[:-2] # remove trailing '##' self._addhistory(hist) def _zip_mask(self, mask): mask = list(mask) i = 0 segments = [] while mask[i:].count(1): i += mask[i:].index(1) if mask[i:].count(0): j = i + mask[i:].index(0) else: j = len(mask) segments.append([i,j]) i = j return segments def _get_ordinate_label(self): fu = "("+self.get_fluxunit()+")" import re lbl = "Intensity" if re.match(".K.",fu): lbl = "Brightness Temperature "+ fu elif re.match(".Jy.",fu): lbl = "Flux density "+ fu return lbl def _check_ifs(self): nchans = [self.nchan(i) for i in range(self.nif(-1))] nchans = filter(lambda t: t > 0, nchans) return (sum(nchans)/len(nchans) == nchans[0])