1 | """This module defines the scantable class."""
|
---|
2 |
|
---|
3 | import os
|
---|
4 | import re
|
---|
5 | import tempfile
|
---|
6 | import numpy
|
---|
7 | try:
|
---|
8 | from functools import wraps as wraps_dec
|
---|
9 | except ImportError:
|
---|
10 | from asap.compatibility import wraps as wraps_dec
|
---|
11 |
|
---|
12 | from asap.env import is_casapy
|
---|
13 | from asap._asap import Scantable
|
---|
14 | from asap._asap import filler, msfiller
|
---|
15 | from asap.parameters import rcParams
|
---|
16 | from asap.logging import asaplog, asaplog_post_dec
|
---|
17 | from asap.selector import selector
|
---|
18 | from asap.linecatalog import linecatalog
|
---|
19 | from asap.coordinate import coordinate
|
---|
20 | from asap.utils import _n_bools, mask_not, mask_and, mask_or, page
|
---|
21 | from asap.asapfitter import fitter
|
---|
22 |
|
---|
23 | def preserve_selection(func):
|
---|
24 | @wraps_dec(func)
|
---|
25 | def wrap(obj, *args, **kw):
|
---|
26 | basesel = obj.get_selection()
|
---|
27 | try:
|
---|
28 | val = func(obj, *args, **kw)
|
---|
29 | finally:
|
---|
30 | obj.set_selection(basesel)
|
---|
31 | return val
|
---|
32 | return wrap
|
---|
33 |
|
---|
34 | def is_scantable(filename):
|
---|
35 | """Is the given file a scantable?
|
---|
36 |
|
---|
37 | Parameters:
|
---|
38 |
|
---|
39 | filename: the name of the file/directory to test
|
---|
40 |
|
---|
41 | """
|
---|
42 | if ( os.path.isdir(filename)
|
---|
43 | and os.path.exists(filename+'/table.info')
|
---|
44 | and os.path.exists(filename+'/table.dat') ):
|
---|
45 | f=open(filename+'/table.info')
|
---|
46 | l=f.readline()
|
---|
47 | f.close()
|
---|
48 | match_pattern = '^Type = (Scantable)? *$'
|
---|
49 | if re.match(match_pattern,l):
|
---|
50 | return True
|
---|
51 | else:
|
---|
52 | return False
|
---|
53 | else:
|
---|
54 | return False
|
---|
55 | ## return (os.path.isdir(filename)
|
---|
56 | ## and not os.path.exists(filename+'/table.f1')
|
---|
57 | ## and os.path.exists(filename+'/table.info'))
|
---|
58 |
|
---|
59 | def is_ms(filename):
|
---|
60 | """Is the given file a MeasurementSet?
|
---|
61 |
|
---|
62 | Parameters:
|
---|
63 |
|
---|
64 | filename: the name of the file/directory to test
|
---|
65 |
|
---|
66 | """
|
---|
67 | if ( os.path.isdir(filename)
|
---|
68 | and os.path.exists(filename+'/table.info')
|
---|
69 | and os.path.exists(filename+'/table.dat') ):
|
---|
70 | f=open(filename+'/table.info')
|
---|
71 | l=f.readline()
|
---|
72 | f.close()
|
---|
73 | if ( l.find('Measurement Set') != -1 ):
|
---|
74 | return True
|
---|
75 | else:
|
---|
76 | return False
|
---|
77 | else:
|
---|
78 | return False
|
---|
79 |
|
---|
80 | def normalise_edge_param(edge):
|
---|
81 | """\
|
---|
82 | Convert a given edge value to a one-dimensional array that can be
|
---|
83 | given to baseline-fitting/subtraction functions.
|
---|
84 | The length of the output value will be an even because values for
|
---|
85 | the both sides of spectra are to be contained for each IF. When
|
---|
86 | the length is 2, the values will be applied to all IFs. If the length
|
---|
87 | is larger than 2, it will be 2*ifnos().
|
---|
88 | Accepted format of edge include:
|
---|
89 | * an integer - will be used for both sides of spectra of all IFs.
|
---|
90 | e.g. 10 is converted to [10,10]
|
---|
91 | * an empty list/tuple [] - converted to [0, 0] and used for all IFs.
|
---|
92 | * a list/tuple containing an integer - same as the above case.
|
---|
93 | e.g. [10] is converted to [10,10]
|
---|
94 | * a list/tuple containing two integers - will be used for all IFs.
|
---|
95 | e.g. [5,10] is output as it is. no need to convert.
|
---|
96 | * a list/tuple of lists/tuples containing TWO integers -
|
---|
97 | each element of edge will be used for each IF.
|
---|
98 | e.g. [[5,10],[15,20]] - [5,10] for IF[0] and [15,20] for IF[1].
|
---|
99 |
|
---|
100 | If an element contains the same integer values, the input 'edge'
|
---|
101 | parameter can be given in a simpler shape in the following cases:
|
---|
102 | ** when len(edge)!=2
|
---|
103 | any elements containing the same values can be replaced
|
---|
104 | to single integers.
|
---|
105 | e.g. [[15,15]] can be simplified to [15] (or [15,15] or 15 also).
|
---|
106 | e.g. [[1,1],[2,2],[3,3]] can be simplified to [1,2,3].
|
---|
107 | ** when len(edge)=2
|
---|
108 | care is needed for this case: ONLY ONE of the
|
---|
109 | elements can be a single integer,
|
---|
110 | e.g. [[5,5],[10,10]] can be simplified to [5,[10,10]]
|
---|
111 | or [[5,5],10], but can NOT be simplified to [5,10].
|
---|
112 | when [5,10] given, it is interpreted as
|
---|
113 | [[5,10],[5,10],[5,10],...] instead, as shown before.
|
---|
114 | """
|
---|
115 | from asap import _is_sequence_or_number as _is_valid
|
---|
116 | if isinstance(edge, list) or isinstance(edge, tuple):
|
---|
117 | for edgepar in edge:
|
---|
118 | if not _is_valid(edgepar, int):
|
---|
119 | raise ValueError, "Each element of the 'edge' tuple has \
|
---|
120 | to be a pair of integers or an integer."
|
---|
121 | if isinstance(edgepar, list) or isinstance(edgepar, tuple):
|
---|
122 | if len(edgepar) != 2:
|
---|
123 | raise ValueError, "Each element of the 'edge' tuple has \
|
---|
124 | to be a pair of integers or an integer."
|
---|
125 | else:
|
---|
126 | if not _is_valid(edge, int):
|
---|
127 | raise ValueError, "Parameter 'edge' has to be an integer or a \
|
---|
128 | pair of integers specified as a tuple. \
|
---|
129 | Nested tuples are allowed \
|
---|
130 | to make individual selection for different IFs."
|
---|
131 |
|
---|
132 |
|
---|
133 | if isinstance(edge, int):
|
---|
134 | edge = [ edge, edge ] # e.g. 3 => [3,3]
|
---|
135 | elif isinstance(edge, list) or isinstance(edge, tuple):
|
---|
136 | if len(edge) == 0:
|
---|
137 | edge = [0, 0] # e.g. [] => [0,0]
|
---|
138 | elif len(edge) == 1:
|
---|
139 | if isinstance(edge[0], int):
|
---|
140 | edge = [ edge[0], edge[0] ] # e.g. [1] => [1,1]
|
---|
141 |
|
---|
142 | commonedge = True
|
---|
143 | if len(edge) > 2: commonedge = False
|
---|
144 | else:
|
---|
145 | for edgepar in edge:
|
---|
146 | if isinstance(edgepar, list) or isinstance(edgepar, tuple):
|
---|
147 | commonedge = False
|
---|
148 | break
|
---|
149 |
|
---|
150 | if commonedge:
|
---|
151 | if len(edge) > 1:
|
---|
152 | norm_edge = edge
|
---|
153 | else:
|
---|
154 | norm_edge = edge + edge
|
---|
155 | else:
|
---|
156 | norm_edge = []
|
---|
157 | for edgepar in edge:
|
---|
158 | if isinstance(edgepar, int):
|
---|
159 | norm_edge += [edgepar, edgepar]
|
---|
160 | else:
|
---|
161 | norm_edge += edgepar
|
---|
162 |
|
---|
163 | return norm_edge
|
---|
164 |
|
---|
165 | def raise_fitting_failure_exception(e):
|
---|
166 | msg = "The fit failed, possibly because it didn't converge."
|
---|
167 | if rcParams["verbose"]:
|
---|
168 | asaplog.push(str(e))
|
---|
169 | asaplog.push(str(msg))
|
---|
170 | else:
|
---|
171 | raise RuntimeError(str(e)+'\n'+msg)
|
---|
172 |
|
---|
173 | def pack_progress_params(showprogress, minnrow):
|
---|
174 | return str(showprogress).lower() + ',' + str(minnrow)
|
---|
175 |
|
---|
176 | def pack_blinfo(blinfo, maxirow):
|
---|
177 | """\
|
---|
178 | convert a dictionary or a list of dictionaries of baseline info
|
---|
179 | into a list of comma-separated strings.
|
---|
180 | """
|
---|
181 | if isinstance(blinfo, dict):
|
---|
182 | res = do_pack_blinfo(blinfo, maxirow)
|
---|
183 | return [res] if res != '' else []
|
---|
184 | elif isinstance(blinfo, list) or isinstance(blinfo, tuple):
|
---|
185 | res = []
|
---|
186 | for i in xrange(len(blinfo)):
|
---|
187 | resi = do_pack_blinfo(blinfo[i], maxirow)
|
---|
188 | if resi != '':
|
---|
189 | res.append(resi)
|
---|
190 | return res
|
---|
191 |
|
---|
192 | def do_pack_blinfo(blinfo, maxirow):
|
---|
193 | """\
|
---|
194 | convert a dictionary of baseline info for a spectrum into
|
---|
195 | a comma-separated string.
|
---|
196 | """
|
---|
197 | dinfo = {}
|
---|
198 | for key in ['row', 'blfunc', 'masklist']:
|
---|
199 | if blinfo.has_key(key):
|
---|
200 | val = blinfo[key]
|
---|
201 | if key == 'row':
|
---|
202 | irow = val
|
---|
203 | if isinstance(val, list) or isinstance(val, tuple):
|
---|
204 | slval = []
|
---|
205 | for i in xrange(len(val)):
|
---|
206 | if isinstance(val[i], list) or isinstance(val[i], tuple):
|
---|
207 | for j in xrange(len(val[i])):
|
---|
208 | slval.append(str(val[i][j]))
|
---|
209 | else:
|
---|
210 | slval.append(str(val[i]))
|
---|
211 | sval = ",".join(slval)
|
---|
212 | else:
|
---|
213 | sval = str(val)
|
---|
214 |
|
---|
215 | dinfo[key] = sval
|
---|
216 | else:
|
---|
217 | raise ValueError("'"+key+"' is missing in blinfo.")
|
---|
218 |
|
---|
219 | if irow >= maxirow: return ''
|
---|
220 |
|
---|
221 | for key in ['order', 'npiece', 'nwave']:
|
---|
222 | if blinfo.has_key(key):
|
---|
223 | val = blinfo[key]
|
---|
224 | if isinstance(val, list) or isinstance(val, tuple):
|
---|
225 | slval = []
|
---|
226 | for i in xrange(len(val)):
|
---|
227 | slval.append(str(val[i]))
|
---|
228 | sval = ",".join(slval)
|
---|
229 | else:
|
---|
230 | sval = str(val)
|
---|
231 | dinfo[key] = sval
|
---|
232 |
|
---|
233 | blfunc = dinfo['blfunc']
|
---|
234 | fspec_keys = {'poly': 'order', 'chebyshev': 'order', 'cspline': 'npiece', 'sinusoid': 'nwave'}
|
---|
235 |
|
---|
236 | fspec_key = fspec_keys[blfunc]
|
---|
237 | if not blinfo.has_key(fspec_key):
|
---|
238 | raise ValueError("'"+fspec_key+"' is missing in blinfo.")
|
---|
239 |
|
---|
240 | clip_params_n = 0
|
---|
241 | for key in ['clipthresh', 'clipniter']:
|
---|
242 | if blinfo.has_key(key):
|
---|
243 | clip_params_n += 1
|
---|
244 | dinfo[key] = str(blinfo[key])
|
---|
245 |
|
---|
246 | if clip_params_n == 0:
|
---|
247 | dinfo['clipthresh'] = '0.0'
|
---|
248 | dinfo['clipniter'] = '0'
|
---|
249 | elif clip_params_n != 2:
|
---|
250 | raise ValueError("both 'clipthresh' and 'clipniter' must be given for n-sigma clipping.")
|
---|
251 |
|
---|
252 | lf_params_n = 0
|
---|
253 | for key in ['thresh', 'edge', 'chan_avg_limit']:
|
---|
254 | if blinfo.has_key(key):
|
---|
255 | lf_params_n += 1
|
---|
256 | val = blinfo[key]
|
---|
257 | if isinstance(val, list) or isinstance(val, tuple):
|
---|
258 | slval = []
|
---|
259 | for i in xrange(len(val)):
|
---|
260 | slval.append(str(val[i]))
|
---|
261 | sval = ",".join(slval)
|
---|
262 | else:
|
---|
263 | sval = str(val)
|
---|
264 | dinfo[key] = sval
|
---|
265 |
|
---|
266 | if lf_params_n == 3:
|
---|
267 | dinfo['use_linefinder'] = 'true'
|
---|
268 | elif lf_params_n == 1:
|
---|
269 | dinfo['use_linefinder'] = 'false'
|
---|
270 | dinfo['thresh'] = ''
|
---|
271 | dinfo['edge'] = ''
|
---|
272 | dinfo['chan_avg_limit'] = ''
|
---|
273 | else:
|
---|
274 | raise ValueError("all of 'thresh', 'edge' and 'chan_avg_limit' must be given to use linefinder.")
|
---|
275 |
|
---|
276 | slblinfo = [dinfo['row'], blfunc, dinfo[fspec_key], dinfo['masklist'], \
|
---|
277 | dinfo['clipthresh'], dinfo['clipniter'], \
|
---|
278 | dinfo['use_linefinder'], dinfo['thresh'], dinfo['edge'], dinfo['chan_avg_limit']]
|
---|
279 |
|
---|
280 | return ":".join(slblinfo)
|
---|
281 |
|
---|
282 | def parse_fitresult(sres):
|
---|
283 | """\
|
---|
284 | Parse the returned value of apply_bltable() or sub_baseline() and
|
---|
285 | extract row number, the best-fit coefficients and rms, then pack
|
---|
286 | them into a dictionary.
|
---|
287 | The input value is generated by Scantable::packFittingResults() and
|
---|
288 | formatted as 'row:coeff[0],coeff[1],..,coeff[n-1]:rms'.
|
---|
289 | """
|
---|
290 | res = []
|
---|
291 | for i in xrange(len(sres)):
|
---|
292 | (srow, scoeff, srms) = sres[i].split(":")
|
---|
293 | row = int(srow)
|
---|
294 | rms = float(srms)
|
---|
295 | lscoeff = scoeff.split(",")
|
---|
296 | coeff = []
|
---|
297 | for j in xrange(len(lscoeff)):
|
---|
298 | coeff.append(float(lscoeff[j]))
|
---|
299 | res.append({'row': row, 'coeff': coeff, 'rms': rms})
|
---|
300 |
|
---|
301 | return res
|
---|
302 |
|
---|
303 | class scantable(Scantable):
|
---|
304 | """\
|
---|
305 | The ASAP container for scans (single-dish data).
|
---|
306 | """
|
---|
307 |
|
---|
308 | @asaplog_post_dec
|
---|
309 | def __init__(self, filename, average=None, unit=None, parallactify=None,
|
---|
310 | **args):
|
---|
311 | """\
|
---|
312 | Create a scantable from a saved one or make a reference
|
---|
313 |
|
---|
314 | Parameters:
|
---|
315 |
|
---|
316 | filename: the name of an asap table on disk
|
---|
317 | or
|
---|
318 | the name of a rpfits/sdfits/ms file
|
---|
319 | (integrations within scans are auto averaged
|
---|
320 | and the whole file is read) or
|
---|
321 | [advanced] a reference to an existing scantable
|
---|
322 |
|
---|
323 | average: average all integrations withinb a scan on read.
|
---|
324 | The default (True) is taken from .asaprc.
|
---|
325 |
|
---|
326 | unit: brightness unit; must be consistent with K or Jy.
|
---|
327 | Over-rides the default selected by the filler
|
---|
328 | (input rpfits/sdfits/ms) or replaces the value
|
---|
329 | in existing scantables
|
---|
330 |
|
---|
331 | antenna: for MeasurementSet input data only:
|
---|
332 | Antenna selection. integer (id) or string
|
---|
333 | (name or id).
|
---|
334 |
|
---|
335 | parallactify: Indicate that the data had been parallactified.
|
---|
336 | Default (false) is taken from rc file.
|
---|
337 |
|
---|
338 | getpt: Whether to import direction from MS/POINTING
|
---|
339 | table properly or not.
|
---|
340 | This is effective only when filename is MS.
|
---|
341 | The default (True) is to import direction
|
---|
342 | from MS/POINTING.
|
---|
343 |
|
---|
344 | freq_tolsr: Whether to convert frequency frame information
|
---|
345 | to LSRK or not.
|
---|
346 | This is effective only when filename is MS.
|
---|
347 | The default (False) is to import frequency
|
---|
348 | as is.
|
---|
349 |
|
---|
350 | """
|
---|
351 | if average is None:
|
---|
352 | average = rcParams['scantable.autoaverage']
|
---|
353 | parallactify = parallactify or rcParams['scantable.parallactify']
|
---|
354 | varlist = vars()
|
---|
355 | from asap._asap import stmath
|
---|
356 | self._math = stmath( rcParams['insitu'] )
|
---|
357 | if isinstance(filename, Scantable):
|
---|
358 | Scantable.__init__(self, filename)
|
---|
359 | else:
|
---|
360 | if isinstance(filename, str):
|
---|
361 | filename = os.path.expandvars(filename)
|
---|
362 | filename = os.path.expanduser(filename)
|
---|
363 | if not os.path.exists(filename):
|
---|
364 | s = "File '%s' not found." % (filename)
|
---|
365 | raise IOError(s)
|
---|
366 | if is_scantable(filename):
|
---|
367 | ondisk = rcParams['scantable.storage'] == 'disk'
|
---|
368 | Scantable.__init__(self, filename, ondisk)
|
---|
369 | if unit is not None:
|
---|
370 | self.set_fluxunit(unit)
|
---|
371 | if average:
|
---|
372 | self._assign( self.average_time( scanav=True ) )
|
---|
373 | # do not reset to the default freqframe
|
---|
374 | #self.set_freqframe(rcParams['scantable.freqframe'])
|
---|
375 | elif is_ms(filename):
|
---|
376 | # Measurement Set
|
---|
377 | opts={'ms': {}}
|
---|
378 | mskeys=['getpt','antenna','freq_tolsr']
|
---|
379 | for key in mskeys:
|
---|
380 | if key in args.keys():
|
---|
381 | opts['ms'][key] = args[key]
|
---|
382 | self._fill([filename], unit, average, opts)
|
---|
383 | elif os.path.isfile(filename):
|
---|
384 | opts={'nro': {}}
|
---|
385 | nrokeys=['freqref']
|
---|
386 | for key in nrokeys:
|
---|
387 | if key in args.keys():
|
---|
388 | opts['nro'][key] = args[key]
|
---|
389 | self._fill([filename], unit, average, opts)
|
---|
390 | # only apply to new data not "copy constructor"
|
---|
391 | self.parallactify(parallactify)
|
---|
392 | else:
|
---|
393 | msg = "The given file '%s'is not a valid " \
|
---|
394 | "asap table." % (filename)
|
---|
395 | raise IOError(msg)
|
---|
396 | elif (isinstance(filename, list) or isinstance(filename, tuple)) \
|
---|
397 | and isinstance(filename[-1], str):
|
---|
398 | self._fill(filename, unit, average)
|
---|
399 | self.parallactify(parallactify)
|
---|
400 | self._add_history("scantable", varlist)
|
---|
401 |
|
---|
402 | @asaplog_post_dec
|
---|
403 | def save(self, name=None, format=None, overwrite=False):
|
---|
404 | """\
|
---|
405 | Store the scantable on disk. This can be an asap (aips++) Table,
|
---|
406 | SDFITS or MS2 format.
|
---|
407 |
|
---|
408 | Parameters:
|
---|
409 |
|
---|
410 | name: the name of the outputfile. For format 'ASCII'
|
---|
411 | this is the root file name (data in 'name'.txt
|
---|
412 | and header in 'name'_header.txt)
|
---|
413 |
|
---|
414 | format: an optional file format. Default is ASAP.
|
---|
415 | Allowed are:
|
---|
416 |
|
---|
417 | * 'ASAP' (save as ASAP [aips++] Table),
|
---|
418 | * 'SDFITS' (save as SDFITS file)
|
---|
419 | * 'ASCII' (saves as ascii text file)
|
---|
420 | * 'MS2' (saves as an casacore MeasurementSet V2)
|
---|
421 | * 'FITS' (save as image FITS - not readable by
|
---|
422 | class)
|
---|
423 | * 'CLASS' (save as FITS readable by CLASS)
|
---|
424 |
|
---|
425 | overwrite: If the file should be overwritten if it exists.
|
---|
426 | The default False is to return with warning
|
---|
427 | without writing the output. USE WITH CARE.
|
---|
428 |
|
---|
429 | Example::
|
---|
430 |
|
---|
431 | scan.save('myscan.asap')
|
---|
432 | scan.save('myscan.sdfits', 'SDFITS')
|
---|
433 |
|
---|
434 | """
|
---|
435 | from os import path
|
---|
436 | format = format or rcParams['scantable.save']
|
---|
437 | suffix = '.'+format.lower()
|
---|
438 | if name is None or name == "":
|
---|
439 | name = 'scantable'+suffix
|
---|
440 | msg = "No filename given. Using default name %s..." % name
|
---|
441 | asaplog.push(msg)
|
---|
442 | name = path.expandvars(name)
|
---|
443 | if path.isfile(name) or path.isdir(name):
|
---|
444 | if not overwrite:
|
---|
445 | msg = "File %s exists." % name
|
---|
446 | raise IOError(msg)
|
---|
447 | format2 = format.upper()
|
---|
448 | if format2 == 'ASAP':
|
---|
449 | self._save(name)
|
---|
450 | elif format2 == 'MS2':
|
---|
451 | msopt = {'ms': {'overwrite': overwrite } }
|
---|
452 | from asap._asap import mswriter
|
---|
453 | writer = mswriter( self )
|
---|
454 | writer.write( name, msopt )
|
---|
455 | else:
|
---|
456 | from asap._asap import stwriter as stw
|
---|
457 | writer = stw(format2)
|
---|
458 | writer.write(self, name)
|
---|
459 | return
|
---|
460 |
|
---|
461 | def copy(self):
|
---|
462 | """Return a copy of this scantable.
|
---|
463 |
|
---|
464 | *Note*:
|
---|
465 |
|
---|
466 | This makes a full (deep) copy. scan2 = scan1 makes a reference.
|
---|
467 |
|
---|
468 | Example::
|
---|
469 |
|
---|
470 | copiedscan = scan.copy()
|
---|
471 |
|
---|
472 | """
|
---|
473 | sd = scantable(Scantable._copy(self))
|
---|
474 | return sd
|
---|
475 |
|
---|
476 | def drop_scan(self, scanid=None):
|
---|
477 | """\
|
---|
478 | Return a new scantable where the specified scan number(s) has(have)
|
---|
479 | been dropped.
|
---|
480 |
|
---|
481 | Parameters:
|
---|
482 |
|
---|
483 | scanid: a (list of) scan number(s)
|
---|
484 |
|
---|
485 | """
|
---|
486 | from asap import _is_sequence_or_number as _is_valid
|
---|
487 | from asap import _to_list
|
---|
488 | from asap import unique
|
---|
489 | if not _is_valid(scanid):
|
---|
490 | raise RuntimeError( 'Please specify a scanno to drop from the'
|
---|
491 | ' scantable' )
|
---|
492 | scanid = _to_list(scanid)
|
---|
493 | allscans = unique([ self.getscan(i) for i in range(self.nrow())])
|
---|
494 | for sid in scanid: allscans.remove(sid)
|
---|
495 | if len(allscans) == 0:
|
---|
496 | raise ValueError("Can't remove all scans")
|
---|
497 | sel = selector(scans=allscans)
|
---|
498 | return self._select_copy(sel)
|
---|
499 |
|
---|
500 | def _select_copy(self, selection):
|
---|
501 | orig = self.get_selection()
|
---|
502 | self.set_selection(orig+selection)
|
---|
503 | cp = self.copy()
|
---|
504 | self.set_selection(orig)
|
---|
505 | return cp
|
---|
506 |
|
---|
507 | def get_scan(self, scanid=None):
|
---|
508 | """\
|
---|
509 | Return a specific scan (by scanno) or collection of scans (by
|
---|
510 | source name) in a new scantable.
|
---|
511 |
|
---|
512 | *Note*:
|
---|
513 |
|
---|
514 | See scantable.drop_scan() for the inverse operation.
|
---|
515 |
|
---|
516 | Parameters:
|
---|
517 |
|
---|
518 | scanid: a (list of) scanno or a source name, unix-style
|
---|
519 | patterns are accepted for source name matching, e.g.
|
---|
520 | '*_R' gets all 'ref scans
|
---|
521 |
|
---|
522 | Example::
|
---|
523 |
|
---|
524 | # get all scans containing the source '323p459'
|
---|
525 | newscan = scan.get_scan('323p459')
|
---|
526 | # get all 'off' scans
|
---|
527 | refscans = scan.get_scan('*_R')
|
---|
528 | # get a susbset of scans by scanno (as listed in scan.summary())
|
---|
529 | newscan = scan.get_scan([0, 2, 7, 10])
|
---|
530 |
|
---|
531 | """
|
---|
532 | if scanid is None:
|
---|
533 | raise RuntimeError( 'Please specify a scan no or name to '
|
---|
534 | 'retrieve from the scantable' )
|
---|
535 | try:
|
---|
536 | bsel = self.get_selection()
|
---|
537 | sel = selector()
|
---|
538 | if type(scanid) is str:
|
---|
539 | sel.set_name(scanid)
|
---|
540 | return self._select_copy(sel)
|
---|
541 | elif type(scanid) is int:
|
---|
542 | sel.set_scans([scanid])
|
---|
543 | return self._select_copy(sel)
|
---|
544 | elif type(scanid) is list:
|
---|
545 | sel.set_scans(scanid)
|
---|
546 | return self._select_copy(sel)
|
---|
547 | else:
|
---|
548 | msg = "Illegal scanid type, use 'int' or 'list' if ints."
|
---|
549 | raise TypeError(msg)
|
---|
550 | except RuntimeError:
|
---|
551 | raise
|
---|
552 |
|
---|
553 | def __str__(self):
|
---|
554 | tempFile = tempfile.NamedTemporaryFile()
|
---|
555 | Scantable._summary(self, tempFile.name)
|
---|
556 | tempFile.seek(0)
|
---|
557 | asaplog.clear()
|
---|
558 | return tempFile.file.read()
|
---|
559 |
|
---|
560 | @asaplog_post_dec
|
---|
561 | def summary(self, filename=None):
|
---|
562 | """\
|
---|
563 | Print a summary of the contents of this scantable.
|
---|
564 |
|
---|
565 | Parameters:
|
---|
566 |
|
---|
567 | filename: the name of a file to write the putput to
|
---|
568 | Default - no file output
|
---|
569 |
|
---|
570 | """
|
---|
571 | if filename is not None:
|
---|
572 | if filename is "":
|
---|
573 | filename = 'scantable_summary.txt'
|
---|
574 | from os.path import expandvars, isdir
|
---|
575 | filename = expandvars(filename)
|
---|
576 | if isdir(filename):
|
---|
577 | msg = "Illegal file name '%s'." % (filename)
|
---|
578 | raise IOError(msg)
|
---|
579 | else:
|
---|
580 | filename = ""
|
---|
581 | Scantable._summary(self, filename)
|
---|
582 |
|
---|
583 | def get_spectrum(self, rowno):
|
---|
584 | """Return the spectrum for the current row in the scantable as a list.
|
---|
585 |
|
---|
586 | Parameters:
|
---|
587 |
|
---|
588 | rowno: the row number to retrieve the spectrum from
|
---|
589 |
|
---|
590 | """
|
---|
591 | return self._getspectrum(rowno)
|
---|
592 |
|
---|
593 | def get_mask(self, rowno):
|
---|
594 | """Return the mask for the current row in the scantable as a list.
|
---|
595 |
|
---|
596 | Parameters:
|
---|
597 |
|
---|
598 | rowno: the row number to retrieve the mask from
|
---|
599 |
|
---|
600 | """
|
---|
601 | return self._getmask(rowno)
|
---|
602 |
|
---|
603 | def set_spectrum(self, spec, rowno):
|
---|
604 | """Set the spectrum for the current row in the scantable.
|
---|
605 |
|
---|
606 | Parameters:
|
---|
607 |
|
---|
608 | spec: the new spectrum
|
---|
609 |
|
---|
610 | rowno: the row number to set the spectrum for
|
---|
611 |
|
---|
612 | """
|
---|
613 | assert(len(spec) == self.nchan(self.getif(rowno)))
|
---|
614 | return self._setspectrum(spec, rowno)
|
---|
615 |
|
---|
616 | def get_coordinate(self, rowno):
|
---|
617 | """Return the (spectral) coordinate for a a given 'rowno'.
|
---|
618 |
|
---|
619 | *Note*:
|
---|
620 |
|
---|
621 | * This coordinate is only valid until a scantable method modifies
|
---|
622 | the frequency axis.
|
---|
623 | * This coordinate does contain the original frequency set-up
|
---|
624 | NOT the new frame. The conversions however are done using the user
|
---|
625 | specified frame (e.g. LSRK/TOPO). To get the 'real' coordinate,
|
---|
626 | use scantable.freq_align first. Without it there is no closure,
|
---|
627 | i.e.::
|
---|
628 |
|
---|
629 | c = myscan.get_coordinate(0)
|
---|
630 | c.to_frequency(c.get_reference_pixel()) != c.get_reference_value()
|
---|
631 |
|
---|
632 | Parameters:
|
---|
633 |
|
---|
634 | rowno: the row number for the spectral coordinate
|
---|
635 |
|
---|
636 | """
|
---|
637 | return coordinate(Scantable.get_coordinate(self, rowno))
|
---|
638 |
|
---|
639 | def get_selection(self):
|
---|
640 | """\
|
---|
641 | Get the selection object currently set on this scantable.
|
---|
642 |
|
---|
643 | Example::
|
---|
644 |
|
---|
645 | sel = scan.get_selection()
|
---|
646 | sel.set_ifs(0) # select IF 0
|
---|
647 | scan.set_selection(sel) # apply modified selection
|
---|
648 |
|
---|
649 | """
|
---|
650 | return selector(self._getselection())
|
---|
651 |
|
---|
652 | def set_selection(self, selection=None, **kw):
|
---|
653 | """\
|
---|
654 | Select a subset of the data. All following operations on this scantable
|
---|
655 | are only applied to thi selection.
|
---|
656 |
|
---|
657 | Parameters:
|
---|
658 |
|
---|
659 | selection: a selector object (default unset the selection), or
|
---|
660 | any combination of 'pols', 'ifs', 'beams', 'scans',
|
---|
661 | 'cycles', 'name', 'query'
|
---|
662 |
|
---|
663 | Examples::
|
---|
664 |
|
---|
665 | sel = selector() # create a selection object
|
---|
666 | self.set_scans([0, 3]) # select SCANNO 0 and 3
|
---|
667 | scan.set_selection(sel) # set the selection
|
---|
668 | scan.summary() # will only print summary of scanno 0 an 3
|
---|
669 | scan.set_selection() # unset the selection
|
---|
670 | # or the equivalent
|
---|
671 | scan.set_selection(scans=[0,3])
|
---|
672 | scan.summary() # will only print summary of scanno 0 an 3
|
---|
673 | scan.set_selection() # unset the selection
|
---|
674 |
|
---|
675 | """
|
---|
676 | if selection is None:
|
---|
677 | # reset
|
---|
678 | if len(kw) == 0:
|
---|
679 | selection = selector()
|
---|
680 | else:
|
---|
681 | # try keywords
|
---|
682 | for k in kw:
|
---|
683 | if k not in selector.fields:
|
---|
684 | raise KeyError("Invalid selection key '%s', "
|
---|
685 | "valid keys are %s" % (k,
|
---|
686 | selector.fields))
|
---|
687 | selection = selector(**kw)
|
---|
688 | self._setselection(selection)
|
---|
689 |
|
---|
690 | def get_row(self, row=0, insitu=None):
|
---|
691 | """\
|
---|
692 | Select a row in the scantable.
|
---|
693 | Return a scantable with single row.
|
---|
694 |
|
---|
695 | Parameters:
|
---|
696 |
|
---|
697 | row: row no of integration, default is 0.
|
---|
698 | insitu: if False a new scantable is returned. Otherwise, the
|
---|
699 | scaling is done in-situ. The default is taken from .asaprc
|
---|
700 | (False)
|
---|
701 |
|
---|
702 | """
|
---|
703 | if insitu is None:
|
---|
704 | insitu = rcParams['insitu']
|
---|
705 | if not insitu:
|
---|
706 | workscan = self.copy()
|
---|
707 | else:
|
---|
708 | workscan = self
|
---|
709 | # Select a row
|
---|
710 | sel = selector()
|
---|
711 | sel.set_rows([row])
|
---|
712 | workscan.set_selection(sel)
|
---|
713 | if not workscan.nrow() == 1:
|
---|
714 | msg = "Could not identify single row. %d rows selected." \
|
---|
715 | % (workscan.nrow())
|
---|
716 | raise RuntimeError(msg)
|
---|
717 | if insitu:
|
---|
718 | self._assign(workscan)
|
---|
719 | else:
|
---|
720 | return workscan
|
---|
721 |
|
---|
722 | @asaplog_post_dec
|
---|
723 | def stats(self, stat='stddev', mask=None, form='3.3f', row=None):
|
---|
724 | """\
|
---|
725 | Determine the specified statistic of the current beam/if/pol
|
---|
726 | Takes a 'mask' as an optional parameter to specify which
|
---|
727 | channels should be excluded.
|
---|
728 |
|
---|
729 | Parameters:
|
---|
730 |
|
---|
731 | stat: 'min', 'max', 'min_abc', 'max_abc', 'sumsq', 'sum',
|
---|
732 | 'mean', 'var', 'stddev', 'avdev', 'rms', 'median'
|
---|
733 |
|
---|
734 | mask: an optional mask specifying where the statistic
|
---|
735 | should be determined.
|
---|
736 |
|
---|
737 | form: format string to print statistic values
|
---|
738 |
|
---|
739 | row: row number of spectrum to process.
|
---|
740 | (default is None: for all rows)
|
---|
741 |
|
---|
742 | Example:
|
---|
743 | scan.set_unit('channel')
|
---|
744 | msk = scan.create_mask([100, 200], [500, 600])
|
---|
745 | scan.stats(stat='mean', mask=m)
|
---|
746 |
|
---|
747 | """
|
---|
748 | mask = mask or []
|
---|
749 | if not self._check_ifs():
|
---|
750 | raise ValueError("Cannot apply mask as the IFs have different "
|
---|
751 | "number of channels. Please use setselection() "
|
---|
752 | "to select individual IFs")
|
---|
753 | rtnabc = False
|
---|
754 | if stat.lower().endswith('_abc'): rtnabc = True
|
---|
755 | getchan = False
|
---|
756 | if stat.lower().startswith('min') or stat.lower().startswith('max'):
|
---|
757 | chan = self._math._minmaxchan(self, mask, stat)
|
---|
758 | getchan = True
|
---|
759 | statvals = []
|
---|
760 | if not rtnabc:
|
---|
761 | if row == None:
|
---|
762 | statvals = self._math._stats(self, mask, stat)
|
---|
763 | else:
|
---|
764 | statvals = self._math._statsrow(self, mask, stat, int(row))
|
---|
765 |
|
---|
766 | #def cb(i):
|
---|
767 | # return statvals[i]
|
---|
768 |
|
---|
769 | #return self._row_callback(cb, stat)
|
---|
770 |
|
---|
771 | label=stat
|
---|
772 | #callback=cb
|
---|
773 | out = ""
|
---|
774 | #outvec = []
|
---|
775 | sep = '-'*50
|
---|
776 |
|
---|
777 | if row == None:
|
---|
778 | rows = xrange(self.nrow())
|
---|
779 | elif isinstance(row, int):
|
---|
780 | rows = [ row ]
|
---|
781 |
|
---|
782 | for i in rows:
|
---|
783 | refstr = ''
|
---|
784 | statunit= ''
|
---|
785 | if getchan:
|
---|
786 | qx, qy = self.chan2data(rowno=i, chan=chan[i])
|
---|
787 | if rtnabc:
|
---|
788 | statvals.append(qx['value'])
|
---|
789 | refstr = ('(value: %'+form) % (qy['value'])+' ['+qy['unit']+'])'
|
---|
790 | statunit= '['+qx['unit']+']'
|
---|
791 | else:
|
---|
792 | refstr = ('(@ %'+form) % (qx['value'])+' ['+qx['unit']+'])'
|
---|
793 |
|
---|
794 | tm = self._gettime(i)
|
---|
795 | src = self._getsourcename(i)
|
---|
796 | out += 'Scan[%d] (%s) ' % (self.getscan(i), src)
|
---|
797 | out += 'Time[%s]:\n' % (tm)
|
---|
798 | if self.nbeam(-1) > 1: out += ' Beam[%d] ' % (self.getbeam(i))
|
---|
799 | if self.nif(-1) > 1: out += ' IF[%d] ' % (self.getif(i))
|
---|
800 | if self.npol(-1) > 1: out += ' Pol[%d] ' % (self.getpol(i))
|
---|
801 | #outvec.append(callback(i))
|
---|
802 | if len(rows) > 1:
|
---|
803 | # out += ('= %'+form) % (outvec[i]) +' '+refstr+'\n'
|
---|
804 | out += ('= %'+form) % (statvals[i]) +' '+refstr+'\n'
|
---|
805 | else:
|
---|
806 | # out += ('= %'+form) % (outvec[0]) +' '+refstr+'\n'
|
---|
807 | out += ('= %'+form) % (statvals[0]) +' '+refstr+'\n'
|
---|
808 | out += sep+"\n"
|
---|
809 |
|
---|
810 | import os
|
---|
811 | if os.environ.has_key( 'USER' ):
|
---|
812 | usr = os.environ['USER']
|
---|
813 | else:
|
---|
814 | import commands
|
---|
815 | usr = commands.getoutput( 'whoami' )
|
---|
816 | tmpfile = '/tmp/tmp_'+usr+'_casapy_asap_scantable_stats'
|
---|
817 | f = open(tmpfile,'w')
|
---|
818 | print >> f, sep
|
---|
819 | print >> f, ' %s %s' % (label, statunit)
|
---|
820 | print >> f, sep
|
---|
821 | print >> f, out
|
---|
822 | f.close()
|
---|
823 | f = open(tmpfile,'r')
|
---|
824 | x = f.readlines()
|
---|
825 | f.close()
|
---|
826 | asaplog.push(''.join(x), False)
|
---|
827 |
|
---|
828 | return statvals
|
---|
829 |
|
---|
830 | def chan2data(self, rowno=0, chan=0):
|
---|
831 | """\
|
---|
832 | Returns channel/frequency/velocity and spectral value
|
---|
833 | at an arbitrary row and channel in the scantable.
|
---|
834 |
|
---|
835 | Parameters:
|
---|
836 |
|
---|
837 | rowno: a row number in the scantable. Default is the
|
---|
838 | first row, i.e. rowno=0
|
---|
839 |
|
---|
840 | chan: a channel in the scantable. Default is the first
|
---|
841 | channel, i.e. pos=0
|
---|
842 |
|
---|
843 | """
|
---|
844 | if isinstance(rowno, int) and isinstance(chan, int):
|
---|
845 | qx = {'unit': self.get_unit(),
|
---|
846 | 'value': self._getabcissa(rowno)[chan]}
|
---|
847 | qy = {'unit': self.get_fluxunit(),
|
---|
848 | 'value': self._getspectrum(rowno)[chan]}
|
---|
849 | return qx, qy
|
---|
850 |
|
---|
851 | def stddev(self, mask=None):
|
---|
852 | """\
|
---|
853 | Determine the standard deviation of the current beam/if/pol
|
---|
854 | Takes a 'mask' as an optional parameter to specify which
|
---|
855 | channels should be excluded.
|
---|
856 |
|
---|
857 | Parameters:
|
---|
858 |
|
---|
859 | mask: an optional mask specifying where the standard
|
---|
860 | deviation should be determined.
|
---|
861 |
|
---|
862 | Example::
|
---|
863 |
|
---|
864 | scan.set_unit('channel')
|
---|
865 | msk = scan.create_mask([100, 200], [500, 600])
|
---|
866 | scan.stddev(mask=m)
|
---|
867 |
|
---|
868 | """
|
---|
869 | return self.stats(stat='stddev', mask=mask);
|
---|
870 |
|
---|
871 |
|
---|
872 | def get_column_names(self):
|
---|
873 | """\
|
---|
874 | Return a list of column names, which can be used for selection.
|
---|
875 | """
|
---|
876 | return list(Scantable.get_column_names(self))
|
---|
877 |
|
---|
878 | def get_tsys(self, row=-1):
|
---|
879 | """\
|
---|
880 | Return the System temperatures.
|
---|
881 |
|
---|
882 | Parameters:
|
---|
883 |
|
---|
884 | row: the rowno to get the information for. (default all rows)
|
---|
885 |
|
---|
886 | Returns:
|
---|
887 |
|
---|
888 | a list of Tsys values for the current selection
|
---|
889 |
|
---|
890 | """
|
---|
891 | if row > -1:
|
---|
892 | return self._get_column(self._gettsys, row)
|
---|
893 | return self._row_callback(self._gettsys, "Tsys")
|
---|
894 |
|
---|
895 | def get_tsysspectrum(self, row=-1):
|
---|
896 | """\
|
---|
897 | Return the channel dependent system temperatures.
|
---|
898 |
|
---|
899 | Parameters:
|
---|
900 |
|
---|
901 | row: the rowno to get the information for. (default all rows)
|
---|
902 |
|
---|
903 | Returns:
|
---|
904 |
|
---|
905 | a list of Tsys values for the current selection
|
---|
906 |
|
---|
907 | """
|
---|
908 | return self._get_column( self._gettsysspectrum, row )
|
---|
909 |
|
---|
910 | def get_weather(self, row=-1):
|
---|
911 | """\
|
---|
912 | Return the weather informations.
|
---|
913 |
|
---|
914 | Parameters:
|
---|
915 |
|
---|
916 | row: the rowno to get the information for. (default all rows)
|
---|
917 |
|
---|
918 | Returns:
|
---|
919 |
|
---|
920 | a dict or list of of dicts of values for the current selection
|
---|
921 |
|
---|
922 | """
|
---|
923 |
|
---|
924 | values = self._get_column(self._get_weather, row)
|
---|
925 | if row > -1:
|
---|
926 | return {'temperature': values[0],
|
---|
927 | 'pressure': values[1], 'humidity' : values[2],
|
---|
928 | 'windspeed' : values[3], 'windaz' : values[4]
|
---|
929 | }
|
---|
930 | else:
|
---|
931 | out = []
|
---|
932 | for r in values:
|
---|
933 |
|
---|
934 | out.append({'temperature': r[0],
|
---|
935 | 'pressure': r[1], 'humidity' : r[2],
|
---|
936 | 'windspeed' : r[3], 'windaz' : r[4]
|
---|
937 | })
|
---|
938 | return out
|
---|
939 |
|
---|
940 | def _row_callback(self, callback, label):
|
---|
941 | out = ""
|
---|
942 | outvec = []
|
---|
943 | sep = '-'*50
|
---|
944 | for i in range(self.nrow()):
|
---|
945 | tm = self._gettime(i)
|
---|
946 | src = self._getsourcename(i)
|
---|
947 | out += 'Scan[%d] (%s) ' % (self.getscan(i), src)
|
---|
948 | out += 'Time[%s]:\n' % (tm)
|
---|
949 | if self.nbeam(-1) > 1:
|
---|
950 | out += ' Beam[%d] ' % (self.getbeam(i))
|
---|
951 | if self.nif(-1) > 1: out += ' IF[%d] ' % (self.getif(i))
|
---|
952 | if self.npol(-1) > 1: out += ' Pol[%d] ' % (self.getpol(i))
|
---|
953 | outvec.append(callback(i))
|
---|
954 | out += '= %3.3f\n' % (outvec[i])
|
---|
955 | out += sep+'\n'
|
---|
956 |
|
---|
957 | asaplog.push(sep)
|
---|
958 | asaplog.push(" %s" % (label))
|
---|
959 | asaplog.push(sep)
|
---|
960 | asaplog.push(out)
|
---|
961 | asaplog.post()
|
---|
962 | return outvec
|
---|
963 |
|
---|
964 | def _get_column(self, callback, row=-1, *args):
|
---|
965 | """
|
---|
966 | """
|
---|
967 | if row == -1:
|
---|
968 | return [callback(i, *args) for i in range(self.nrow())]
|
---|
969 | else:
|
---|
970 | if 0 <= row < self.nrow():
|
---|
971 | return callback(row, *args)
|
---|
972 |
|
---|
973 |
|
---|
974 | def get_time(self, row=-1, asdatetime=False, prec=-1):
|
---|
975 | """\
|
---|
976 | Get a list of time stamps for the observations.
|
---|
977 | Return a datetime object or a string (default) for each
|
---|
978 | integration time stamp in the scantable.
|
---|
979 |
|
---|
980 | Parameters:
|
---|
981 |
|
---|
982 | row: row no of integration. Default -1 return all rows
|
---|
983 |
|
---|
984 | asdatetime: return values as datetime objects rather than strings
|
---|
985 |
|
---|
986 | prec: number of digits shown. Default -1 to automatic
|
---|
987 | calculation.
|
---|
988 | Note this number is equals to the digits of MVTime,
|
---|
989 | i.e., 0<prec<3: dates with hh:: only,
|
---|
990 | <5: with hh:mm:, <7 or 0: with hh:mm:ss,
|
---|
991 | and 6> : with hh:mm:ss.tt... (prec-6 t's added)
|
---|
992 |
|
---|
993 | """
|
---|
994 | from datetime import datetime
|
---|
995 | if prec < 0:
|
---|
996 | # automagically set necessary precision +1
|
---|
997 | prec = 7 - \
|
---|
998 | numpy.floor(numpy.log10(numpy.min(self.get_inttime(row))))
|
---|
999 | prec = max(6, int(prec))
|
---|
1000 | else:
|
---|
1001 | prec = max(0, prec)
|
---|
1002 | if asdatetime:
|
---|
1003 | #precision can be 1 millisecond at max
|
---|
1004 | prec = min(12, prec)
|
---|
1005 |
|
---|
1006 | times = self._get_column(self._gettime, row, prec)
|
---|
1007 | if not asdatetime:
|
---|
1008 | return times
|
---|
1009 | format = "%Y/%m/%d/%H:%M:%S.%f"
|
---|
1010 | if prec < 7:
|
---|
1011 | nsub = 1 + (((6-prec)/2) % 3)
|
---|
1012 | substr = [".%f","%S","%M"]
|
---|
1013 | for i in range(nsub):
|
---|
1014 | format = format.replace(substr[i],"")
|
---|
1015 | if isinstance(times, list):
|
---|
1016 | return [datetime.strptime(i, format) for i in times]
|
---|
1017 | else:
|
---|
1018 | return datetime.strptime(times, format)
|
---|
1019 |
|
---|
1020 |
|
---|
1021 | def get_inttime(self, row=-1):
|
---|
1022 | """\
|
---|
1023 | Get a list of integration times for the observations.
|
---|
1024 | Return a time in seconds for each integration in the scantable.
|
---|
1025 |
|
---|
1026 | Parameters:
|
---|
1027 |
|
---|
1028 | row: row no of integration. Default -1 return all rows.
|
---|
1029 |
|
---|
1030 | """
|
---|
1031 | return self._get_column(self._getinttime, row)
|
---|
1032 |
|
---|
1033 |
|
---|
1034 | def get_sourcename(self, row=-1):
|
---|
1035 | """\
|
---|
1036 | Get a list source names for the observations.
|
---|
1037 | Return a string for each integration in the scantable.
|
---|
1038 | Parameters:
|
---|
1039 |
|
---|
1040 | row: row no of integration. Default -1 return all rows.
|
---|
1041 |
|
---|
1042 | """
|
---|
1043 | return self._get_column(self._getsourcename, row)
|
---|
1044 |
|
---|
1045 | def get_elevation(self, row=-1):
|
---|
1046 | """\
|
---|
1047 | Get a list of elevations for the observations.
|
---|
1048 | Return a float for each integration in the scantable.
|
---|
1049 |
|
---|
1050 | Parameters:
|
---|
1051 |
|
---|
1052 | row: row no of integration. Default -1 return all rows.
|
---|
1053 |
|
---|
1054 | """
|
---|
1055 | return self._get_column(self._getelevation, row)
|
---|
1056 |
|
---|
1057 | def get_azimuth(self, row=-1):
|
---|
1058 | """\
|
---|
1059 | Get a list of azimuths for the observations.
|
---|
1060 | Return a float for each integration in the scantable.
|
---|
1061 |
|
---|
1062 | Parameters:
|
---|
1063 | row: row no of integration. Default -1 return all rows.
|
---|
1064 |
|
---|
1065 | """
|
---|
1066 | return self._get_column(self._getazimuth, row)
|
---|
1067 |
|
---|
1068 | def get_parangle(self, row=-1):
|
---|
1069 | """\
|
---|
1070 | Get a list of parallactic angles for the observations.
|
---|
1071 | Return a float for each integration in the scantable.
|
---|
1072 |
|
---|
1073 | Parameters:
|
---|
1074 |
|
---|
1075 | row: row no of integration. Default -1 return all rows.
|
---|
1076 |
|
---|
1077 | """
|
---|
1078 | return self._get_column(self._getparangle, row)
|
---|
1079 |
|
---|
1080 | def get_direction(self, row=-1):
|
---|
1081 | """
|
---|
1082 | Get a list of Positions on the sky (direction) for the observations.
|
---|
1083 | Return a string for each integration in the scantable.
|
---|
1084 |
|
---|
1085 | Parameters:
|
---|
1086 |
|
---|
1087 | row: row no of integration. Default -1 return all rows
|
---|
1088 |
|
---|
1089 | """
|
---|
1090 | return self._get_column(self._getdirection, row)
|
---|
1091 |
|
---|
1092 | def get_directionval(self, row=-1):
|
---|
1093 | """\
|
---|
1094 | Get a list of Positions on the sky (direction) for the observations.
|
---|
1095 | Return a float for each integration in the scantable.
|
---|
1096 |
|
---|
1097 | Parameters:
|
---|
1098 |
|
---|
1099 | row: row no of integration. Default -1 return all rows
|
---|
1100 |
|
---|
1101 | """
|
---|
1102 | return self._get_column(self._getdirectionvec, row)
|
---|
1103 |
|
---|
1104 | @asaplog_post_dec
|
---|
1105 | def set_unit(self, unit='channel'):
|
---|
1106 | """\
|
---|
1107 | Set the unit for all following operations on this scantable
|
---|
1108 |
|
---|
1109 | Parameters:
|
---|
1110 |
|
---|
1111 | unit: optional unit, default is 'channel'. Use one of '*Hz',
|
---|
1112 | 'km/s', 'channel' or equivalent ''
|
---|
1113 |
|
---|
1114 | """
|
---|
1115 | varlist = vars()
|
---|
1116 | if unit in ['', 'pixel', 'channel']:
|
---|
1117 | unit = ''
|
---|
1118 | inf = list(self._getcoordinfo())
|
---|
1119 | inf[0] = unit
|
---|
1120 | self._setcoordinfo(inf)
|
---|
1121 | self._add_history("set_unit", varlist)
|
---|
1122 |
|
---|
1123 | @asaplog_post_dec
|
---|
1124 | def set_instrument(self, instr):
|
---|
1125 | """\
|
---|
1126 | Set the instrument for subsequent processing.
|
---|
1127 |
|
---|
1128 | Parameters:
|
---|
1129 |
|
---|
1130 | instr: Select from 'ATPKSMB', 'ATPKSHOH', 'ATMOPRA',
|
---|
1131 | 'DSS-43' (Tid), 'CEDUNA', and 'HOBART'
|
---|
1132 |
|
---|
1133 | """
|
---|
1134 | self._setInstrument(instr)
|
---|
1135 | self._add_history("set_instument", vars())
|
---|
1136 |
|
---|
1137 | @asaplog_post_dec
|
---|
1138 | def set_feedtype(self, feedtype):
|
---|
1139 | """\
|
---|
1140 | Overwrite the feed type, which might not be set correctly.
|
---|
1141 |
|
---|
1142 | Parameters:
|
---|
1143 |
|
---|
1144 | feedtype: 'linear' or 'circular'
|
---|
1145 |
|
---|
1146 | """
|
---|
1147 | self._setfeedtype(feedtype)
|
---|
1148 | self._add_history("set_feedtype", vars())
|
---|
1149 |
|
---|
1150 | @asaplog_post_dec
|
---|
1151 | def set_doppler(self, doppler='RADIO'):
|
---|
1152 | """\
|
---|
1153 | Set the doppler for all following operations on this scantable.
|
---|
1154 |
|
---|
1155 | Parameters:
|
---|
1156 |
|
---|
1157 | doppler: One of 'RADIO', 'OPTICAL', 'Z', 'BETA', 'GAMMA'
|
---|
1158 |
|
---|
1159 | """
|
---|
1160 | varlist = vars()
|
---|
1161 | inf = list(self._getcoordinfo())
|
---|
1162 | inf[2] = doppler
|
---|
1163 | self._setcoordinfo(inf)
|
---|
1164 | self._add_history("set_doppler", vars())
|
---|
1165 |
|
---|
1166 | @asaplog_post_dec
|
---|
1167 | def set_freqframe(self, frame=None):
|
---|
1168 | """\
|
---|
1169 | Set the frame type of the Spectral Axis.
|
---|
1170 |
|
---|
1171 | Parameters:
|
---|
1172 |
|
---|
1173 | frame: an optional frame type, default 'LSRK'. Valid frames are:
|
---|
1174 | 'TOPO', 'LSRD', 'LSRK', 'BARY',
|
---|
1175 | 'GEO', 'GALACTO', 'LGROUP', 'CMB'
|
---|
1176 |
|
---|
1177 | Example::
|
---|
1178 |
|
---|
1179 | scan.set_freqframe('BARY')
|
---|
1180 |
|
---|
1181 | """
|
---|
1182 | frame = frame or rcParams['scantable.freqframe']
|
---|
1183 | varlist = vars()
|
---|
1184 | # "REST" is not implemented in casacore
|
---|
1185 | #valid = ['REST', 'TOPO', 'LSRD', 'LSRK', 'BARY', \
|
---|
1186 | # 'GEO', 'GALACTO', 'LGROUP', 'CMB']
|
---|
1187 | valid = ['TOPO', 'LSRD', 'LSRK', 'BARY', \
|
---|
1188 | 'GEO', 'GALACTO', 'LGROUP', 'CMB']
|
---|
1189 |
|
---|
1190 | if frame in valid:
|
---|
1191 | inf = list(self._getcoordinfo())
|
---|
1192 | inf[1] = frame
|
---|
1193 | self._setcoordinfo(inf)
|
---|
1194 | self._add_history("set_freqframe", varlist)
|
---|
1195 | else:
|
---|
1196 | msg = "Please specify a valid freq type. Valid types are:\n", valid
|
---|
1197 | raise TypeError(msg)
|
---|
1198 |
|
---|
1199 | @asaplog_post_dec
|
---|
1200 | def set_dirframe(self, frame=""):
|
---|
1201 | """\
|
---|
1202 | Set the frame type of the Direction on the sky.
|
---|
1203 |
|
---|
1204 | Parameters:
|
---|
1205 |
|
---|
1206 | frame: an optional frame type, default ''. Valid frames are:
|
---|
1207 | 'J2000', 'B1950', 'GALACTIC'
|
---|
1208 |
|
---|
1209 | Example:
|
---|
1210 |
|
---|
1211 | scan.set_dirframe('GALACTIC')
|
---|
1212 |
|
---|
1213 | """
|
---|
1214 | varlist = vars()
|
---|
1215 | Scantable.set_dirframe(self, frame)
|
---|
1216 | self._add_history("set_dirframe", varlist)
|
---|
1217 |
|
---|
1218 | def get_unit(self):
|
---|
1219 | """\
|
---|
1220 | Get the default unit set in this scantable
|
---|
1221 |
|
---|
1222 | Returns:
|
---|
1223 |
|
---|
1224 | A unit string
|
---|
1225 |
|
---|
1226 | """
|
---|
1227 | inf = self._getcoordinfo()
|
---|
1228 | unit = inf[0]
|
---|
1229 | if unit == '': unit = 'channel'
|
---|
1230 | return unit
|
---|
1231 |
|
---|
1232 | @asaplog_post_dec
|
---|
1233 | def get_abcissa(self, rowno=0):
|
---|
1234 | """\
|
---|
1235 | Get the abcissa in the current coordinate setup for the currently
|
---|
1236 | selected Beam/IF/Pol
|
---|
1237 |
|
---|
1238 | Parameters:
|
---|
1239 |
|
---|
1240 | rowno: an optional row number in the scantable. Default is the
|
---|
1241 | first row, i.e. rowno=0
|
---|
1242 |
|
---|
1243 | Returns:
|
---|
1244 |
|
---|
1245 | The abcissa values and the format string (as a dictionary)
|
---|
1246 |
|
---|
1247 | """
|
---|
1248 | abc = self._getabcissa(rowno)
|
---|
1249 | lbl = self._getabcissalabel(rowno)
|
---|
1250 | return abc, lbl
|
---|
1251 |
|
---|
1252 | @asaplog_post_dec
|
---|
1253 | def flag(self, mask=None, unflag=False, row=-1):
|
---|
1254 | """\
|
---|
1255 | Flag the selected data using an optional channel mask.
|
---|
1256 |
|
---|
1257 | Parameters:
|
---|
1258 |
|
---|
1259 | mask: an optional channel mask, created with create_mask. Default
|
---|
1260 | (no mask) is all channels.
|
---|
1261 |
|
---|
1262 | unflag: if True, unflag the data
|
---|
1263 |
|
---|
1264 | row: an optional row number in the scantable.
|
---|
1265 | Default -1 flags all rows
|
---|
1266 |
|
---|
1267 | """
|
---|
1268 | varlist = vars()
|
---|
1269 | mask = mask or []
|
---|
1270 | self._flag(row, mask, unflag)
|
---|
1271 | self._add_history("flag", varlist)
|
---|
1272 |
|
---|
1273 | @asaplog_post_dec
|
---|
1274 | def flag_row(self, rows=None, unflag=False):
|
---|
1275 | """\
|
---|
1276 | Flag the selected data in row-based manner.
|
---|
1277 |
|
---|
1278 | Parameters:
|
---|
1279 |
|
---|
1280 | rows: list of row numbers to be flagged. Default is no row
|
---|
1281 | (must be explicitly specified to execute row-based
|
---|
1282 | flagging).
|
---|
1283 |
|
---|
1284 | unflag: if True, unflag the data.
|
---|
1285 |
|
---|
1286 | """
|
---|
1287 | varlist = vars()
|
---|
1288 | if rows is None:
|
---|
1289 | rows = []
|
---|
1290 | self._flag_row(rows, unflag)
|
---|
1291 | self._add_history("flag_row", varlist)
|
---|
1292 |
|
---|
1293 | @asaplog_post_dec
|
---|
1294 | def clip(self, uthres=None, dthres=None, clipoutside=True, unflag=False):
|
---|
1295 | """\
|
---|
1296 | Flag the selected data outside a specified range (in channel-base)
|
---|
1297 |
|
---|
1298 | Parameters:
|
---|
1299 |
|
---|
1300 | uthres: upper threshold.
|
---|
1301 |
|
---|
1302 | dthres: lower threshold
|
---|
1303 |
|
---|
1304 | clipoutside: True for flagging data outside the range
|
---|
1305 | [dthres:uthres].
|
---|
1306 | False for flagging data inside the range.
|
---|
1307 |
|
---|
1308 | unflag: if True, unflag the data.
|
---|
1309 |
|
---|
1310 | """
|
---|
1311 | varlist = vars()
|
---|
1312 | self._clip(uthres, dthres, clipoutside, unflag)
|
---|
1313 | self._add_history("clip", varlist)
|
---|
1314 |
|
---|
1315 | @asaplog_post_dec
|
---|
1316 | def lag_flag(self, start, end, unit="MHz", insitu=None):
|
---|
1317 | """\
|
---|
1318 | Flag the data in 'lag' space by providing a frequency to remove.
|
---|
1319 | Flagged data in the scantable get interpolated over the region.
|
---|
1320 | No taper is applied.
|
---|
1321 |
|
---|
1322 | Parameters:
|
---|
1323 |
|
---|
1324 | start: the start frequency (really a period within the
|
---|
1325 | bandwidth) or period to remove
|
---|
1326 |
|
---|
1327 | end: the end frequency or period to remove
|
---|
1328 |
|
---|
1329 | unit: the frequency unit (default 'MHz') or '' for
|
---|
1330 | explicit lag channels
|
---|
1331 |
|
---|
1332 | *Notes*:
|
---|
1333 |
|
---|
1334 | It is recommended to flag edges of the band or strong
|
---|
1335 | signals beforehand.
|
---|
1336 |
|
---|
1337 | """
|
---|
1338 | if insitu is None: insitu = rcParams['insitu']
|
---|
1339 | self._math._setinsitu(insitu)
|
---|
1340 | varlist = vars()
|
---|
1341 | base = { "GHz": 1000000000., "MHz": 1000000., "kHz": 1000., "Hz": 1.}
|
---|
1342 | if not (unit == "" or base.has_key(unit)):
|
---|
1343 | raise ValueError("%s is not a valid unit." % unit)
|
---|
1344 | if unit == "":
|
---|
1345 | s = scantable(self._math._lag_flag(self, start, end, "lags"))
|
---|
1346 | else:
|
---|
1347 | s = scantable(self._math._lag_flag(self, start*base[unit],
|
---|
1348 | end*base[unit], "frequency"))
|
---|
1349 | s._add_history("lag_flag", varlist)
|
---|
1350 | if insitu:
|
---|
1351 | self._assign(s)
|
---|
1352 | else:
|
---|
1353 | return s
|
---|
1354 |
|
---|
1355 | @asaplog_post_dec
|
---|
1356 | def fft(self, rowno=None, mask=None, getrealimag=False):
|
---|
1357 | """\
|
---|
1358 | Apply FFT to the spectra.
|
---|
1359 | Flagged data in the scantable get interpolated over the region.
|
---|
1360 |
|
---|
1361 | Parameters:
|
---|
1362 |
|
---|
1363 | rowno: The row number(s) to be processed. int, list
|
---|
1364 | and tuple are accepted. By default (None), FFT
|
---|
1365 | is applied to the whole data.
|
---|
1366 |
|
---|
1367 | mask: Auxiliary channel mask(s). Given as a boolean
|
---|
1368 | list, it is applied to all specified rows.
|
---|
1369 | A list of boolean lists can also be used to
|
---|
1370 | apply different masks. In the latter case, the
|
---|
1371 | length of 'mask' must be the same as that of
|
---|
1372 | 'rowno'. The default is None.
|
---|
1373 |
|
---|
1374 | getrealimag: If True, returns the real and imaginary part
|
---|
1375 | values of the complex results.
|
---|
1376 | If False (the default), returns the amplitude
|
---|
1377 | (absolute value) normalised with Ndata/2 and
|
---|
1378 | phase (argument, in unit of radian).
|
---|
1379 |
|
---|
1380 | Returns:
|
---|
1381 |
|
---|
1382 | A list of dictionaries containing the results for each spectrum.
|
---|
1383 | Each dictionary contains two values, the real and the imaginary
|
---|
1384 | parts when getrealimag = True, or the amplitude(absolute value)
|
---|
1385 | and the phase(argument) when getrealimag = False. The key for
|
---|
1386 | these values are 'real' and 'imag', or 'ampl' and 'phase',
|
---|
1387 | respectively.
|
---|
1388 | """
|
---|
1389 | if rowno is None:
|
---|
1390 | rowno = []
|
---|
1391 | if isinstance(rowno, int):
|
---|
1392 | rowno = [rowno]
|
---|
1393 | elif not (isinstance(rowno, list) or isinstance(rowno, tuple)):
|
---|
1394 | raise TypeError("The row number(s) must be int, list or tuple.")
|
---|
1395 | if len(rowno) == 0: rowno = [i for i in xrange(self.nrow())]
|
---|
1396 |
|
---|
1397 | usecommonmask = True
|
---|
1398 |
|
---|
1399 | if mask is None:
|
---|
1400 | mask = []
|
---|
1401 | if isinstance(mask, list) or isinstance(mask, tuple):
|
---|
1402 | if len(mask) == 0:
|
---|
1403 | mask = [[]]
|
---|
1404 | else:
|
---|
1405 | if isinstance(mask[0], bool):
|
---|
1406 | if len(mask) != self.nchan(self.getif(rowno[0])):
|
---|
1407 | raise ValueError("The spectra and the mask have "
|
---|
1408 | "different length.")
|
---|
1409 | mask = [mask]
|
---|
1410 | elif isinstance(mask[0], list) or isinstance(mask[0], tuple):
|
---|
1411 | usecommonmask = False
|
---|
1412 | if len(mask) != len(rowno):
|
---|
1413 | raise ValueError("When specifying masks for each "
|
---|
1414 | "spectrum, the numbers of them "
|
---|
1415 | "must be identical.")
|
---|
1416 | for i in xrange(mask):
|
---|
1417 | if len(mask[i]) != self.nchan(self.getif(rowno[i])):
|
---|
1418 | raise ValueError("The spectra and the mask have "
|
---|
1419 | "different length.")
|
---|
1420 | else:
|
---|
1421 | raise TypeError("The mask must be a boolean list or "
|
---|
1422 | "a list of boolean list.")
|
---|
1423 | else:
|
---|
1424 | raise TypeError("The mask must be a boolean list or a list of "
|
---|
1425 | "boolean list.")
|
---|
1426 |
|
---|
1427 | res = []
|
---|
1428 |
|
---|
1429 | imask = 0
|
---|
1430 | for whichrow in rowno:
|
---|
1431 | fspec = self._fft(whichrow, mask[imask], getrealimag)
|
---|
1432 | nspec = len(fspec)
|
---|
1433 |
|
---|
1434 | i = 0
|
---|
1435 | v1 = []
|
---|
1436 | v2 = []
|
---|
1437 | reselem = {"real":[],"imag":[]} if getrealimag \
|
---|
1438 | else {"ampl":[],"phase":[]}
|
---|
1439 |
|
---|
1440 | while (i < nspec):
|
---|
1441 | v1.append(fspec[i])
|
---|
1442 | v2.append(fspec[i+1])
|
---|
1443 | i += 2
|
---|
1444 |
|
---|
1445 | if getrealimag:
|
---|
1446 | reselem["real"] += v1
|
---|
1447 | reselem["imag"] += v2
|
---|
1448 | else:
|
---|
1449 | reselem["ampl"] += v1
|
---|
1450 | reselem["phase"] += v2
|
---|
1451 |
|
---|
1452 | res.append(reselem)
|
---|
1453 |
|
---|
1454 | if not usecommonmask:
|
---|
1455 | imask += 1
|
---|
1456 |
|
---|
1457 | return res
|
---|
1458 |
|
---|
1459 | @asaplog_post_dec
|
---|
1460 | def create_mask(self, *args, **kwargs):
|
---|
1461 | """\
|
---|
1462 | Compute and return a mask based on [min, max] windows.
|
---|
1463 | The specified windows are to be INCLUDED, when the mask is
|
---|
1464 | applied.
|
---|
1465 |
|
---|
1466 | Parameters:
|
---|
1467 |
|
---|
1468 | [min, max], [min2, max2], ...
|
---|
1469 | Pairs of start/end points (inclusive)specifying the regions
|
---|
1470 | to be masked
|
---|
1471 |
|
---|
1472 | invert: optional argument. If specified as True,
|
---|
1473 | return an inverted mask, i.e. the regions
|
---|
1474 | specified are EXCLUDED
|
---|
1475 |
|
---|
1476 | row: create the mask using the specified row for
|
---|
1477 | unit conversions, default is row=0
|
---|
1478 | only necessary if frequency varies over rows.
|
---|
1479 |
|
---|
1480 | Examples::
|
---|
1481 |
|
---|
1482 | scan.set_unit('channel')
|
---|
1483 | # a)
|
---|
1484 | msk = scan.create_mask([400, 500], [800, 900])
|
---|
1485 | # masks everything outside 400 and 500
|
---|
1486 | # and 800 and 900 in the unit 'channel'
|
---|
1487 |
|
---|
1488 | # b)
|
---|
1489 | msk = scan.create_mask([400, 500], [800, 900], invert=True)
|
---|
1490 | # masks the regions between 400 and 500
|
---|
1491 | # and 800 and 900 in the unit 'channel'
|
---|
1492 |
|
---|
1493 | # c)
|
---|
1494 | #mask only channel 400
|
---|
1495 | msk = scan.create_mask([400])
|
---|
1496 |
|
---|
1497 | """
|
---|
1498 | row = kwargs.get("row", 0)
|
---|
1499 | data = self._getabcissa(row)
|
---|
1500 | u = self._getcoordinfo()[0]
|
---|
1501 | if u == "":
|
---|
1502 | u = "channel"
|
---|
1503 | msg = "The current mask window unit is %s" % u
|
---|
1504 | i = self._check_ifs()
|
---|
1505 | if not i:
|
---|
1506 | msg += "\nThis mask is only valid for IF=%d" % (self.getif(i))
|
---|
1507 | asaplog.push(msg)
|
---|
1508 | n = len(data)
|
---|
1509 | msk = _n_bools(n, False)
|
---|
1510 | # test if args is a 'list' or a 'normal *args - UGLY!!!
|
---|
1511 |
|
---|
1512 | ws = (isinstance(args[-1][-1], int)
|
---|
1513 | or isinstance(args[-1][-1], float)) and args or args[0]
|
---|
1514 | for window in ws:
|
---|
1515 | if len(window) == 1:
|
---|
1516 | window = [window[0], window[0]]
|
---|
1517 | if len(window) == 0 or len(window) > 2:
|
---|
1518 | raise ValueError("A window needs to be defined as "
|
---|
1519 | "[start(, end)]")
|
---|
1520 | if window[0] > window[1]:
|
---|
1521 | tmp = window[0]
|
---|
1522 | window[0] = window[1]
|
---|
1523 | window[1] = tmp
|
---|
1524 | for i in range(n):
|
---|
1525 | if data[i] >= window[0] and data[i] <= window[1]:
|
---|
1526 | msk[i] = True
|
---|
1527 | if kwargs.has_key('invert'):
|
---|
1528 | if kwargs.get('invert'):
|
---|
1529 | msk = mask_not(msk)
|
---|
1530 | return msk
|
---|
1531 |
|
---|
1532 | def get_masklist(self, mask=None, row=0, silent=False):
|
---|
1533 | """\
|
---|
1534 | Compute and return a list of mask windows, [min, max].
|
---|
1535 |
|
---|
1536 | Parameters:
|
---|
1537 |
|
---|
1538 | mask: channel mask, created with create_mask.
|
---|
1539 |
|
---|
1540 | row: calcutate the masklist using the specified row
|
---|
1541 | for unit conversions, default is row=0
|
---|
1542 | only necessary if frequency varies over rows.
|
---|
1543 |
|
---|
1544 | Returns:
|
---|
1545 |
|
---|
1546 | [min, max], [min2, max2], ...
|
---|
1547 | Pairs of start/end points (inclusive)specifying
|
---|
1548 | the masked regions
|
---|
1549 |
|
---|
1550 | """
|
---|
1551 | if not (isinstance(mask,list) or isinstance(mask, tuple)):
|
---|
1552 | raise TypeError("The mask should be list or tuple.")
|
---|
1553 | if len(mask) <= 0:
|
---|
1554 | raise TypeError("The mask elements should be > 0")
|
---|
1555 | data = self._getabcissa(row)
|
---|
1556 | if len(data) != len(mask):
|
---|
1557 | msg = "Number of channels in scantable != number of mask elements"
|
---|
1558 | raise TypeError(msg)
|
---|
1559 | u = self._getcoordinfo()[0]
|
---|
1560 | if u == "":
|
---|
1561 | u = "channel"
|
---|
1562 | msg = "The current mask window unit is %s" % u
|
---|
1563 | i = self._check_ifs()
|
---|
1564 | if not i:
|
---|
1565 | msg += "\nThis mask is only valid for IF=%d" % (self.getif(i))
|
---|
1566 | if not silent:
|
---|
1567 | asaplog.push(msg)
|
---|
1568 | masklist = []
|
---|
1569 | ist, ien = None, None
|
---|
1570 | ist, ien=self.get_mask_indices(mask)
|
---|
1571 | if ist is not None and ien is not None:
|
---|
1572 | for i in xrange(len(ist)):
|
---|
1573 | range=[data[ist[i]],data[ien[i]]]
|
---|
1574 | range.sort()
|
---|
1575 | masklist.append([range[0],range[1]])
|
---|
1576 | return masklist
|
---|
1577 |
|
---|
1578 | def get_mask_indices(self, mask=None):
|
---|
1579 | """\
|
---|
1580 | Compute and Return lists of mask start indices and mask end indices.
|
---|
1581 |
|
---|
1582 | Parameters:
|
---|
1583 |
|
---|
1584 | mask: channel mask, created with create_mask.
|
---|
1585 |
|
---|
1586 | Returns:
|
---|
1587 |
|
---|
1588 | List of mask start indices and that of mask end indices,
|
---|
1589 | i.e., [istart1,istart2,....], [iend1,iend2,....].
|
---|
1590 |
|
---|
1591 | """
|
---|
1592 | if not (isinstance(mask,list) or isinstance(mask, tuple)):
|
---|
1593 | raise TypeError("The mask should be list or tuple.")
|
---|
1594 | if len(mask) <= 0:
|
---|
1595 | raise TypeError("The mask elements should be > 0")
|
---|
1596 | istart = []
|
---|
1597 | iend = []
|
---|
1598 | if mask[0]:
|
---|
1599 | istart.append(0)
|
---|
1600 | for i in range(len(mask)-1):
|
---|
1601 | if not mask[i] and mask[i+1]:
|
---|
1602 | istart.append(i+1)
|
---|
1603 | elif mask[i] and not mask[i+1]:
|
---|
1604 | iend.append(i)
|
---|
1605 | if mask[len(mask)-1]:
|
---|
1606 | iend.append(len(mask)-1)
|
---|
1607 | if len(istart) != len(iend):
|
---|
1608 | raise RuntimeError("Numbers of mask start != mask end.")
|
---|
1609 | for i in range(len(istart)):
|
---|
1610 | if istart[i] > iend[i]:
|
---|
1611 | raise RuntimeError("Mask start index > mask end index")
|
---|
1612 | break
|
---|
1613 | return istart,iend
|
---|
1614 |
|
---|
1615 | @asaplog_post_dec
|
---|
1616 | def parse_maskexpr(self, maskstring):
|
---|
1617 | """
|
---|
1618 | Parse CASA type mask selection syntax (IF dependent).
|
---|
1619 |
|
---|
1620 | Parameters:
|
---|
1621 | maskstring : A string mask selection expression.
|
---|
1622 | A comma separated selections mean different IF -
|
---|
1623 | channel combinations. IFs and channel selections
|
---|
1624 | are partitioned by a colon, ':'.
|
---|
1625 | examples:
|
---|
1626 | '' = all IFs (all channels)
|
---|
1627 | '<2,4~6,9' = IFs 0,1,4,5,6,9 (all channels)
|
---|
1628 | '3:3~45;60' = channels 3 to 45 and 60 in IF 3
|
---|
1629 | '0~1:2~6,8' = channels 2 to 6 in IFs 0,1, and
|
---|
1630 | all channels in IF8
|
---|
1631 | Returns:
|
---|
1632 | A dictionary of selected (valid) IF and masklist pairs,
|
---|
1633 | e.g. {'0': [[50,250],[350,462]], '2': [[100,400],[550,974]]}
|
---|
1634 | """
|
---|
1635 | if not isinstance(maskstring,str):
|
---|
1636 | asaplog.post()
|
---|
1637 | asaplog.push("Mask expression should be a string.")
|
---|
1638 | asaplog.post("ERROR")
|
---|
1639 |
|
---|
1640 | valid_ifs = self.getifnos()
|
---|
1641 | frequnit = self.get_unit()
|
---|
1642 | seldict = {}
|
---|
1643 | if maskstring == "":
|
---|
1644 | maskstring = str(valid_ifs)[1:-1]
|
---|
1645 | ## split each selection "IF range[:CHAN range]"
|
---|
1646 | sellist = maskstring.split(',')
|
---|
1647 | for currselstr in sellist:
|
---|
1648 | selset = currselstr.split(':')
|
---|
1649 | # spw and mask string (may include ~, < or >)
|
---|
1650 | spwmasklist = self._parse_selection(selset[0], typestr='integer',
|
---|
1651 | minval=min(valid_ifs),
|
---|
1652 | maxval=max(valid_ifs))
|
---|
1653 | for spwlist in spwmasklist:
|
---|
1654 | selspws = []
|
---|
1655 | for ispw in range(spwlist[0],spwlist[1]+1):
|
---|
1656 | # Put into the list only if ispw exists
|
---|
1657 | if valid_ifs.count(ispw):
|
---|
1658 | selspws.append(ispw)
|
---|
1659 | del spwmasklist, spwlist
|
---|
1660 |
|
---|
1661 | # parse frequency mask list
|
---|
1662 | if len(selset) > 1:
|
---|
1663 | freqmasklist = self._parse_selection(selset[1], typestr='float',
|
---|
1664 | offset=0.)
|
---|
1665 | else:
|
---|
1666 | # want to select the whole spectrum
|
---|
1667 | freqmasklist = [None]
|
---|
1668 |
|
---|
1669 | ## define a dictionary of spw - masklist combination
|
---|
1670 | for ispw in selspws:
|
---|
1671 | #print "working on", ispw
|
---|
1672 | spwstr = str(ispw)
|
---|
1673 | if len(selspws) == 0:
|
---|
1674 | # empty spw
|
---|
1675 | continue
|
---|
1676 | else:
|
---|
1677 | ## want to get min and max of the spw and
|
---|
1678 | ## offset to set for '<' and '>'
|
---|
1679 | if frequnit == 'channel':
|
---|
1680 | minfreq = 0
|
---|
1681 | maxfreq = self.nchan(ifno=ispw)
|
---|
1682 | offset = 0.5
|
---|
1683 | else:
|
---|
1684 | ## This is ugly part. need improvement
|
---|
1685 | for ifrow in xrange(self.nrow()):
|
---|
1686 | if self.getif(ifrow) == ispw:
|
---|
1687 | #print "IF",ispw,"found in row =",ifrow
|
---|
1688 | break
|
---|
1689 | freqcoord = self.get_coordinate(ifrow)
|
---|
1690 | freqs = self._getabcissa(ifrow)
|
---|
1691 | minfreq = min(freqs)
|
---|
1692 | maxfreq = max(freqs)
|
---|
1693 | if len(freqs) == 1:
|
---|
1694 | offset = 0.5
|
---|
1695 | elif frequnit.find('Hz') > 0:
|
---|
1696 | offset = abs(freqcoord.to_frequency(1,
|
---|
1697 | unit=frequnit)
|
---|
1698 | -freqcoord.to_frequency(0,
|
---|
1699 | unit=frequnit)
|
---|
1700 | )*0.5
|
---|
1701 | elif frequnit.find('m/s') > 0:
|
---|
1702 | offset = abs(freqcoord.to_velocity(1,
|
---|
1703 | unit=frequnit)
|
---|
1704 | -freqcoord.to_velocity(0,
|
---|
1705 | unit=frequnit)
|
---|
1706 | )*0.5
|
---|
1707 | else:
|
---|
1708 | asaplog.post()
|
---|
1709 | asaplog.push("Invalid frequency unit")
|
---|
1710 | asaplog.post("ERROR")
|
---|
1711 | del freqs, freqcoord, ifrow
|
---|
1712 | for freq in freqmasklist:
|
---|
1713 | selmask = freq or [minfreq, maxfreq]
|
---|
1714 | if selmask[0] == None:
|
---|
1715 | ## selection was "<freq[1]".
|
---|
1716 | if selmask[1] < minfreq:
|
---|
1717 | ## avoid adding region selection
|
---|
1718 | selmask = None
|
---|
1719 | else:
|
---|
1720 | selmask = [minfreq,selmask[1]-offset]
|
---|
1721 | elif selmask[1] == None:
|
---|
1722 | ## selection was ">freq[0]"
|
---|
1723 | if selmask[0] > maxfreq:
|
---|
1724 | ## avoid adding region selection
|
---|
1725 | selmask = None
|
---|
1726 | else:
|
---|
1727 | selmask = [selmask[0]+offset,maxfreq]
|
---|
1728 | if selmask:
|
---|
1729 | if not seldict.has_key(spwstr):
|
---|
1730 | # new spw selection
|
---|
1731 | seldict[spwstr] = []
|
---|
1732 | seldict[spwstr] += [selmask]
|
---|
1733 | del minfreq,maxfreq,offset,freq,selmask
|
---|
1734 | del spwstr
|
---|
1735 | del freqmasklist
|
---|
1736 | del valid_ifs
|
---|
1737 | if len(seldict) == 0:
|
---|
1738 | asaplog.post()
|
---|
1739 | asaplog.push("No valid selection in the mask expression: "
|
---|
1740 | +maskstring)
|
---|
1741 | asaplog.post("WARN")
|
---|
1742 | return None
|
---|
1743 | msg = "Selected masklist:\n"
|
---|
1744 | for sif, lmask in seldict.iteritems():
|
---|
1745 | msg += " IF"+sif+" - "+str(lmask)+"\n"
|
---|
1746 | asaplog.push(msg)
|
---|
1747 | return seldict
|
---|
1748 |
|
---|
1749 | @asaplog_post_dec
|
---|
1750 | def parse_idx_selection(self, mode, selexpr):
|
---|
1751 | """
|
---|
1752 | Parse CASA type mask selection syntax of SCANNO, IFNO, POLNO,
|
---|
1753 | BEAMNO, and row number
|
---|
1754 |
|
---|
1755 | Parameters:
|
---|
1756 | mode : which column to select.
|
---|
1757 | ['scan',|'if'|'pol'|'beam'|'row']
|
---|
1758 | selexpr : A comma separated selection expression.
|
---|
1759 | examples:
|
---|
1760 | '' = all (returns [])
|
---|
1761 | '<2,4~6,9' = indices less than 2, 4 to 6 and 9
|
---|
1762 | (returns [0,1,4,5,6,9])
|
---|
1763 | Returns:
|
---|
1764 | A List of selected indices
|
---|
1765 | """
|
---|
1766 | if selexpr == "":
|
---|
1767 | return []
|
---|
1768 | valid_modes = {'s': 'scan', 'i': 'if', 'p': 'pol',
|
---|
1769 | 'b': 'beam', 'r': 'row'}
|
---|
1770 | smode = mode.lower()[0]
|
---|
1771 | if not (smode in valid_modes.keys()):
|
---|
1772 | msg = "Invalid mode '%s'. Valid modes are %s" %\
|
---|
1773 | (mode, str(valid_modes.values()))
|
---|
1774 | asaplog.post()
|
---|
1775 | asaplog.push(msg)
|
---|
1776 | asaplog.post("ERROR")
|
---|
1777 | mode = valid_modes[smode]
|
---|
1778 | minidx = None
|
---|
1779 | maxidx = None
|
---|
1780 | if smode == 'r':
|
---|
1781 | minidx = 0
|
---|
1782 | maxidx = self.nrow()
|
---|
1783 | else:
|
---|
1784 | idx = getattr(self,"get"+mode+"nos")()
|
---|
1785 | minidx = min(idx)
|
---|
1786 | maxidx = max(idx)
|
---|
1787 | del idx
|
---|
1788 | sellist = selexpr.split(',')
|
---|
1789 | idxlist = []
|
---|
1790 | for currselstr in sellist:
|
---|
1791 | # single range (may include ~, < or >)
|
---|
1792 | currlist = self._parse_selection(currselstr, typestr='integer',
|
---|
1793 | minval=minidx,maxval=maxidx)
|
---|
1794 | for thelist in currlist:
|
---|
1795 | idxlist += range(thelist[0],thelist[1]+1)
|
---|
1796 | msg = "Selected %s: %s" % (mode.upper()+"NO", str(idxlist))
|
---|
1797 | asaplog.push(msg)
|
---|
1798 | return idxlist
|
---|
1799 |
|
---|
1800 | def _parse_selection(self, selstr, typestr='float', offset=0.,
|
---|
1801 | minval=None, maxval=None):
|
---|
1802 | """
|
---|
1803 | Parameters:
|
---|
1804 | selstr : The Selection string, e.g., '<3;5~7;100~103;9'
|
---|
1805 | typestr : The type of the values in returned list
|
---|
1806 | ('integer' or 'float')
|
---|
1807 | offset : The offset value to subtract from or add to
|
---|
1808 | the boundary value if the selection string
|
---|
1809 | includes '<' or '>' [Valid only for typestr='float']
|
---|
1810 | minval, maxval : The minimum/maximum values to set if the
|
---|
1811 | selection string includes '<' or '>'.
|
---|
1812 | The list element is filled with None by default.
|
---|
1813 | Returns:
|
---|
1814 | A list of min/max pair of selections.
|
---|
1815 | Example:
|
---|
1816 | _parse_selection('<3;5~7;9',typestr='int',minval=0)
|
---|
1817 | --> returns [[0,2],[5,7],[9,9]]
|
---|
1818 | _parse_selection('<3;5~7;9',typestr='float',offset=0.5,minval=0)
|
---|
1819 | --> returns [[0.,2.5],[5.0,7.0],[9.,9.]]
|
---|
1820 | """
|
---|
1821 | selgroups = selstr.split(';')
|
---|
1822 | sellists = []
|
---|
1823 | if typestr.lower().startswith('int'):
|
---|
1824 | formatfunc = int
|
---|
1825 | offset = 1
|
---|
1826 | else:
|
---|
1827 | formatfunc = float
|
---|
1828 |
|
---|
1829 | for currsel in selgroups:
|
---|
1830 | if currsel.find('~') > 0:
|
---|
1831 | # val0 <= x <= val1
|
---|
1832 | minsel = formatfunc(currsel.split('~')[0].strip())
|
---|
1833 | maxsel = formatfunc(currsel.split('~')[1].strip())
|
---|
1834 | elif currsel.strip().find('<=') > -1:
|
---|
1835 | bound = currsel.split('<=')
|
---|
1836 | try: # try "x <= val"
|
---|
1837 | minsel = minval
|
---|
1838 | maxsel = formatfunc(bound[1].strip())
|
---|
1839 | except ValueError: # now "val <= x"
|
---|
1840 | minsel = formatfunc(bound[0].strip())
|
---|
1841 | maxsel = maxval
|
---|
1842 | elif currsel.strip().find('>=') > -1:
|
---|
1843 | bound = currsel.split('>=')
|
---|
1844 | try: # try "x >= val"
|
---|
1845 | minsel = formatfunc(bound[1].strip())
|
---|
1846 | maxsel = maxval
|
---|
1847 | except ValueError: # now "val >= x"
|
---|
1848 | minsel = minval
|
---|
1849 | maxsel = formatfunc(bound[0].strip())
|
---|
1850 | elif currsel.strip().find('<') > -1:
|
---|
1851 | bound = currsel.split('<')
|
---|
1852 | try: # try "x < val"
|
---|
1853 | minsel = minval
|
---|
1854 | maxsel = formatfunc(bound[1].strip()) \
|
---|
1855 | - formatfunc(offset)
|
---|
1856 | except ValueError: # now "val < x"
|
---|
1857 | minsel = formatfunc(bound[0].strip()) \
|
---|
1858 | + formatfunc(offset)
|
---|
1859 | maxsel = maxval
|
---|
1860 | elif currsel.strip().find('>') > -1:
|
---|
1861 | bound = currsel.split('>')
|
---|
1862 | try: # try "x > val"
|
---|
1863 | minsel = formatfunc(bound[1].strip()) \
|
---|
1864 | + formatfunc(offset)
|
---|
1865 | maxsel = maxval
|
---|
1866 | except ValueError: # now "val > x"
|
---|
1867 | minsel = minval
|
---|
1868 | maxsel = formatfunc(bound[0].strip()) \
|
---|
1869 | - formatfunc(offset)
|
---|
1870 | else:
|
---|
1871 | minsel = formatfunc(currsel)
|
---|
1872 | maxsel = formatfunc(currsel)
|
---|
1873 | sellists.append([minsel,maxsel])
|
---|
1874 | return sellists
|
---|
1875 |
|
---|
1876 | # def get_restfreqs(self):
|
---|
1877 | # """
|
---|
1878 | # Get the restfrequency(s) stored in this scantable.
|
---|
1879 | # The return value(s) are always of unit 'Hz'
|
---|
1880 | # Parameters:
|
---|
1881 | # none
|
---|
1882 | # Returns:
|
---|
1883 | # a list of doubles
|
---|
1884 | # """
|
---|
1885 | # return list(self._getrestfreqs())
|
---|
1886 |
|
---|
1887 | def get_restfreqs(self, ids=None):
|
---|
1888 | """\
|
---|
1889 | Get the restfrequency(s) stored in this scantable.
|
---|
1890 | The return value(s) are always of unit 'Hz'
|
---|
1891 |
|
---|
1892 | Parameters:
|
---|
1893 |
|
---|
1894 | ids: (optional) a list of MOLECULE_ID for that restfrequency(s) to
|
---|
1895 | be retrieved
|
---|
1896 |
|
---|
1897 | Returns:
|
---|
1898 |
|
---|
1899 | dictionary containing ids and a list of doubles for each id
|
---|
1900 |
|
---|
1901 | """
|
---|
1902 | if ids is None:
|
---|
1903 | rfreqs = {}
|
---|
1904 | idlist = self.getmolnos()
|
---|
1905 | for i in idlist:
|
---|
1906 | rfreqs[i] = list(self._getrestfreqs(i))
|
---|
1907 | return rfreqs
|
---|
1908 | else:
|
---|
1909 | if type(ids) == list or type(ids) == tuple:
|
---|
1910 | rfreqs = {}
|
---|
1911 | for i in ids:
|
---|
1912 | rfreqs[i] = list(self._getrestfreqs(i))
|
---|
1913 | return rfreqs
|
---|
1914 | else:
|
---|
1915 | return list(self._getrestfreqs(ids))
|
---|
1916 |
|
---|
1917 | @asaplog_post_dec
|
---|
1918 | def set_restfreqs(self, freqs=None, unit='Hz'):
|
---|
1919 | """\
|
---|
1920 | Set or replace the restfrequency specified and
|
---|
1921 | if the 'freqs' argument holds a scalar,
|
---|
1922 | then that rest frequency will be applied to all the selected
|
---|
1923 | data. If the 'freqs' argument holds
|
---|
1924 | a vector, then it MUST be of equal or smaller length than
|
---|
1925 | the number of IFs (and the available restfrequencies will be
|
---|
1926 | replaced by this vector). In this case, *all* data have
|
---|
1927 | the restfrequency set per IF according
|
---|
1928 | to the corresponding value you give in the 'freqs' vector.
|
---|
1929 | E.g. 'freqs=[1e9, 2e9]' would mean IF 0 gets restfreq 1e9 and
|
---|
1930 | IF 1 gets restfreq 2e9.
|
---|
1931 |
|
---|
1932 | You can also specify the frequencies via a linecatalog.
|
---|
1933 |
|
---|
1934 | Parameters:
|
---|
1935 |
|
---|
1936 | freqs: list of rest frequency values or string idenitfiers
|
---|
1937 |
|
---|
1938 | unit: unit for rest frequency (default 'Hz')
|
---|
1939 |
|
---|
1940 |
|
---|
1941 | Example::
|
---|
1942 |
|
---|
1943 | # set the given restfrequency for the all currently selected IFs
|
---|
1944 | scan.set_restfreqs(freqs=1.4e9)
|
---|
1945 | # set restfrequencies for the n IFs (n > 1) in the order of the
|
---|
1946 | # list, i.e
|
---|
1947 | # IF0 -> 1.4e9, IF1 -> 1.41e9, IF3 -> 1.42e9
|
---|
1948 | # len(list_of_restfreqs) == nIF
|
---|
1949 | # for nIF == 1 the following will set multiple restfrequency for
|
---|
1950 | # that IF
|
---|
1951 | scan.set_restfreqs(freqs=[1.4e9, 1.41e9, 1.42e9])
|
---|
1952 | # set multiple restfrequencies per IF. as a list of lists where
|
---|
1953 | # the outer list has nIF elements, the inner s arbitrary
|
---|
1954 | scan.set_restfreqs(freqs=[[1.4e9, 1.41e9], [1.67e9]])
|
---|
1955 |
|
---|
1956 | *Note*:
|
---|
1957 |
|
---|
1958 | To do more sophisticate Restfrequency setting, e.g. on a
|
---|
1959 | source and IF basis, use scantable.set_selection() before using
|
---|
1960 | this function::
|
---|
1961 |
|
---|
1962 | # provided your scantable is called scan
|
---|
1963 | selection = selector()
|
---|
1964 | selection.set_name('ORION*')
|
---|
1965 | selection.set_ifs([1])
|
---|
1966 | scan.set_selection(selection)
|
---|
1967 | scan.set_restfreqs(freqs=86.6e9)
|
---|
1968 |
|
---|
1969 | """
|
---|
1970 | varlist = vars()
|
---|
1971 | from asap import linecatalog
|
---|
1972 | # simple value
|
---|
1973 | if isinstance(freqs, int) or isinstance(freqs, float):
|
---|
1974 | self._setrestfreqs([freqs], [""], unit)
|
---|
1975 | # list of values
|
---|
1976 | elif isinstance(freqs, list) or isinstance(freqs, tuple):
|
---|
1977 | # list values are scalars
|
---|
1978 | if isinstance(freqs[-1], int) or isinstance(freqs[-1], float):
|
---|
1979 | if len(freqs) == 1:
|
---|
1980 | self._setrestfreqs(freqs, [""], unit)
|
---|
1981 | else:
|
---|
1982 | # allow the 'old' mode of setting mulitple IFs
|
---|
1983 | savesel = self._getselection()
|
---|
1984 | sel = self.get_selection()
|
---|
1985 | iflist = self.getifnos()
|
---|
1986 | if len(freqs)>len(iflist):
|
---|
1987 | raise ValueError("number of elements in list of list "
|
---|
1988 | "exeeds the current IF selections")
|
---|
1989 | iflist = self.getifnos()
|
---|
1990 | for i, fval in enumerate(freqs):
|
---|
1991 | sel.set_ifs(iflist[i])
|
---|
1992 | self._setselection(sel)
|
---|
1993 | self._setrestfreqs([fval], [""], unit)
|
---|
1994 | self._setselection(savesel)
|
---|
1995 |
|
---|
1996 | # list values are dict, {'value'=, 'name'=)
|
---|
1997 | elif isinstance(freqs[-1], dict):
|
---|
1998 | values = []
|
---|
1999 | names = []
|
---|
2000 | for d in freqs:
|
---|
2001 | values.append(d["value"])
|
---|
2002 | names.append(d["name"])
|
---|
2003 | self._setrestfreqs(values, names, unit)
|
---|
2004 | elif isinstance(freqs[-1], list) or isinstance(freqs[-1], tuple):
|
---|
2005 | savesel = self._getselection()
|
---|
2006 | sel = self.get_selection()
|
---|
2007 | iflist = self.getifnos()
|
---|
2008 | if len(freqs)>len(iflist):
|
---|
2009 | raise ValueError("number of elements in list of list exeeds"
|
---|
2010 | " the current IF selections")
|
---|
2011 | for i, fval in enumerate(freqs):
|
---|
2012 | sel.set_ifs(iflist[i])
|
---|
2013 | self._setselection(sel)
|
---|
2014 | self._setrestfreqs(fval, [""], unit)
|
---|
2015 | self._setselection(savesel)
|
---|
2016 | # freqs are to be taken from a linecatalog
|
---|
2017 | elif isinstance(freqs, linecatalog):
|
---|
2018 | savesel = self._getselection()
|
---|
2019 | sel = self.get_selection()
|
---|
2020 | for i in xrange(freqs.nrow()):
|
---|
2021 | sel.set_ifs(iflist[i])
|
---|
2022 | self._setselection(sel)
|
---|
2023 | self._setrestfreqs([freqs.get_frequency(i)],
|
---|
2024 | [freqs.get_name(i)], "MHz")
|
---|
2025 | # ensure that we are not iterating past nIF
|
---|
2026 | if i == self.nif()-1: break
|
---|
2027 | self._setselection(savesel)
|
---|
2028 | else:
|
---|
2029 | return
|
---|
2030 | self._add_history("set_restfreqs", varlist)
|
---|
2031 |
|
---|
2032 | @asaplog_post_dec
|
---|
2033 | def shift_refpix(self, delta):
|
---|
2034 | """\
|
---|
2035 | Shift the reference pixel of the Spectra Coordinate by an
|
---|
2036 | integer amount.
|
---|
2037 |
|
---|
2038 | Parameters:
|
---|
2039 |
|
---|
2040 | delta: the amount to shift by
|
---|
2041 |
|
---|
2042 | *Note*:
|
---|
2043 |
|
---|
2044 | Be careful using this with broadband data.
|
---|
2045 |
|
---|
2046 | """
|
---|
2047 | varlist = vars()
|
---|
2048 | Scantable.shift_refpix(self, delta)
|
---|
2049 | s._add_history("shift_refpix", varlist)
|
---|
2050 |
|
---|
2051 | @asaplog_post_dec
|
---|
2052 | def history(self, filename=None):
|
---|
2053 | """\
|
---|
2054 | Print the history. Optionally to a file.
|
---|
2055 |
|
---|
2056 | Parameters:
|
---|
2057 |
|
---|
2058 | filename: The name of the file to save the history to.
|
---|
2059 |
|
---|
2060 | """
|
---|
2061 | hist = list(self._gethistory())
|
---|
2062 | out = "-"*80
|
---|
2063 | for h in hist:
|
---|
2064 | if h.startswith("---"):
|
---|
2065 | out = "\n".join([out, h])
|
---|
2066 | else:
|
---|
2067 | items = h.split("##")
|
---|
2068 | date = items[0]
|
---|
2069 | func = items[1]
|
---|
2070 | items = items[2:]
|
---|
2071 | out += "\n"+date+"\n"
|
---|
2072 | out += "Function: %s\n Parameters:" % (func)
|
---|
2073 | for i in items:
|
---|
2074 | if i == '':
|
---|
2075 | continue
|
---|
2076 | s = i.split("=")
|
---|
2077 | out += "\n %s = %s" % (s[0], s[1])
|
---|
2078 | out = "\n".join([out, "-"*80])
|
---|
2079 | if filename is not None:
|
---|
2080 | if filename is "":
|
---|
2081 | filename = 'scantable_history.txt'
|
---|
2082 | import os
|
---|
2083 | filename = os.path.expandvars(os.path.expanduser(filename))
|
---|
2084 | if not os.path.isdir(filename):
|
---|
2085 | data = open(filename, 'w')
|
---|
2086 | data.write(out)
|
---|
2087 | data.close()
|
---|
2088 | else:
|
---|
2089 | msg = "Illegal file name '%s'." % (filename)
|
---|
2090 | raise IOError(msg)
|
---|
2091 | return page(out)
|
---|
2092 |
|
---|
2093 | #
|
---|
2094 | # Maths business
|
---|
2095 | #
|
---|
2096 | @asaplog_post_dec
|
---|
2097 | def average_time(self, mask=None, scanav=False, weight='tint', align=False):
|
---|
2098 | """\
|
---|
2099 | Return the (time) weighted average of a scan. Scans will be averaged
|
---|
2100 | only if the source direction (RA/DEC) is within 1' otherwise
|
---|
2101 |
|
---|
2102 | *Note*:
|
---|
2103 |
|
---|
2104 | in channels only - align if necessary
|
---|
2105 |
|
---|
2106 | Parameters:
|
---|
2107 |
|
---|
2108 | mask: an optional mask (only used for 'var' and 'tsys'
|
---|
2109 | weighting)
|
---|
2110 |
|
---|
2111 | scanav: True averages each scan separately
|
---|
2112 | False (default) averages all scans together,
|
---|
2113 |
|
---|
2114 | weight: Weighting scheme.
|
---|
2115 | 'none' (mean no weight)
|
---|
2116 | 'var' (1/var(spec) weighted)
|
---|
2117 | 'tsys' (1/Tsys**2 weighted)
|
---|
2118 | 'tint' (integration time weighted)
|
---|
2119 | 'tintsys' (Tint/Tsys**2)
|
---|
2120 | 'median' ( median averaging)
|
---|
2121 | The default is 'tint'
|
---|
2122 |
|
---|
2123 | align: align the spectra in velocity before averaging. It takes
|
---|
2124 | the time of the first spectrum as reference time.
|
---|
2125 |
|
---|
2126 | Example::
|
---|
2127 |
|
---|
2128 | # time average the scantable without using a mask
|
---|
2129 | newscan = scan.average_time()
|
---|
2130 |
|
---|
2131 | """
|
---|
2132 | varlist = vars()
|
---|
2133 | weight = weight or 'TINT'
|
---|
2134 | mask = mask or ()
|
---|
2135 | scanav = (scanav and 'SCAN') or 'NONE'
|
---|
2136 | scan = (self, )
|
---|
2137 |
|
---|
2138 | if align:
|
---|
2139 | scan = (self.freq_align(insitu=False), )
|
---|
2140 | s = None
|
---|
2141 | if weight.upper() == 'MEDIAN':
|
---|
2142 | s = scantable(self._math._averagechannel(scan[0], 'MEDIAN',
|
---|
2143 | scanav))
|
---|
2144 | else:
|
---|
2145 | s = scantable(self._math._average(scan, mask, weight.upper(),
|
---|
2146 | scanav))
|
---|
2147 | s._add_history("average_time", varlist)
|
---|
2148 | return s
|
---|
2149 |
|
---|
2150 | @asaplog_post_dec
|
---|
2151 | def convert_flux(self, jyperk=None, eta=None, d=None, insitu=None):
|
---|
2152 | """\
|
---|
2153 | Return a scan where all spectra are converted to either
|
---|
2154 | Jansky or Kelvin depending upon the flux units of the scan table.
|
---|
2155 | By default the function tries to look the values up internally.
|
---|
2156 | If it can't find them (or if you want to over-ride), you must
|
---|
2157 | specify EITHER jyperk OR eta (and D which it will try to look up
|
---|
2158 | also if you don't set it). jyperk takes precedence if you set both.
|
---|
2159 |
|
---|
2160 | Parameters:
|
---|
2161 |
|
---|
2162 | jyperk: the Jy / K conversion factor
|
---|
2163 |
|
---|
2164 | eta: the aperture efficiency
|
---|
2165 |
|
---|
2166 | d: the geometric diameter (metres)
|
---|
2167 |
|
---|
2168 | insitu: if False a new scantable is returned.
|
---|
2169 | Otherwise, the scaling is done in-situ
|
---|
2170 | The default is taken from .asaprc (False)
|
---|
2171 |
|
---|
2172 | """
|
---|
2173 | if insitu is None: insitu = rcParams['insitu']
|
---|
2174 | self._math._setinsitu(insitu)
|
---|
2175 | varlist = vars()
|
---|
2176 | jyperk = jyperk or -1.0
|
---|
2177 | d = d or -1.0
|
---|
2178 | eta = eta or -1.0
|
---|
2179 | s = scantable(self._math._convertflux(self, d, eta, jyperk))
|
---|
2180 | s._add_history("convert_flux", varlist)
|
---|
2181 | if insitu: self._assign(s)
|
---|
2182 | else: return s
|
---|
2183 |
|
---|
2184 | @asaplog_post_dec
|
---|
2185 | def gain_el(self, poly=None, filename="", method="linear", insitu=None):
|
---|
2186 | """\
|
---|
2187 | Return a scan after applying a gain-elevation correction.
|
---|
2188 | The correction can be made via either a polynomial or a
|
---|
2189 | table-based interpolation (and extrapolation if necessary).
|
---|
2190 | You specify polynomial coefficients, an ascii table or neither.
|
---|
2191 | If you specify neither, then a polynomial correction will be made
|
---|
2192 | with built in coefficients known for certain telescopes (an error
|
---|
2193 | will occur if the instrument is not known).
|
---|
2194 | The data and Tsys are *divided* by the scaling factors.
|
---|
2195 |
|
---|
2196 | Parameters:
|
---|
2197 |
|
---|
2198 | poly: Polynomial coefficients (default None) to compute a
|
---|
2199 | gain-elevation correction as a function of
|
---|
2200 | elevation (in degrees).
|
---|
2201 |
|
---|
2202 | filename: The name of an ascii file holding correction factors.
|
---|
2203 | The first row of the ascii file must give the column
|
---|
2204 | names and these MUST include columns
|
---|
2205 | 'ELEVATION' (degrees) and 'FACTOR' (multiply data
|
---|
2206 | by this) somewhere.
|
---|
2207 | The second row must give the data type of the
|
---|
2208 | column. Use 'R' for Real and 'I' for Integer.
|
---|
2209 | An example file would be
|
---|
2210 | (actual factors are arbitrary) :
|
---|
2211 |
|
---|
2212 | TIME ELEVATION FACTOR
|
---|
2213 | R R R
|
---|
2214 | 0.1 0 0.8
|
---|
2215 | 0.2 20 0.85
|
---|
2216 | 0.3 40 0.9
|
---|
2217 | 0.4 60 0.85
|
---|
2218 | 0.5 80 0.8
|
---|
2219 | 0.6 90 0.75
|
---|
2220 |
|
---|
2221 | method: Interpolation method when correcting from a table.
|
---|
2222 | Values are 'nearest', 'linear' (default), 'cubic'
|
---|
2223 | and 'spline'
|
---|
2224 |
|
---|
2225 | insitu: if False a new scantable is returned.
|
---|
2226 | Otherwise, the scaling is done in-situ
|
---|
2227 | The default is taken from .asaprc (False)
|
---|
2228 |
|
---|
2229 | """
|
---|
2230 |
|
---|
2231 | if insitu is None: insitu = rcParams['insitu']
|
---|
2232 | self._math._setinsitu(insitu)
|
---|
2233 | varlist = vars()
|
---|
2234 | poly = poly or ()
|
---|
2235 | from os.path import expandvars
|
---|
2236 | filename = expandvars(filename)
|
---|
2237 | s = scantable(self._math._gainel(self, poly, filename, method))
|
---|
2238 | s._add_history("gain_el", varlist)
|
---|
2239 | if insitu:
|
---|
2240 | self._assign(s)
|
---|
2241 | else:
|
---|
2242 | return s
|
---|
2243 |
|
---|
2244 | @asaplog_post_dec
|
---|
2245 | def freq_align(self, reftime=None, method='cubic', insitu=None):
|
---|
2246 | """\
|
---|
2247 | Return a scan where all rows have been aligned in frequency/velocity.
|
---|
2248 | The alignment frequency frame (e.g. LSRK) is that set by function
|
---|
2249 | set_freqframe.
|
---|
2250 |
|
---|
2251 | Parameters:
|
---|
2252 |
|
---|
2253 | reftime: reference time to align at. By default, the time of
|
---|
2254 | the first row of data is used.
|
---|
2255 |
|
---|
2256 | method: Interpolation method for regridding the spectra.
|
---|
2257 | Choose from 'nearest', 'linear', 'cubic' (default)
|
---|
2258 | and 'spline'
|
---|
2259 |
|
---|
2260 | insitu: if False a new scantable is returned.
|
---|
2261 | Otherwise, the scaling is done in-situ
|
---|
2262 | The default is taken from .asaprc (False)
|
---|
2263 |
|
---|
2264 | """
|
---|
2265 | if insitu is None: insitu = rcParams["insitu"]
|
---|
2266 | oldInsitu = self._math._insitu()
|
---|
2267 | self._math._setinsitu(insitu)
|
---|
2268 | varlist = vars()
|
---|
2269 | reftime = reftime or ""
|
---|
2270 | s = scantable(self._math._freq_align(self, reftime, method))
|
---|
2271 | s._add_history("freq_align", varlist)
|
---|
2272 | self._math._setinsitu(oldInsitu)
|
---|
2273 | if insitu:
|
---|
2274 | self._assign(s)
|
---|
2275 | else:
|
---|
2276 | return s
|
---|
2277 |
|
---|
2278 | @asaplog_post_dec
|
---|
2279 | def opacity(self, tau=None, insitu=None):
|
---|
2280 | """\
|
---|
2281 | Apply an opacity correction. The data
|
---|
2282 | and Tsys are multiplied by the correction factor.
|
---|
2283 |
|
---|
2284 | Parameters:
|
---|
2285 |
|
---|
2286 | tau: (list of) opacity from which the correction factor is
|
---|
2287 | exp(tau*ZD)
|
---|
2288 | where ZD is the zenith-distance.
|
---|
2289 | If a list is provided, it has to be of length nIF,
|
---|
2290 | nIF*nPol or 1 and in order of IF/POL, e.g.
|
---|
2291 | [opif0pol0, opif0pol1, opif1pol0 ...]
|
---|
2292 | if tau is `None` the opacities are determined from a
|
---|
2293 | model.
|
---|
2294 |
|
---|
2295 | insitu: if False a new scantable is returned.
|
---|
2296 | Otherwise, the scaling is done in-situ
|
---|
2297 | The default is taken from .asaprc (False)
|
---|
2298 |
|
---|
2299 | """
|
---|
2300 | if insitu is None:
|
---|
2301 | insitu = rcParams['insitu']
|
---|
2302 | self._math._setinsitu(insitu)
|
---|
2303 | varlist = vars()
|
---|
2304 | if not hasattr(tau, "__len__"):
|
---|
2305 | tau = [tau]
|
---|
2306 | s = scantable(self._math._opacity(self, tau))
|
---|
2307 | s._add_history("opacity", varlist)
|
---|
2308 | if insitu:
|
---|
2309 | self._assign(s)
|
---|
2310 | else:
|
---|
2311 | return s
|
---|
2312 |
|
---|
2313 | @asaplog_post_dec
|
---|
2314 | def bin(self, width=5, insitu=None):
|
---|
2315 | """\
|
---|
2316 | Return a scan where all spectra have been binned up.
|
---|
2317 |
|
---|
2318 | Parameters:
|
---|
2319 |
|
---|
2320 | width: The bin width (default=5) in pixels
|
---|
2321 |
|
---|
2322 | insitu: if False a new scantable is returned.
|
---|
2323 | Otherwise, the scaling is done in-situ
|
---|
2324 | The default is taken from .asaprc (False)
|
---|
2325 |
|
---|
2326 | """
|
---|
2327 | if insitu is None:
|
---|
2328 | insitu = rcParams['insitu']
|
---|
2329 | self._math._setinsitu(insitu)
|
---|
2330 | varlist = vars()
|
---|
2331 | s = scantable(self._math._bin(self, width))
|
---|
2332 | s._add_history("bin", varlist)
|
---|
2333 | if insitu:
|
---|
2334 | self._assign(s)
|
---|
2335 | else:
|
---|
2336 | return s
|
---|
2337 |
|
---|
2338 | @asaplog_post_dec
|
---|
2339 | def reshape(self, first, last, insitu=None):
|
---|
2340 | """Resize the band by providing first and last channel.
|
---|
2341 | This will cut off all channels outside [first, last].
|
---|
2342 | """
|
---|
2343 | if insitu is None:
|
---|
2344 | insitu = rcParams['insitu']
|
---|
2345 | varlist = vars()
|
---|
2346 | if last < 0:
|
---|
2347 | last = self.nchan()-1 + last
|
---|
2348 | s = None
|
---|
2349 | if insitu:
|
---|
2350 | s = self
|
---|
2351 | else:
|
---|
2352 | s = self.copy()
|
---|
2353 | s._reshape(first,last)
|
---|
2354 | s._add_history("reshape", varlist)
|
---|
2355 | if not insitu:
|
---|
2356 | return s
|
---|
2357 |
|
---|
2358 | @asaplog_post_dec
|
---|
2359 | def resample(self, width=5, method='cubic', insitu=None):
|
---|
2360 | """\
|
---|
2361 | Return a scan where all spectra have been binned up.
|
---|
2362 |
|
---|
2363 | Parameters:
|
---|
2364 |
|
---|
2365 | width: The bin width (default=5) in pixels
|
---|
2366 |
|
---|
2367 | method: Interpolation method when correcting from a table.
|
---|
2368 | Values are 'nearest', 'linear', 'cubic' (default)
|
---|
2369 | and 'spline'
|
---|
2370 |
|
---|
2371 | insitu: if False a new scantable is returned.
|
---|
2372 | Otherwise, the scaling is done in-situ
|
---|
2373 | The default is taken from .asaprc (False)
|
---|
2374 |
|
---|
2375 | """
|
---|
2376 | if insitu is None:
|
---|
2377 | insitu = rcParams['insitu']
|
---|
2378 | self._math._setinsitu(insitu)
|
---|
2379 | varlist = vars()
|
---|
2380 | s = scantable(self._math._resample(self, method, width))
|
---|
2381 | s._add_history("resample", varlist)
|
---|
2382 | if insitu:
|
---|
2383 | self._assign(s)
|
---|
2384 | else:
|
---|
2385 | return s
|
---|
2386 |
|
---|
2387 | @asaplog_post_dec
|
---|
2388 | def average_pol(self, mask=None, weight='none'):
|
---|
2389 | """\
|
---|
2390 | Average the Polarisations together.
|
---|
2391 |
|
---|
2392 | Parameters:
|
---|
2393 |
|
---|
2394 | mask: An optional mask defining the region, where the
|
---|
2395 | averaging will be applied. The output will have all
|
---|
2396 | specified points masked.
|
---|
2397 |
|
---|
2398 | weight: Weighting scheme. 'none' (default), 'var' (1/var(spec)
|
---|
2399 | weighted), or 'tsys' (1/Tsys**2 weighted)
|
---|
2400 |
|
---|
2401 | """
|
---|
2402 | varlist = vars()
|
---|
2403 | mask = mask or ()
|
---|
2404 | s = scantable(self._math._averagepol(self, mask, weight.upper()))
|
---|
2405 | s._add_history("average_pol", varlist)
|
---|
2406 | return s
|
---|
2407 |
|
---|
2408 | @asaplog_post_dec
|
---|
2409 | def average_beam(self, mask=None, weight='none'):
|
---|
2410 | """\
|
---|
2411 | Average the Beams together.
|
---|
2412 |
|
---|
2413 | Parameters:
|
---|
2414 | mask: An optional mask defining the region, where the
|
---|
2415 | averaging will be applied. The output will have all
|
---|
2416 | specified points masked.
|
---|
2417 |
|
---|
2418 | weight: Weighting scheme. 'none' (default), 'var' (1/var(spec)
|
---|
2419 | weighted), or 'tsys' (1/Tsys**2 weighted)
|
---|
2420 |
|
---|
2421 | """
|
---|
2422 | varlist = vars()
|
---|
2423 | mask = mask or ()
|
---|
2424 | s = scantable(self._math._averagebeams(self, mask, weight.upper()))
|
---|
2425 | s._add_history("average_beam", varlist)
|
---|
2426 | return s
|
---|
2427 |
|
---|
2428 | def parallactify(self, pflag):
|
---|
2429 | """\
|
---|
2430 | Set a flag to indicate whether this data should be treated as having
|
---|
2431 | been 'parallactified' (total phase == 0.0)
|
---|
2432 |
|
---|
2433 | Parameters:
|
---|
2434 |
|
---|
2435 | pflag: Bool indicating whether to turn this on (True) or
|
---|
2436 | off (False)
|
---|
2437 |
|
---|
2438 | """
|
---|
2439 | varlist = vars()
|
---|
2440 | self._parallactify(pflag)
|
---|
2441 | self._add_history("parallactify", varlist)
|
---|
2442 |
|
---|
2443 | @asaplog_post_dec
|
---|
2444 | def convert_pol(self, poltype=None):
|
---|
2445 | """\
|
---|
2446 | Convert the data to a different polarisation type.
|
---|
2447 | Note that you will need cross-polarisation terms for most conversions.
|
---|
2448 |
|
---|
2449 | Parameters:
|
---|
2450 |
|
---|
2451 | poltype: The new polarisation type. Valid types are:
|
---|
2452 | 'linear', 'circular', 'stokes' and 'linpol'
|
---|
2453 |
|
---|
2454 | """
|
---|
2455 | varlist = vars()
|
---|
2456 | s = scantable(self._math._convertpol(self, poltype))
|
---|
2457 | s._add_history("convert_pol", varlist)
|
---|
2458 | return s
|
---|
2459 |
|
---|
2460 | @asaplog_post_dec
|
---|
2461 | def smooth(self, kernel="hanning", width=5.0, order=2, plot=False,
|
---|
2462 | insitu=None):
|
---|
2463 | """\
|
---|
2464 | Smooth the spectrum by the specified kernel (conserving flux).
|
---|
2465 |
|
---|
2466 | Parameters:
|
---|
2467 |
|
---|
2468 | kernel: The type of smoothing kernel. Select from
|
---|
2469 | 'hanning' (default), 'gaussian', 'boxcar', 'rmedian'
|
---|
2470 | or 'poly'
|
---|
2471 |
|
---|
2472 | width: The width of the kernel in pixels. For hanning this is
|
---|
2473 | ignored otherwise it defauls to 5 pixels.
|
---|
2474 | For 'gaussian' it is the Full Width Half
|
---|
2475 | Maximum. For 'boxcar' it is the full width.
|
---|
2476 | For 'rmedian' and 'poly' it is the half width.
|
---|
2477 |
|
---|
2478 | order: Optional parameter for 'poly' kernel (default is 2), to
|
---|
2479 | specify the order of the polnomial. Ignored by all other
|
---|
2480 | kernels.
|
---|
2481 |
|
---|
2482 | plot: plot the original and the smoothed spectra.
|
---|
2483 | In this each indivual fit has to be approved, by
|
---|
2484 | typing 'y' or 'n'
|
---|
2485 |
|
---|
2486 | insitu: if False a new scantable is returned.
|
---|
2487 | Otherwise, the scaling is done in-situ
|
---|
2488 | The default is taken from .asaprc (False)
|
---|
2489 |
|
---|
2490 | """
|
---|
2491 | if insitu is None: insitu = rcParams['insitu']
|
---|
2492 | self._math._setinsitu(insitu)
|
---|
2493 | varlist = vars()
|
---|
2494 |
|
---|
2495 | if plot: orgscan = self.copy()
|
---|
2496 |
|
---|
2497 | s = scantable(self._math._smooth(self, kernel.lower(), width, order))
|
---|
2498 | s._add_history("smooth", varlist)
|
---|
2499 |
|
---|
2500 | action = 'H'
|
---|
2501 | if plot:
|
---|
2502 | from asap.asapplotter import new_asaplot
|
---|
2503 | theplot = new_asaplot(rcParams['plotter.gui'])
|
---|
2504 | from matplotlib import rc as rcp
|
---|
2505 | rcp('lines', linewidth=1)
|
---|
2506 | theplot.set_panels()
|
---|
2507 | ylab=s._get_ordinate_label()
|
---|
2508 | #theplot.palette(0,["#777777","red"])
|
---|
2509 | for r in xrange(s.nrow()):
|
---|
2510 | xsm=s._getabcissa(r)
|
---|
2511 | ysm=s._getspectrum(r)
|
---|
2512 | xorg=orgscan._getabcissa(r)
|
---|
2513 | yorg=orgscan._getspectrum(r)
|
---|
2514 | if action != "N": #skip plotting if rejecting all
|
---|
2515 | theplot.clear()
|
---|
2516 | theplot.hold()
|
---|
2517 | theplot.set_axes('ylabel',ylab)
|
---|
2518 | theplot.set_axes('xlabel',s._getabcissalabel(r))
|
---|
2519 | theplot.set_axes('title',s._getsourcename(r))
|
---|
2520 | theplot.set_line(label='Original',color="#777777")
|
---|
2521 | theplot.plot(xorg,yorg)
|
---|
2522 | theplot.set_line(label='Smoothed',color="red")
|
---|
2523 | theplot.plot(xsm,ysm)
|
---|
2524 | ### Ugly part for legend
|
---|
2525 | for i in [0,1]:
|
---|
2526 | theplot.subplots[0]['lines'].append(
|
---|
2527 | [theplot.subplots[0]['axes'].lines[i]]
|
---|
2528 | )
|
---|
2529 | theplot.release()
|
---|
2530 | ### Ugly part for legend
|
---|
2531 | theplot.subplots[0]['lines']=[]
|
---|
2532 | res = self._get_verify_action("Accept smoothing?",action)
|
---|
2533 | #print "IF%d, POL%d: got result = %s" %(s.getif(r),s.getpol(r),res)
|
---|
2534 | if r == 0: action = None
|
---|
2535 | #res = raw_input("Accept smoothing ([y]/n): ")
|
---|
2536 | if res.upper() == 'N':
|
---|
2537 | # reject for the current rows
|
---|
2538 | s._setspectrum(yorg, r)
|
---|
2539 | elif res.upper() == 'R':
|
---|
2540 | # reject all the following rows
|
---|
2541 | action = "N"
|
---|
2542 | s._setspectrum(yorg, r)
|
---|
2543 | elif res.upper() == 'A':
|
---|
2544 | # accept all the following rows
|
---|
2545 | break
|
---|
2546 | theplot.quit()
|
---|
2547 | del theplot
|
---|
2548 | del orgscan
|
---|
2549 |
|
---|
2550 | if insitu: self._assign(s)
|
---|
2551 | else: return s
|
---|
2552 |
|
---|
2553 | @asaplog_post_dec
|
---|
2554 | def regrid_channel(self, width=5, plot=False, insitu=None):
|
---|
2555 | """\
|
---|
2556 | Regrid the spectra by the specified channel width
|
---|
2557 |
|
---|
2558 | Parameters:
|
---|
2559 |
|
---|
2560 | width: The channel width (float) of regridded spectra
|
---|
2561 | in the current spectral unit.
|
---|
2562 |
|
---|
2563 | plot: [NOT IMPLEMENTED YET]
|
---|
2564 | plot the original and the regridded spectra.
|
---|
2565 | In this each indivual fit has to be approved, by
|
---|
2566 | typing 'y' or 'n'
|
---|
2567 |
|
---|
2568 | insitu: if False a new scantable is returned.
|
---|
2569 | Otherwise, the scaling is done in-situ
|
---|
2570 | The default is taken from .asaprc (False)
|
---|
2571 |
|
---|
2572 | """
|
---|
2573 | if insitu is None: insitu = rcParams['insitu']
|
---|
2574 | varlist = vars()
|
---|
2575 |
|
---|
2576 | if plot:
|
---|
2577 | asaplog.post()
|
---|
2578 | asaplog.push("Verification plot is not implemtnetd yet.")
|
---|
2579 | asaplog.post("WARN")
|
---|
2580 |
|
---|
2581 | s = self.copy()
|
---|
2582 | s._regrid_specchan(width)
|
---|
2583 |
|
---|
2584 | s._add_history("regrid_channel", varlist)
|
---|
2585 |
|
---|
2586 | # if plot:
|
---|
2587 | # from asap.asapplotter import new_asaplot
|
---|
2588 | # theplot = new_asaplot(rcParams['plotter.gui'])
|
---|
2589 | # from matplotlib import rc as rcp
|
---|
2590 | # rcp('lines', linewidth=1)
|
---|
2591 | # theplot.set_panels()
|
---|
2592 | # ylab=s._get_ordinate_label()
|
---|
2593 | # #theplot.palette(0,["#777777","red"])
|
---|
2594 | # for r in xrange(s.nrow()):
|
---|
2595 | # xsm=s._getabcissa(r)
|
---|
2596 | # ysm=s._getspectrum(r)
|
---|
2597 | # xorg=orgscan._getabcissa(r)
|
---|
2598 | # yorg=orgscan._getspectrum(r)
|
---|
2599 | # theplot.clear()
|
---|
2600 | # theplot.hold()
|
---|
2601 | # theplot.set_axes('ylabel',ylab)
|
---|
2602 | # theplot.set_axes('xlabel',s._getabcissalabel(r))
|
---|
2603 | # theplot.set_axes('title',s._getsourcename(r))
|
---|
2604 | # theplot.set_line(label='Original',color="#777777")
|
---|
2605 | # theplot.plot(xorg,yorg)
|
---|
2606 | # theplot.set_line(label='Smoothed',color="red")
|
---|
2607 | # theplot.plot(xsm,ysm)
|
---|
2608 | # ### Ugly part for legend
|
---|
2609 | # for i in [0,1]:
|
---|
2610 | # theplot.subplots[0]['lines'].append(
|
---|
2611 | # [theplot.subplots[0]['axes'].lines[i]]
|
---|
2612 | # )
|
---|
2613 | # theplot.release()
|
---|
2614 | # ### Ugly part for legend
|
---|
2615 | # theplot.subplots[0]['lines']=[]
|
---|
2616 | # res = raw_input("Accept smoothing ([y]/n): ")
|
---|
2617 | # if res.upper() == 'N':
|
---|
2618 | # s._setspectrum(yorg, r)
|
---|
2619 | # theplot.quit()
|
---|
2620 | # del theplot
|
---|
2621 | # del orgscan
|
---|
2622 |
|
---|
2623 | if insitu: self._assign(s)
|
---|
2624 | else: return s
|
---|
2625 |
|
---|
2626 | @asaplog_post_dec
|
---|
2627 | def _parse_wn(self, wn):
|
---|
2628 | if isinstance(wn, list) or isinstance(wn, tuple):
|
---|
2629 | return wn
|
---|
2630 | elif isinstance(wn, int):
|
---|
2631 | return [ wn ]
|
---|
2632 | elif isinstance(wn, str):
|
---|
2633 | if '-' in wn: # case 'a-b' : return [a,a+1,...,b-1,b]
|
---|
2634 | val = wn.split('-')
|
---|
2635 | val = [int(val[0]), int(val[1])]
|
---|
2636 | val.sort()
|
---|
2637 | res = [i for i in xrange(val[0], val[1]+1)]
|
---|
2638 | elif wn[:2] == '<=' or wn[:2] == '=<': # cases '<=a','=<a' : return [0,1,...,a-1,a]
|
---|
2639 | val = int(wn[2:])+1
|
---|
2640 | res = [i for i in xrange(val)]
|
---|
2641 | elif wn[-2:] == '>=' or wn[-2:] == '=>': # cases 'a>=','a=>' : return [0,1,...,a-1,a]
|
---|
2642 | val = int(wn[:-2])+1
|
---|
2643 | res = [i for i in xrange(val)]
|
---|
2644 | elif wn[0] == '<': # case '<a' : return [0,1,...,a-2,a-1]
|
---|
2645 | val = int(wn[1:])
|
---|
2646 | res = [i for i in xrange(val)]
|
---|
2647 | elif wn[-1] == '>': # case 'a>' : return [0,1,...,a-2,a-1]
|
---|
2648 | val = int(wn[:-1])
|
---|
2649 | res = [i for i in xrange(val)]
|
---|
2650 | elif wn[:2] == '>=' or wn[:2] == '=>': # cases '>=a','=>a' : return [a,-999], which is
|
---|
2651 | # then interpreted in C++
|
---|
2652 | # side as [a,a+1,...,a_nyq]
|
---|
2653 | # (CAS-3759)
|
---|
2654 | val = int(wn[2:])
|
---|
2655 | res = [val, -999]
|
---|
2656 | #res = [i for i in xrange(val, self.nchan()/2+1)]
|
---|
2657 | elif wn[-2:] == '<=' or wn[-2:] == '=<': # cases 'a<=','a=<' : return [a,-999], which is
|
---|
2658 | # then interpreted in C++
|
---|
2659 | # side as [a,a+1,...,a_nyq]
|
---|
2660 | # (CAS-3759)
|
---|
2661 | val = int(wn[:-2])
|
---|
2662 | res = [val, -999]
|
---|
2663 | #res = [i for i in xrange(val, self.nchan()/2+1)]
|
---|
2664 | elif wn[0] == '>': # case '>a' : return [a+1,-999], which is
|
---|
2665 | # then interpreted in C++
|
---|
2666 | # side as [a+1,a+2,...,a_nyq]
|
---|
2667 | # (CAS-3759)
|
---|
2668 | val = int(wn[1:])+1
|
---|
2669 | res = [val, -999]
|
---|
2670 | #res = [i for i in xrange(val, self.nchan()/2+1)]
|
---|
2671 | elif wn[-1] == '<': # case 'a<' : return [a+1,-999], which is
|
---|
2672 | # then interpreted in C++
|
---|
2673 | # side as [a+1,a+2,...,a_nyq]
|
---|
2674 | # (CAS-3759)
|
---|
2675 | val = int(wn[:-1])+1
|
---|
2676 | res = [val, -999]
|
---|
2677 | #res = [i for i in xrange(val, self.nchan()/2+1)]
|
---|
2678 |
|
---|
2679 | return res
|
---|
2680 | else:
|
---|
2681 | msg = 'wrong value given for addwn/rejwn'
|
---|
2682 | raise RuntimeError(msg)
|
---|
2683 |
|
---|
2684 | @asaplog_post_dec
|
---|
2685 | def apply_bltable(self, insitu=None, inbltable=None, outbltable=None, overwrite=None):
|
---|
2686 | """\
|
---|
2687 | Subtract baseline based on parameters written in Baseline Table.
|
---|
2688 |
|
---|
2689 | Parameters:
|
---|
2690 | insitu: if False a new scantable is returned.
|
---|
2691 | Otherwise, the scaling is done in-situ
|
---|
2692 | The default is taken from .asaprc (False)
|
---|
2693 | inbltable: name of input baseline table. The row number of
|
---|
2694 | scantable and that of inbltable must be
|
---|
2695 | identical.
|
---|
2696 | outbltable: name of output baseline table where baseline
|
---|
2697 | parameters and fitting results recorded.
|
---|
2698 | default is ''(no output).
|
---|
2699 | overwrite: if True, overwrites the existing baseline table
|
---|
2700 | specified in outbltable.
|
---|
2701 | default is False.
|
---|
2702 | """
|
---|
2703 |
|
---|
2704 | try:
|
---|
2705 | varlist = vars()
|
---|
2706 | if inbltable is None: raise ValueError("bltable missing.")
|
---|
2707 | if outbltable is None: outbltable = ''
|
---|
2708 | if overwrite is None: overwrite = False
|
---|
2709 |
|
---|
2710 | if insitu is None: insitu = rcParams['insitu']
|
---|
2711 | if insitu:
|
---|
2712 | workscan = self
|
---|
2713 | else:
|
---|
2714 | workscan = self.copy()
|
---|
2715 |
|
---|
2716 | sres = workscan._apply_bltable(inbltable,
|
---|
2717 | outbltable,
|
---|
2718 | os.path.exists(outbltable),
|
---|
2719 | overwrite)
|
---|
2720 | res = parse_fitresult(sres)
|
---|
2721 |
|
---|
2722 | workscan._add_history('apply_bltable', varlist)
|
---|
2723 |
|
---|
2724 | if insitu:
|
---|
2725 | self._assign(workscan)
|
---|
2726 | return res
|
---|
2727 | else:
|
---|
2728 | return {'scantable': workscan, 'fitresults': res}
|
---|
2729 |
|
---|
2730 | except RuntimeError, e:
|
---|
2731 | raise_fitting_failure_exception(e)
|
---|
2732 |
|
---|
2733 | @asaplog_post_dec
|
---|
2734 | def sub_baseline(self, insitu=None, blinfo=None, bltable=None, overwrite=None):
|
---|
2735 | """\
|
---|
2736 | Subtract baseline based on parameters written in the input list.
|
---|
2737 |
|
---|
2738 | Parameters:
|
---|
2739 | insitu: if False a new scantable is returned.
|
---|
2740 | Otherwise, the scaling is done in-situ
|
---|
2741 | The default is taken from .asaprc (False)
|
---|
2742 | blinfo: baseline parameter set stored in a dictionary
|
---|
2743 | or a list of dictionary. Each dictionary
|
---|
2744 | corresponds to each spectrum and must contain
|
---|
2745 | the following keys and values:
|
---|
2746 | 'row': row number,
|
---|
2747 | 'blfunc': function name. available ones include
|
---|
2748 | 'poly', 'chebyshev', 'cspline' and
|
---|
2749 | 'sinusoid',
|
---|
2750 | 'order': maximum order of polynomial. needed
|
---|
2751 | if blfunc='poly' or 'chebyshev',
|
---|
2752 | 'npiece': number or piecewise polynomial.
|
---|
2753 | needed if blfunc='cspline',
|
---|
2754 | 'nwave': a list of sinusoidal wave numbers.
|
---|
2755 | needed if blfunc='sinusoid', and
|
---|
2756 | 'masklist': min-max windows for channel mask.
|
---|
2757 | the specified ranges will be used
|
---|
2758 | for fitting.
|
---|
2759 | bltable: name of output baseline table where baseline
|
---|
2760 | parameters and fitting results recorded.
|
---|
2761 | default is ''(no output).
|
---|
2762 | overwrite: if True, overwrites the existing baseline table
|
---|
2763 | specified in bltable.
|
---|
2764 | default is False.
|
---|
2765 |
|
---|
2766 | Example:
|
---|
2767 | sub_baseline(blinfo=[{'row':0, 'blfunc':'poly', 'order':5,
|
---|
2768 | 'masklist':[[10,350],[352,510]]},
|
---|
2769 | {'row':1, 'blfunc':'cspline', 'npiece':3,
|
---|
2770 | 'masklist':[[3,16],[19,404],[407,511]]}
|
---|
2771 | ])
|
---|
2772 |
|
---|
2773 | the first spectrum (row=0) will be fitted with polynomial
|
---|
2774 | of order=5 and the next one (row=1) will be fitted with cubic
|
---|
2775 | spline consisting of 3 pieces.
|
---|
2776 | """
|
---|
2777 |
|
---|
2778 | try:
|
---|
2779 | varlist = vars()
|
---|
2780 | if blinfo is None: blinfo = []
|
---|
2781 | if bltable is None: bltable = ''
|
---|
2782 | if overwrite is None: overwrite = False
|
---|
2783 |
|
---|
2784 | if insitu is None: insitu = rcParams['insitu']
|
---|
2785 | if insitu:
|
---|
2786 | workscan = self
|
---|
2787 | else:
|
---|
2788 | workscan = self.copy()
|
---|
2789 |
|
---|
2790 | nrow = workscan.nrow()
|
---|
2791 |
|
---|
2792 | in_blinfo = pack_blinfo(blinfo=blinfo, maxirow=nrow)
|
---|
2793 |
|
---|
2794 | print "in_blinfo=< "+ str(in_blinfo)+" >"
|
---|
2795 |
|
---|
2796 | sres = workscan._sub_baseline(in_blinfo,
|
---|
2797 | bltable,
|
---|
2798 | os.path.exists(bltable),
|
---|
2799 | overwrite)
|
---|
2800 | res = parse_fitresult(sres)
|
---|
2801 |
|
---|
2802 | workscan._add_history('sub_baseline', varlist)
|
---|
2803 |
|
---|
2804 | if insitu:
|
---|
2805 | self._assign(workscan)
|
---|
2806 | return res
|
---|
2807 | else:
|
---|
2808 | return {'scantable': workscan, 'fitresults': res}
|
---|
2809 |
|
---|
2810 | except RuntimeError, e:
|
---|
2811 | raise_fitting_failure_exception(e)
|
---|
2812 |
|
---|
2813 | @asaplog_post_dec
|
---|
2814 | def calc_aic(self, value=None, blfunc=None, order=None, mask=None,
|
---|
2815 | whichrow=None, uselinefinder=None, edge=None,
|
---|
2816 | threshold=None, chan_avg_limit=None):
|
---|
2817 | """\
|
---|
2818 | Calculates and returns model selection criteria for a specified
|
---|
2819 | baseline model and a given spectrum data.
|
---|
2820 | Available values include Akaike Information Criterion (AIC), the
|
---|
2821 | corrected Akaike Information Criterion (AICc) by Sugiura(1978),
|
---|
2822 | Bayesian Information Criterion (BIC) and the Generalised Cross
|
---|
2823 | Validation (GCV).
|
---|
2824 |
|
---|
2825 | Parameters:
|
---|
2826 | value: name of model selection criteria to calculate.
|
---|
2827 | available ones include 'aic', 'aicc', 'bic' and
|
---|
2828 | 'gcv'. default is 'aicc'.
|
---|
2829 | blfunc: baseline function name. available ones include
|
---|
2830 | 'chebyshev', 'cspline' and 'sinusoid'.
|
---|
2831 | default is 'chebyshev'.
|
---|
2832 | order: parameter for basline function. actually stands for
|
---|
2833 | order of polynomial (order) for 'chebyshev',
|
---|
2834 | number of spline pieces (npiece) for 'cspline' and
|
---|
2835 | maximum wave number for 'sinusoid', respectively.
|
---|
2836 | default is 5 (which is also the default order value
|
---|
2837 | for [auto_]chebyshev_baseline()).
|
---|
2838 | mask: an optional mask. default is [].
|
---|
2839 | whichrow: row number. default is 0 (the first row)
|
---|
2840 | uselinefinder: use sd.linefinder() to flag out line regions
|
---|
2841 | default is True.
|
---|
2842 | edge: an optional number of channel to drop at
|
---|
2843 | the edge of spectrum. If only one value is
|
---|
2844 | specified, the same number will be dropped
|
---|
2845 | from both sides of the spectrum. Default
|
---|
2846 | is to keep all channels. Nested tuples
|
---|
2847 | represent individual edge selection for
|
---|
2848 | different IFs (a number of spectral channels
|
---|
2849 | can be different)
|
---|
2850 | default is (0, 0).
|
---|
2851 | threshold: the threshold used by line finder. It is
|
---|
2852 | better to keep it large as only strong lines
|
---|
2853 | affect the baseline solution.
|
---|
2854 | default is 3.
|
---|
2855 | chan_avg_limit: a maximum number of consequtive spectral
|
---|
2856 | channels to average during the search of
|
---|
2857 | weak and broad lines. The default is no
|
---|
2858 | averaging (and no search for weak lines).
|
---|
2859 | If such lines can affect the fitted baseline
|
---|
2860 | (e.g. a high order polynomial is fitted),
|
---|
2861 | increase this parameter (usually values up
|
---|
2862 | to 8 are reasonable). Most users of this
|
---|
2863 | method should find the default value sufficient.
|
---|
2864 | default is 1.
|
---|
2865 |
|
---|
2866 | Example:
|
---|
2867 | aic = scan.calc_aic(blfunc='chebyshev', order=5, whichrow=0)
|
---|
2868 | """
|
---|
2869 |
|
---|
2870 | try:
|
---|
2871 | varlist = vars()
|
---|
2872 |
|
---|
2873 | if value is None: value = 'aicc'
|
---|
2874 | if blfunc is None: blfunc = 'chebyshev'
|
---|
2875 | if order is None: order = 5
|
---|
2876 | if mask is None: mask = []
|
---|
2877 | if whichrow is None: whichrow = 0
|
---|
2878 | if uselinefinder is None: uselinefinder = True
|
---|
2879 | if edge is None: edge = (0, 0)
|
---|
2880 | if threshold is None: threshold = 3
|
---|
2881 | if chan_avg_limit is None: chan_avg_limit = 1
|
---|
2882 |
|
---|
2883 | return self._calc_aic(value, blfunc, order, mask,
|
---|
2884 | whichrow, uselinefinder, edge,
|
---|
2885 | threshold, chan_avg_limit)
|
---|
2886 |
|
---|
2887 | except RuntimeError, e:
|
---|
2888 | raise_fitting_failure_exception(e)
|
---|
2889 |
|
---|
2890 | @asaplog_post_dec
|
---|
2891 | def sinusoid_baseline(self, insitu=None, mask=None, applyfft=None,
|
---|
2892 | fftmethod=None, fftthresh=None,
|
---|
2893 | addwn=None, rejwn=None, clipthresh=None,
|
---|
2894 | clipniter=None, plot=None,
|
---|
2895 | getresidual=None, showprogress=None,
|
---|
2896 | minnrow=None, outlog=None,
|
---|
2897 | blfile=None, csvformat=None,
|
---|
2898 | bltable=None):
|
---|
2899 | """\
|
---|
2900 | Return a scan which has been baselined (all rows) with sinusoidal
|
---|
2901 | functions.
|
---|
2902 |
|
---|
2903 | Parameters:
|
---|
2904 | insitu: if False a new scantable is returned.
|
---|
2905 | Otherwise, the scaling is done in-situ
|
---|
2906 | The default is taken from .asaprc (False)
|
---|
2907 | mask: an optional mask
|
---|
2908 | applyfft: if True use some method, such as FFT, to find
|
---|
2909 | strongest sinusoidal components in the wavenumber
|
---|
2910 | domain to be used for baseline fitting.
|
---|
2911 | default is True.
|
---|
2912 | fftmethod: method to find the strong sinusoidal components.
|
---|
2913 | now only 'fft' is available and it is the default.
|
---|
2914 | fftthresh: the threshold to select wave numbers to be used for
|
---|
2915 | fitting from the distribution of amplitudes in the
|
---|
2916 | wavenumber domain.
|
---|
2917 | both float and string values accepted.
|
---|
2918 | given a float value, the unit is set to sigma.
|
---|
2919 | for string values, allowed formats include:
|
---|
2920 | 'xsigma' or 'x' (= x-sigma level. e.g.,
|
---|
2921 | '3sigma'), or
|
---|
2922 | 'topx' (= the x strongest ones, e.g. 'top5').
|
---|
2923 | default is 3.0 (unit: sigma).
|
---|
2924 | addwn: the additional wave numbers to be used for fitting.
|
---|
2925 | list or integer value is accepted to specify every
|
---|
2926 | wave numbers. also string value can be used in case
|
---|
2927 | you need to specify wave numbers in a certain range,
|
---|
2928 | e.g., 'a-b' (= a, a+1, a+2, ..., b-1, b),
|
---|
2929 | '<a' (= 0,1,...,a-2,a-1),
|
---|
2930 | '>=a' (= a, a+1, ... up to the maximum wave
|
---|
2931 | number corresponding to the Nyquist
|
---|
2932 | frequency for the case of FFT).
|
---|
2933 | default is [0].
|
---|
2934 | rejwn: the wave numbers NOT to be used for fitting.
|
---|
2935 | can be set just as addwn but has higher priority:
|
---|
2936 | wave numbers which are specified both in addwn
|
---|
2937 | and rejwn will NOT be used. default is [].
|
---|
2938 | clipthresh: Clipping threshold. (default is 3.0, unit: sigma)
|
---|
2939 | clipniter: maximum number of iteration of 'clipthresh'-sigma
|
---|
2940 | clipping (default is 0)
|
---|
2941 | plot: *** CURRENTLY UNAVAILABLE, ALWAYS FALSE ***
|
---|
2942 | plot the fit and the residual. In this each
|
---|
2943 | indivual fit has to be approved, by typing 'y'
|
---|
2944 | or 'n'
|
---|
2945 | getresidual: if False, returns best-fit values instead of
|
---|
2946 | residual. (default is True)
|
---|
2947 | showprogress: show progress status for large data.
|
---|
2948 | default is True.
|
---|
2949 | minnrow: minimum number of input spectra to show.
|
---|
2950 | default is 1000.
|
---|
2951 | outlog: Output the coefficients of the best-fit
|
---|
2952 | function to logger (default is False)
|
---|
2953 | blfile: Name of a text file in which the best-fit
|
---|
2954 | parameter values to be written
|
---|
2955 | (default is '': no file/logger output)
|
---|
2956 | csvformat: if True blfile is csv-formatted, default is False.
|
---|
2957 | bltable: name of a baseline table where fitting results
|
---|
2958 | (coefficients, rms, etc.) are to be written.
|
---|
2959 | if given, fitting results will NOT be output to
|
---|
2960 | scantable (insitu=True) or None will be
|
---|
2961 | returned (insitu=False).
|
---|
2962 | (default is "": no table output)
|
---|
2963 |
|
---|
2964 | Example:
|
---|
2965 | # return a scan baselined by a combination of sinusoidal curves
|
---|
2966 | # having wave numbers in spectral window up to 10,
|
---|
2967 | # also with 3-sigma clipping, iteration up to 4 times
|
---|
2968 | bscan = scan.sinusoid_baseline(addwn='<=10',clipthresh=3.0,clipniter=4)
|
---|
2969 |
|
---|
2970 | Note:
|
---|
2971 | The best-fit parameter values output in logger and/or blfile are now
|
---|
2972 | based on specunit of 'channel'.
|
---|
2973 | """
|
---|
2974 |
|
---|
2975 | try:
|
---|
2976 | varlist = vars()
|
---|
2977 |
|
---|
2978 | if insitu is None: insitu = rcParams['insitu']
|
---|
2979 | if insitu:
|
---|
2980 | workscan = self
|
---|
2981 | else:
|
---|
2982 | workscan = self.copy()
|
---|
2983 |
|
---|
2984 | #if mask is None: mask = [True for i in xrange(workscan.nchan())]
|
---|
2985 | if mask is None: mask = []
|
---|
2986 | if applyfft is None: applyfft = True
|
---|
2987 | if fftmethod is None: fftmethod = 'fft'
|
---|
2988 | if fftthresh is None: fftthresh = 3.0
|
---|
2989 | if addwn is None: addwn = [0]
|
---|
2990 | if rejwn is None: rejwn = []
|
---|
2991 | if clipthresh is None: clipthresh = 3.0
|
---|
2992 | if clipniter is None: clipniter = 0
|
---|
2993 | if plot is None: plot = False
|
---|
2994 | if getresidual is None: getresidual = True
|
---|
2995 | if showprogress is None: showprogress = True
|
---|
2996 | if minnrow is None: minnrow = 1000
|
---|
2997 | if outlog is None: outlog = False
|
---|
2998 | if blfile is None: blfile = ''
|
---|
2999 | if csvformat is None: csvformat = False
|
---|
3000 | if bltable is None: bltable = ''
|
---|
3001 |
|
---|
3002 | sapplyfft = 'true' if applyfft else 'false'
|
---|
3003 | fftinfo = ','.join([sapplyfft, fftmethod.lower(), str(fftthresh).lower()])
|
---|
3004 |
|
---|
3005 | scsvformat = 'T' if csvformat else 'F'
|
---|
3006 |
|
---|
3007 | #CURRENTLY, PLOT=true is UNAVAILABLE UNTIL sinusoidal fitting is implemented as a fitter method.
|
---|
3008 | workscan._sinusoid_baseline(mask,
|
---|
3009 | fftinfo,
|
---|
3010 | #applyfft, fftmethod.lower(),
|
---|
3011 | #str(fftthresh).lower(),
|
---|
3012 | workscan._parse_wn(addwn),
|
---|
3013 | workscan._parse_wn(rejwn),
|
---|
3014 | clipthresh, clipniter,
|
---|
3015 | getresidual,
|
---|
3016 | pack_progress_params(showprogress,
|
---|
3017 | minnrow),
|
---|
3018 | outlog, scsvformat+blfile,
|
---|
3019 | bltable)
|
---|
3020 | workscan._add_history('sinusoid_baseline', varlist)
|
---|
3021 |
|
---|
3022 | if bltable == '':
|
---|
3023 | if insitu:
|
---|
3024 | self._assign(workscan)
|
---|
3025 | else:
|
---|
3026 | return workscan
|
---|
3027 | else:
|
---|
3028 | if not insitu:
|
---|
3029 | return None
|
---|
3030 |
|
---|
3031 | except RuntimeError, e:
|
---|
3032 | raise_fitting_failure_exception(e)
|
---|
3033 |
|
---|
3034 |
|
---|
3035 | @asaplog_post_dec
|
---|
3036 | def auto_sinusoid_baseline(self, insitu=None, mask=None, applyfft=None,
|
---|
3037 | fftmethod=None, fftthresh=None,
|
---|
3038 | addwn=None, rejwn=None, clipthresh=None,
|
---|
3039 | clipniter=None, edge=None, threshold=None,
|
---|
3040 | chan_avg_limit=None, plot=None,
|
---|
3041 | getresidual=None, showprogress=None,
|
---|
3042 | minnrow=None, outlog=None,
|
---|
3043 | blfile=None, csvformat=None,
|
---|
3044 | bltable=None):
|
---|
3045 | """\
|
---|
3046 | Return a scan which has been baselined (all rows) with sinusoidal
|
---|
3047 | functions.
|
---|
3048 | Spectral lines are detected first using linefinder and masked out
|
---|
3049 | to avoid them affecting the baseline solution.
|
---|
3050 |
|
---|
3051 | Parameters:
|
---|
3052 | insitu: if False a new scantable is returned.
|
---|
3053 | Otherwise, the scaling is done in-situ
|
---|
3054 | The default is taken from .asaprc (False)
|
---|
3055 | mask: an optional mask retreived from scantable
|
---|
3056 | applyfft: if True use some method, such as FFT, to find
|
---|
3057 | strongest sinusoidal components in the wavenumber
|
---|
3058 | domain to be used for baseline fitting.
|
---|
3059 | default is True.
|
---|
3060 | fftmethod: method to find the strong sinusoidal components.
|
---|
3061 | now only 'fft' is available and it is the default.
|
---|
3062 | fftthresh: the threshold to select wave numbers to be used for
|
---|
3063 | fitting from the distribution of amplitudes in the
|
---|
3064 | wavenumber domain.
|
---|
3065 | both float and string values accepted.
|
---|
3066 | given a float value, the unit is set to sigma.
|
---|
3067 | for string values, allowed formats include:
|
---|
3068 | 'xsigma' or 'x' (= x-sigma level. e.g.,
|
---|
3069 | '3sigma'), or
|
---|
3070 | 'topx' (= the x strongest ones, e.g. 'top5').
|
---|
3071 | default is 3.0 (unit: sigma).
|
---|
3072 | addwn: the additional wave numbers to be used for fitting.
|
---|
3073 | list or integer value is accepted to specify every
|
---|
3074 | wave numbers. also string value can be used in case
|
---|
3075 | you need to specify wave numbers in a certain range,
|
---|
3076 | e.g., 'a-b' (= a, a+1, a+2, ..., b-1, b),
|
---|
3077 | '<a' (= 0,1,...,a-2,a-1),
|
---|
3078 | '>=a' (= a, a+1, ... up to the maximum wave
|
---|
3079 | number corresponding to the Nyquist
|
---|
3080 | frequency for the case of FFT).
|
---|
3081 | default is [0].
|
---|
3082 | rejwn: the wave numbers NOT to be used for fitting.
|
---|
3083 | can be set just as addwn but has higher priority:
|
---|
3084 | wave numbers which are specified both in addwn
|
---|
3085 | and rejwn will NOT be used. default is [].
|
---|
3086 | clipthresh: Clipping threshold. (default is 3.0, unit: sigma)
|
---|
3087 | clipniter: maximum number of iteration of 'clipthresh'-sigma
|
---|
3088 | clipping (default is 0)
|
---|
3089 | edge: an optional number of channel to drop at
|
---|
3090 | the edge of spectrum. If only one value is
|
---|
3091 | specified, the same number will be dropped
|
---|
3092 | from both sides of the spectrum. Default
|
---|
3093 | is to keep all channels. Nested tuples
|
---|
3094 | represent individual edge selection for
|
---|
3095 | different IFs (a number of spectral channels
|
---|
3096 | can be different)
|
---|
3097 | threshold: the threshold used by line finder. It is
|
---|
3098 | better to keep it large as only strong lines
|
---|
3099 | affect the baseline solution.
|
---|
3100 | chan_avg_limit: a maximum number of consequtive spectral
|
---|
3101 | channels to average during the search of
|
---|
3102 | weak and broad lines. The default is no
|
---|
3103 | averaging (and no search for weak lines).
|
---|
3104 | If such lines can affect the fitted baseline
|
---|
3105 | (e.g. a high order polynomial is fitted),
|
---|
3106 | increase this parameter (usually values up
|
---|
3107 | to 8 are reasonable). Most users of this
|
---|
3108 | method should find the default value sufficient.
|
---|
3109 | plot: *** CURRENTLY UNAVAILABLE, ALWAYS FALSE ***
|
---|
3110 | plot the fit and the residual. In this each
|
---|
3111 | indivual fit has to be approved, by typing 'y'
|
---|
3112 | or 'n'
|
---|
3113 | getresidual: if False, returns best-fit values instead of
|
---|
3114 | residual. (default is True)
|
---|
3115 | showprogress: show progress status for large data.
|
---|
3116 | default is True.
|
---|
3117 | minnrow: minimum number of input spectra to show.
|
---|
3118 | default is 1000.
|
---|
3119 | outlog: Output the coefficients of the best-fit
|
---|
3120 | function to logger (default is False)
|
---|
3121 | blfile: Name of a text file in which the best-fit
|
---|
3122 | parameter values to be written
|
---|
3123 | (default is "": no file/logger output)
|
---|
3124 | csvformat: if True blfile is csv-formatted, default is False.
|
---|
3125 | bltable: name of a baseline table where fitting results
|
---|
3126 | (coefficients, rms, etc.) are to be written.
|
---|
3127 | if given, fitting results will NOT be output to
|
---|
3128 | scantable (insitu=True) or None will be
|
---|
3129 | returned (insitu=False).
|
---|
3130 | (default is "": no table output)
|
---|
3131 |
|
---|
3132 | Example:
|
---|
3133 | bscan = scan.auto_sinusoid_baseline(addwn='<=10', insitu=False)
|
---|
3134 |
|
---|
3135 | Note:
|
---|
3136 | The best-fit parameter values output in logger and/or blfile are now
|
---|
3137 | based on specunit of 'channel'.
|
---|
3138 | """
|
---|
3139 |
|
---|
3140 | try:
|
---|
3141 | varlist = vars()
|
---|
3142 |
|
---|
3143 | if insitu is None: insitu = rcParams['insitu']
|
---|
3144 | if insitu:
|
---|
3145 | workscan = self
|
---|
3146 | else:
|
---|
3147 | workscan = self.copy()
|
---|
3148 |
|
---|
3149 | #if mask is None: mask = [True for i in xrange(workscan.nchan())]
|
---|
3150 | if mask is None: mask = []
|
---|
3151 | if applyfft is None: applyfft = True
|
---|
3152 | if fftmethod is None: fftmethod = 'fft'
|
---|
3153 | if fftthresh is None: fftthresh = 3.0
|
---|
3154 | if addwn is None: addwn = [0]
|
---|
3155 | if rejwn is None: rejwn = []
|
---|
3156 | if clipthresh is None: clipthresh = 3.0
|
---|
3157 | if clipniter is None: clipniter = 0
|
---|
3158 | if edge is None: edge = (0,0)
|
---|
3159 | if threshold is None: threshold = 3
|
---|
3160 | if chan_avg_limit is None: chan_avg_limit = 1
|
---|
3161 | if plot is None: plot = False
|
---|
3162 | if getresidual is None: getresidual = True
|
---|
3163 | if showprogress is None: showprogress = True
|
---|
3164 | if minnrow is None: minnrow = 1000
|
---|
3165 | if outlog is None: outlog = False
|
---|
3166 | if blfile is None: blfile = ''
|
---|
3167 | if csvformat is None: csvformat = False
|
---|
3168 | if bltable is None: bltable = ''
|
---|
3169 |
|
---|
3170 | sapplyfft = 'true' if applyfft else 'false'
|
---|
3171 | fftinfo = ','.join([sapplyfft, fftmethod.lower(), str(fftthresh).lower()])
|
---|
3172 |
|
---|
3173 | scsvformat = 'T' if csvformat else 'F'
|
---|
3174 |
|
---|
3175 | #CURRENTLY, PLOT=true is UNAVAILABLE UNTIL sinusoidal fitting is implemented as a fitter method.
|
---|
3176 | workscan._auto_sinusoid_baseline(mask,
|
---|
3177 | fftinfo,
|
---|
3178 | workscan._parse_wn(addwn),
|
---|
3179 | workscan._parse_wn(rejwn),
|
---|
3180 | clipthresh, clipniter,
|
---|
3181 | normalise_edge_param(edge),
|
---|
3182 | threshold, chan_avg_limit,
|
---|
3183 | getresidual,
|
---|
3184 | pack_progress_params(showprogress,
|
---|
3185 | minnrow),
|
---|
3186 | outlog, scsvformat+blfile, bltable)
|
---|
3187 | workscan._add_history("auto_sinusoid_baseline", varlist)
|
---|
3188 |
|
---|
3189 | if bltable == '':
|
---|
3190 | if insitu:
|
---|
3191 | self._assign(workscan)
|
---|
3192 | else:
|
---|
3193 | return workscan
|
---|
3194 | else:
|
---|
3195 | if not insitu:
|
---|
3196 | return None
|
---|
3197 |
|
---|
3198 | except RuntimeError, e:
|
---|
3199 | raise_fitting_failure_exception(e)
|
---|
3200 |
|
---|
3201 | @asaplog_post_dec
|
---|
3202 | def cspline_baseline(self, insitu=None, mask=None, npiece=None,
|
---|
3203 | clipthresh=None, clipniter=None, plot=None,
|
---|
3204 | getresidual=None, showprogress=None, minnrow=None,
|
---|
3205 | outlog=None, blfile=None, csvformat=None,
|
---|
3206 | bltable=None):
|
---|
3207 | """\
|
---|
3208 | Return a scan which has been baselined (all rows) by cubic spline
|
---|
3209 | function (piecewise cubic polynomial).
|
---|
3210 |
|
---|
3211 | Parameters:
|
---|
3212 | insitu: If False a new scantable is returned.
|
---|
3213 | Otherwise, the scaling is done in-situ
|
---|
3214 | The default is taken from .asaprc (False)
|
---|
3215 | mask: An optional mask
|
---|
3216 | npiece: Number of pieces. (default is 2)
|
---|
3217 | clipthresh: Clipping threshold. (default is 3.0, unit: sigma)
|
---|
3218 | clipniter: maximum number of iteration of 'clipthresh'-sigma
|
---|
3219 | clipping (default is 0)
|
---|
3220 | plot: *** CURRENTLY UNAVAILABLE, ALWAYS FALSE ***
|
---|
3221 | plot the fit and the residual. In this each
|
---|
3222 | indivual fit has to be approved, by typing 'y'
|
---|
3223 | or 'n'
|
---|
3224 | getresidual: if False, returns best-fit values instead of
|
---|
3225 | residual. (default is True)
|
---|
3226 | showprogress: show progress status for large data.
|
---|
3227 | default is True.
|
---|
3228 | minnrow: minimum number of input spectra to show.
|
---|
3229 | default is 1000.
|
---|
3230 | outlog: Output the coefficients of the best-fit
|
---|
3231 | function to logger (default is False)
|
---|
3232 | blfile: Name of a text file in which the best-fit
|
---|
3233 | parameter values to be written
|
---|
3234 | (default is "": no file/logger output)
|
---|
3235 | csvformat: if True blfile is csv-formatted, default is False.
|
---|
3236 | bltable: name of a baseline table where fitting results
|
---|
3237 | (coefficients, rms, etc.) are to be written.
|
---|
3238 | if given, fitting results will NOT be output to
|
---|
3239 | scantable (insitu=True) or None will be
|
---|
3240 | returned (insitu=False).
|
---|
3241 | (default is "": no table output)
|
---|
3242 |
|
---|
3243 | Example:
|
---|
3244 | # return a scan baselined by a cubic spline consisting of 2 pieces
|
---|
3245 | # (i.e., 1 internal knot),
|
---|
3246 | # also with 3-sigma clipping, iteration up to 4 times
|
---|
3247 | bscan = scan.cspline_baseline(npiece=2,clipthresh=3.0,clipniter=4)
|
---|
3248 |
|
---|
3249 | Note:
|
---|
3250 | The best-fit parameter values output in logger and/or blfile are now
|
---|
3251 | based on specunit of 'channel'.
|
---|
3252 | """
|
---|
3253 |
|
---|
3254 | try:
|
---|
3255 | varlist = vars()
|
---|
3256 |
|
---|
3257 | if insitu is None: insitu = rcParams['insitu']
|
---|
3258 | if insitu:
|
---|
3259 | workscan = self
|
---|
3260 | else:
|
---|
3261 | workscan = self.copy()
|
---|
3262 |
|
---|
3263 | #if mask is None: mask = [True for i in xrange(workscan.nchan())]
|
---|
3264 | if mask is None: mask = []
|
---|
3265 | if npiece is None: npiece = 2
|
---|
3266 | if clipthresh is None: clipthresh = 3.0
|
---|
3267 | if clipniter is None: clipniter = 0
|
---|
3268 | if plot is None: plot = False
|
---|
3269 | if getresidual is None: getresidual = True
|
---|
3270 | if showprogress is None: showprogress = True
|
---|
3271 | if minnrow is None: minnrow = 1000
|
---|
3272 | if outlog is None: outlog = False
|
---|
3273 | if blfile is None: blfile = ''
|
---|
3274 | if csvformat is None: csvformat = False
|
---|
3275 | if bltable is None: bltable = ''
|
---|
3276 |
|
---|
3277 | scsvformat = 'T' if csvformat else 'F'
|
---|
3278 |
|
---|
3279 | #CURRENTLY, PLOT=true UNAVAILABLE UNTIL cubic spline fitting is implemented as a fitter method.
|
---|
3280 | workscan._cspline_baseline(mask, npiece,
|
---|
3281 | clipthresh, clipniter,
|
---|
3282 | getresidual,
|
---|
3283 | pack_progress_params(showprogress,
|
---|
3284 | minnrow),
|
---|
3285 | outlog, scsvformat+blfile,
|
---|
3286 | bltable)
|
---|
3287 | workscan._add_history("cspline_baseline", varlist)
|
---|
3288 |
|
---|
3289 | if bltable == '':
|
---|
3290 | if insitu:
|
---|
3291 | self._assign(workscan)
|
---|
3292 | else:
|
---|
3293 | return workscan
|
---|
3294 | else:
|
---|
3295 | if not insitu:
|
---|
3296 | return None
|
---|
3297 |
|
---|
3298 | except RuntimeError, e:
|
---|
3299 | raise_fitting_failure_exception(e)
|
---|
3300 |
|
---|
3301 | @asaplog_post_dec
|
---|
3302 | def auto_cspline_baseline(self, insitu=None, mask=None, npiece=None,
|
---|
3303 | clipthresh=None, clipniter=None,
|
---|
3304 | edge=None, threshold=None, chan_avg_limit=None,
|
---|
3305 | getresidual=None, plot=None,
|
---|
3306 | showprogress=None, minnrow=None, outlog=None,
|
---|
3307 | blfile=None, csvformat=None, bltable=None):
|
---|
3308 | """\
|
---|
3309 | Return a scan which has been baselined (all rows) by cubic spline
|
---|
3310 | function (piecewise cubic polynomial).
|
---|
3311 | Spectral lines are detected first using linefinder and masked out
|
---|
3312 | to avoid them affecting the baseline solution.
|
---|
3313 |
|
---|
3314 | Parameters:
|
---|
3315 | insitu: if False a new scantable is returned.
|
---|
3316 | Otherwise, the scaling is done in-situ
|
---|
3317 | The default is taken from .asaprc (False)
|
---|
3318 | mask: an optional mask retreived from scantable
|
---|
3319 | npiece: Number of pieces. (default is 2)
|
---|
3320 | clipthresh: Clipping threshold. (default is 3.0, unit: sigma)
|
---|
3321 | clipniter: maximum number of iteration of 'clipthresh'-sigma
|
---|
3322 | clipping (default is 0)
|
---|
3323 | edge: an optional number of channel to drop at
|
---|
3324 | the edge of spectrum. If only one value is
|
---|
3325 | specified, the same number will be dropped
|
---|
3326 | from both sides of the spectrum. Default
|
---|
3327 | is to keep all channels. Nested tuples
|
---|
3328 | represent individual edge selection for
|
---|
3329 | different IFs (a number of spectral channels
|
---|
3330 | can be different)
|
---|
3331 | threshold: the threshold used by line finder. It is
|
---|
3332 | better to keep it large as only strong lines
|
---|
3333 | affect the baseline solution.
|
---|
3334 | chan_avg_limit: a maximum number of consequtive spectral
|
---|
3335 | channels to average during the search of
|
---|
3336 | weak and broad lines. The default is no
|
---|
3337 | averaging (and no search for weak lines).
|
---|
3338 | If such lines can affect the fitted baseline
|
---|
3339 | (e.g. a high order polynomial is fitted),
|
---|
3340 | increase this parameter (usually values up
|
---|
3341 | to 8 are reasonable). Most users of this
|
---|
3342 | method should find the default value sufficient.
|
---|
3343 | plot: *** CURRENTLY UNAVAILABLE, ALWAYS FALSE ***
|
---|
3344 | plot the fit and the residual. In this each
|
---|
3345 | indivual fit has to be approved, by typing 'y'
|
---|
3346 | or 'n'
|
---|
3347 | getresidual: if False, returns best-fit values instead of
|
---|
3348 | residual. (default is True)
|
---|
3349 | showprogress: show progress status for large data.
|
---|
3350 | default is True.
|
---|
3351 | minnrow: minimum number of input spectra to show.
|
---|
3352 | default is 1000.
|
---|
3353 | outlog: Output the coefficients of the best-fit
|
---|
3354 | function to logger (default is False)
|
---|
3355 | blfile: Name of a text file in which the best-fit
|
---|
3356 | parameter values to be written
|
---|
3357 | (default is "": no file/logger output)
|
---|
3358 | csvformat: if True blfile is csv-formatted, default is False.
|
---|
3359 | bltable: name of a baseline table where fitting results
|
---|
3360 | (coefficients, rms, etc.) are to be written.
|
---|
3361 | if given, fitting results will NOT be output to
|
---|
3362 | scantable (insitu=True) or None will be
|
---|
3363 | returned (insitu=False).
|
---|
3364 | (default is "": no table output)
|
---|
3365 |
|
---|
3366 | Example:
|
---|
3367 | bscan = scan.auto_cspline_baseline(npiece=3, insitu=False)
|
---|
3368 |
|
---|
3369 | Note:
|
---|
3370 | The best-fit parameter values output in logger and/or blfile are now
|
---|
3371 | based on specunit of 'channel'.
|
---|
3372 | """
|
---|
3373 |
|
---|
3374 | try:
|
---|
3375 | varlist = vars()
|
---|
3376 |
|
---|
3377 | if insitu is None: insitu = rcParams['insitu']
|
---|
3378 | if insitu:
|
---|
3379 | workscan = self
|
---|
3380 | else:
|
---|
3381 | workscan = self.copy()
|
---|
3382 |
|
---|
3383 | #if mask is None: mask = [True for i in xrange(workscan.nchan())]
|
---|
3384 | if mask is None: mask = []
|
---|
3385 | if npiece is None: npiece = 2
|
---|
3386 | if clipthresh is None: clipthresh = 3.0
|
---|
3387 | if clipniter is None: clipniter = 0
|
---|
3388 | if edge is None: edge = (0, 0)
|
---|
3389 | if threshold is None: threshold = 3
|
---|
3390 | if chan_avg_limit is None: chan_avg_limit = 1
|
---|
3391 | if plot is None: plot = False
|
---|
3392 | if getresidual is None: getresidual = True
|
---|
3393 | if showprogress is None: showprogress = True
|
---|
3394 | if minnrow is None: minnrow = 1000
|
---|
3395 | if outlog is None: outlog = False
|
---|
3396 | if blfile is None: blfile = ''
|
---|
3397 | if csvformat is None: csvformat = False
|
---|
3398 | if bltable is None: bltable = ''
|
---|
3399 |
|
---|
3400 | scsvformat = 'T' if csvformat else 'F'
|
---|
3401 |
|
---|
3402 | #CURRENTLY, PLOT=true UNAVAILABLE UNTIL cubic spline fitting is implemented as a fitter method.
|
---|
3403 | workscan._auto_cspline_baseline(mask, npiece,
|
---|
3404 | clipthresh, clipniter,
|
---|
3405 | normalise_edge_param(edge),
|
---|
3406 | threshold,
|
---|
3407 | chan_avg_limit, getresidual,
|
---|
3408 | pack_progress_params(showprogress,
|
---|
3409 | minnrow),
|
---|
3410 | outlog,
|
---|
3411 | scsvformat+blfile,
|
---|
3412 | bltable)
|
---|
3413 | workscan._add_history("auto_cspline_baseline", varlist)
|
---|
3414 |
|
---|
3415 | if bltable == '':
|
---|
3416 | if insitu:
|
---|
3417 | self._assign(workscan)
|
---|
3418 | else:
|
---|
3419 | return workscan
|
---|
3420 | else:
|
---|
3421 | if not insitu:
|
---|
3422 | return None
|
---|
3423 |
|
---|
3424 | except RuntimeError, e:
|
---|
3425 | raise_fitting_failure_exception(e)
|
---|
3426 |
|
---|
3427 | @asaplog_post_dec
|
---|
3428 | def chebyshev_baseline(self, insitu=None, mask=None, order=None,
|
---|
3429 | clipthresh=None, clipniter=None, plot=None,
|
---|
3430 | getresidual=None, showprogress=None, minnrow=None,
|
---|
3431 | outlog=None, blfile=None, csvformat=None,
|
---|
3432 | bltable=None):
|
---|
3433 | """\
|
---|
3434 | Return a scan which has been baselined (all rows) by Chebyshev polynomials.
|
---|
3435 |
|
---|
3436 | Parameters:
|
---|
3437 | insitu: If False a new scantable is returned.
|
---|
3438 | Otherwise, the scaling is done in-situ
|
---|
3439 | The default is taken from .asaprc (False)
|
---|
3440 | mask: An optional mask
|
---|
3441 | order: the maximum order of Chebyshev polynomial (default is 5)
|
---|
3442 | clipthresh: Clipping threshold. (default is 3.0, unit: sigma)
|
---|
3443 | clipniter: maximum number of iteration of 'clipthresh'-sigma
|
---|
3444 | clipping (default is 0)
|
---|
3445 | plot: *** CURRENTLY UNAVAILABLE, ALWAYS FALSE ***
|
---|
3446 | plot the fit and the residual. In this each
|
---|
3447 | indivual fit has to be approved, by typing 'y'
|
---|
3448 | or 'n'
|
---|
3449 | getresidual: if False, returns best-fit values instead of
|
---|
3450 | residual. (default is True)
|
---|
3451 | showprogress: show progress status for large data.
|
---|
3452 | default is True.
|
---|
3453 | minnrow: minimum number of input spectra to show.
|
---|
3454 | default is 1000.
|
---|
3455 | outlog: Output the coefficients of the best-fit
|
---|
3456 | function to logger (default is False)
|
---|
3457 | blfile: Name of a text file in which the best-fit
|
---|
3458 | parameter values to be written
|
---|
3459 | (default is "": no file/logger output)
|
---|
3460 | csvformat: if True blfile is csv-formatted, default is False.
|
---|
3461 | bltable: name of a baseline table where fitting results
|
---|
3462 | (coefficients, rms, etc.) are to be written.
|
---|
3463 | if given, fitting results will NOT be output to
|
---|
3464 | scantable (insitu=True) or None will be
|
---|
3465 | returned (insitu=False).
|
---|
3466 | (default is "": no table output)
|
---|
3467 |
|
---|
3468 | Example:
|
---|
3469 | # return a scan baselined by a cubic spline consisting of 2 pieces
|
---|
3470 | # (i.e., 1 internal knot),
|
---|
3471 | # also with 3-sigma clipping, iteration up to 4 times
|
---|
3472 | bscan = scan.cspline_baseline(npiece=2,clipthresh=3.0,clipniter=4)
|
---|
3473 |
|
---|
3474 | Note:
|
---|
3475 | The best-fit parameter values output in logger and/or blfile are now
|
---|
3476 | based on specunit of 'channel'.
|
---|
3477 | """
|
---|
3478 |
|
---|
3479 | try:
|
---|
3480 | varlist = vars()
|
---|
3481 |
|
---|
3482 | if insitu is None: insitu = rcParams['insitu']
|
---|
3483 | if insitu:
|
---|
3484 | workscan = self
|
---|
3485 | else:
|
---|
3486 | workscan = self.copy()
|
---|
3487 |
|
---|
3488 | if mask is None: mask = []
|
---|
3489 | if order is None: order = 5
|
---|
3490 | if clipthresh is None: clipthresh = 3.0
|
---|
3491 | if clipniter is None: clipniter = 0
|
---|
3492 | if plot is None: plot = False
|
---|
3493 | if getresidual is None: getresidual = True
|
---|
3494 | if showprogress is None: showprogress = True
|
---|
3495 | if minnrow is None: minnrow = 1000
|
---|
3496 | if outlog is None: outlog = False
|
---|
3497 | if blfile is None: blfile = ''
|
---|
3498 | if csvformat is None: csvformat = False
|
---|
3499 | if bltable is None: bltable = ''
|
---|
3500 |
|
---|
3501 | scsvformat = 'T' if csvformat else 'F'
|
---|
3502 |
|
---|
3503 | #CURRENTLY, PLOT=true UNAVAILABLE UNTIL cubic spline fitting is implemented as a fitter method.
|
---|
3504 | workscan._chebyshev_baseline(mask, order,
|
---|
3505 | clipthresh, clipniter,
|
---|
3506 | getresidual,
|
---|
3507 | pack_progress_params(showprogress,
|
---|
3508 | minnrow),
|
---|
3509 | outlog, scsvformat+blfile,
|
---|
3510 | bltable)
|
---|
3511 | workscan._add_history("chebyshev_baseline", varlist)
|
---|
3512 |
|
---|
3513 | if bltable == '':
|
---|
3514 | if insitu:
|
---|
3515 | self._assign(workscan)
|
---|
3516 | else:
|
---|
3517 | return workscan
|
---|
3518 | else:
|
---|
3519 | if not insitu:
|
---|
3520 | return None
|
---|
3521 |
|
---|
3522 | except RuntimeError, e:
|
---|
3523 | raise_fitting_failure_exception(e)
|
---|
3524 |
|
---|
3525 | @asaplog_post_dec
|
---|
3526 | def auto_chebyshev_baseline(self, insitu=None, mask=None, order=None,
|
---|
3527 | clipthresh=None, clipniter=None,
|
---|
3528 | edge=None, threshold=None, chan_avg_limit=None,
|
---|
3529 | getresidual=None, plot=None,
|
---|
3530 | showprogress=None, minnrow=None, outlog=None,
|
---|
3531 | blfile=None, csvformat=None, bltable=None):
|
---|
3532 | """\
|
---|
3533 | Return a scan which has been baselined (all rows) by Chebyshev polynomials.
|
---|
3534 | Spectral lines are detected first using linefinder and masked out
|
---|
3535 | to avoid them affecting the baseline solution.
|
---|
3536 |
|
---|
3537 | Parameters:
|
---|
3538 | insitu: if False a new scantable is returned.
|
---|
3539 | Otherwise, the scaling is done in-situ
|
---|
3540 | The default is taken from .asaprc (False)
|
---|
3541 | mask: an optional mask retreived from scantable
|
---|
3542 | order: the maximum order of Chebyshev polynomial (default is 5)
|
---|
3543 | clipthresh: Clipping threshold. (default is 3.0, unit: sigma)
|
---|
3544 | clipniter: maximum number of iteration of 'clipthresh'-sigma
|
---|
3545 | clipping (default is 0)
|
---|
3546 | edge: an optional number of channel to drop at
|
---|
3547 | the edge of spectrum. If only one value is
|
---|
3548 | specified, the same number will be dropped
|
---|
3549 | from both sides of the spectrum. Default
|
---|
3550 | is to keep all channels. Nested tuples
|
---|
3551 | represent individual edge selection for
|
---|
3552 | different IFs (a number of spectral channels
|
---|
3553 | can be different)
|
---|
3554 | threshold: the threshold used by line finder. It is
|
---|
3555 | better to keep it large as only strong lines
|
---|
3556 | affect the baseline solution.
|
---|
3557 | chan_avg_limit: a maximum number of consequtive spectral
|
---|
3558 | channels to average during the search of
|
---|
3559 | weak and broad lines. The default is no
|
---|
3560 | averaging (and no search for weak lines).
|
---|
3561 | If such lines can affect the fitted baseline
|
---|
3562 | (e.g. a high order polynomial is fitted),
|
---|
3563 | increase this parameter (usually values up
|
---|
3564 | to 8 are reasonable). Most users of this
|
---|
3565 | method should find the default value sufficient.
|
---|
3566 | plot: *** CURRENTLY UNAVAILABLE, ALWAYS FALSE ***
|
---|
3567 | plot the fit and the residual. In this each
|
---|
3568 | indivual fit has to be approved, by typing 'y'
|
---|
3569 | or 'n'
|
---|
3570 | getresidual: if False, returns best-fit values instead of
|
---|
3571 | residual. (default is True)
|
---|
3572 | showprogress: show progress status for large data.
|
---|
3573 | default is True.
|
---|
3574 | minnrow: minimum number of input spectra to show.
|
---|
3575 | default is 1000.
|
---|
3576 | outlog: Output the coefficients of the best-fit
|
---|
3577 | function to logger (default is False)
|
---|
3578 | blfile: Name of a text file in which the best-fit
|
---|
3579 | parameter values to be written
|
---|
3580 | (default is "": no file/logger output)
|
---|
3581 | csvformat: if True blfile is csv-formatted, default is False.
|
---|
3582 | bltable: name of a baseline table where fitting results
|
---|
3583 | (coefficients, rms, etc.) are to be written.
|
---|
3584 | if given, fitting results will NOT be output to
|
---|
3585 | scantable (insitu=True) or None will be
|
---|
3586 | returned (insitu=False).
|
---|
3587 | (default is "": no table output)
|
---|
3588 |
|
---|
3589 | Example:
|
---|
3590 | bscan = scan.auto_cspline_baseline(npiece=3, insitu=False)
|
---|
3591 |
|
---|
3592 | Note:
|
---|
3593 | The best-fit parameter values output in logger and/or blfile are now
|
---|
3594 | based on specunit of 'channel'.
|
---|
3595 | """
|
---|
3596 |
|
---|
3597 | try:
|
---|
3598 | varlist = vars()
|
---|
3599 |
|
---|
3600 | if insitu is None: insitu = rcParams['insitu']
|
---|
3601 | if insitu:
|
---|
3602 | workscan = self
|
---|
3603 | else:
|
---|
3604 | workscan = self.copy()
|
---|
3605 |
|
---|
3606 | if mask is None: mask = []
|
---|
3607 | if order is None: order = 5
|
---|
3608 | if clipthresh is None: clipthresh = 3.0
|
---|
3609 | if clipniter is None: clipniter = 0
|
---|
3610 | if edge is None: edge = (0, 0)
|
---|
3611 | if threshold is None: threshold = 3
|
---|
3612 | if chan_avg_limit is None: chan_avg_limit = 1
|
---|
3613 | if plot is None: plot = False
|
---|
3614 | if getresidual is None: getresidual = True
|
---|
3615 | if showprogress is None: showprogress = True
|
---|
3616 | if minnrow is None: minnrow = 1000
|
---|
3617 | if outlog is None: outlog = False
|
---|
3618 | if blfile is None: blfile = ''
|
---|
3619 | if csvformat is None: csvformat = False
|
---|
3620 | if bltable is None: bltable = ''
|
---|
3621 |
|
---|
3622 | scsvformat = 'T' if csvformat else 'F'
|
---|
3623 |
|
---|
3624 | #CURRENTLY, PLOT=true UNAVAILABLE UNTIL cubic spline fitting is implemented as a fitter method.
|
---|
3625 | workscan._auto_chebyshev_baseline(mask, order,
|
---|
3626 | clipthresh, clipniter,
|
---|
3627 | normalise_edge_param(edge),
|
---|
3628 | threshold,
|
---|
3629 | chan_avg_limit, getresidual,
|
---|
3630 | pack_progress_params(showprogress,
|
---|
3631 | minnrow),
|
---|
3632 | outlog, scsvformat+blfile,
|
---|
3633 | bltable)
|
---|
3634 | workscan._add_history("auto_chebyshev_baseline", varlist)
|
---|
3635 |
|
---|
3636 | if bltable == '':
|
---|
3637 | if insitu:
|
---|
3638 | self._assign(workscan)
|
---|
3639 | else:
|
---|
3640 | return workscan
|
---|
3641 | else:
|
---|
3642 | if not insitu:
|
---|
3643 | return None
|
---|
3644 |
|
---|
3645 | except RuntimeError, e:
|
---|
3646 | raise_fitting_failure_exception(e)
|
---|
3647 |
|
---|
3648 | @asaplog_post_dec
|
---|
3649 | def poly_baseline(self, insitu=None, mask=None, order=None,
|
---|
3650 | clipthresh=None, clipniter=None, plot=None,
|
---|
3651 | getresidual=None, showprogress=None, minnrow=None,
|
---|
3652 | outlog=None, blfile=None, csvformat=None,
|
---|
3653 | bltable=None):
|
---|
3654 | """\
|
---|
3655 | Return a scan which has been baselined (all rows) by a polynomial.
|
---|
3656 | Parameters:
|
---|
3657 | insitu: if False a new scantable is returned.
|
---|
3658 | Otherwise, the scaling is done in-situ
|
---|
3659 | The default is taken from .asaprc (False)
|
---|
3660 | mask: an optional mask
|
---|
3661 | order: the order of the polynomial (default is 0)
|
---|
3662 | clipthresh: Clipping threshold. (default is 3.0, unit: sigma)
|
---|
3663 | clipniter: maximum number of iteration of 'clipthresh'-sigma
|
---|
3664 | clipping (default is 0)
|
---|
3665 | plot: plot the fit and the residual. In this each
|
---|
3666 | indivual fit has to be approved, by typing 'y'
|
---|
3667 | or 'n'
|
---|
3668 | getresidual: if False, returns best-fit values instead of
|
---|
3669 | residual. (default is True)
|
---|
3670 | showprogress: show progress status for large data.
|
---|
3671 | default is True.
|
---|
3672 | minnrow: minimum number of input spectra to show.
|
---|
3673 | default is 1000.
|
---|
3674 | outlog: Output the coefficients of the best-fit
|
---|
3675 | function to logger (default is False)
|
---|
3676 | blfile: Name of a text file in which the best-fit
|
---|
3677 | parameter values to be written
|
---|
3678 | (default is "": no file/logger output)
|
---|
3679 | csvformat: if True blfile is csv-formatted, default is False.
|
---|
3680 | bltable: name of a baseline table where fitting results
|
---|
3681 | (coefficients, rms, etc.) are to be written.
|
---|
3682 | if given, fitting results will NOT be output to
|
---|
3683 | scantable (insitu=True) or None will be
|
---|
3684 | returned (insitu=False).
|
---|
3685 | (default is "": no table output)
|
---|
3686 |
|
---|
3687 | Example:
|
---|
3688 | # return a scan baselined by a third order polynomial,
|
---|
3689 | # not using a mask
|
---|
3690 | bscan = scan.poly_baseline(order=3)
|
---|
3691 | """
|
---|
3692 |
|
---|
3693 | try:
|
---|
3694 | varlist = vars()
|
---|
3695 |
|
---|
3696 | if insitu is None:
|
---|
3697 | insitu = rcParams["insitu"]
|
---|
3698 | if insitu:
|
---|
3699 | workscan = self
|
---|
3700 | else:
|
---|
3701 | workscan = self.copy()
|
---|
3702 |
|
---|
3703 | if mask is None: mask = []
|
---|
3704 | if order is None: order = 0
|
---|
3705 | if clipthresh is None: clipthresh = 3.0
|
---|
3706 | if clipniter is None: clipniter = 0
|
---|
3707 | if plot is None: plot = False
|
---|
3708 | if getresidual is None: getresidual = True
|
---|
3709 | if showprogress is None: showprogress = True
|
---|
3710 | if minnrow is None: minnrow = 1000
|
---|
3711 | if outlog is None: outlog = False
|
---|
3712 | if blfile is None: blfile = ''
|
---|
3713 | if csvformat is None: csvformat = False
|
---|
3714 | if bltable is None: bltable = ''
|
---|
3715 |
|
---|
3716 | scsvformat = 'T' if csvformat else 'F'
|
---|
3717 |
|
---|
3718 | if plot:
|
---|
3719 | outblfile = (blfile != "") and \
|
---|
3720 | os.path.exists(os.path.expanduser(
|
---|
3721 | os.path.expandvars(blfile))
|
---|
3722 | )
|
---|
3723 | if outblfile:
|
---|
3724 | blf = open(blfile, "a")
|
---|
3725 |
|
---|
3726 | f = fitter()
|
---|
3727 | f.set_function(lpoly=order)
|
---|
3728 |
|
---|
3729 | rows = xrange(workscan.nrow())
|
---|
3730 | #if len(rows) > 0: workscan._init_blinfo()
|
---|
3731 |
|
---|
3732 | action = "H"
|
---|
3733 | for r in rows:
|
---|
3734 | f.x = workscan._getabcissa(r)
|
---|
3735 | f.y = workscan._getspectrum(r)
|
---|
3736 | if mask:
|
---|
3737 | f.mask = mask_and(mask, workscan._getmask(r)) # (CAS-1434)
|
---|
3738 | else: # mask=None
|
---|
3739 | f.mask = workscan._getmask(r)
|
---|
3740 |
|
---|
3741 | f.data = None
|
---|
3742 | f.fit()
|
---|
3743 |
|
---|
3744 | if action != "Y": # skip plotting when accepting all
|
---|
3745 | f.plot(residual=True)
|
---|
3746 | #accept_fit = raw_input("Accept fit ( [y]/n ): ")
|
---|
3747 | #if accept_fit.upper() == "N":
|
---|
3748 | # #workscan._append_blinfo(None, None, None)
|
---|
3749 | # continue
|
---|
3750 | accept_fit = self._get_verify_action("Accept fit?",action)
|
---|
3751 | if r == 0: action = None
|
---|
3752 | if accept_fit.upper() == "N":
|
---|
3753 | continue
|
---|
3754 | elif accept_fit.upper() == "R":
|
---|
3755 | break
|
---|
3756 | elif accept_fit.upper() == "A":
|
---|
3757 | action = "Y"
|
---|
3758 |
|
---|
3759 | blpars = f.get_parameters()
|
---|
3760 | masklist = workscan.get_masklist(f.mask, row=r, silent=True)
|
---|
3761 | #workscan._append_blinfo(blpars, masklist, f.mask)
|
---|
3762 | workscan._setspectrum((f.fitter.getresidual()
|
---|
3763 | if getresidual else f.fitter.getfit()), r)
|
---|
3764 |
|
---|
3765 | if outblfile:
|
---|
3766 | rms = workscan.get_rms(f.mask, r)
|
---|
3767 | dataout = \
|
---|
3768 | workscan.format_blparams_row(blpars["params"],
|
---|
3769 | blpars["fixed"],
|
---|
3770 | rms, str(masklist),
|
---|
3771 | r, True, csvformat)
|
---|
3772 | blf.write(dataout)
|
---|
3773 |
|
---|
3774 | f._p.unmap()
|
---|
3775 | f._p = None
|
---|
3776 |
|
---|
3777 | if outblfile:
|
---|
3778 | blf.close()
|
---|
3779 | else:
|
---|
3780 | workscan._poly_baseline(mask, order,
|
---|
3781 | clipthresh, clipniter, #
|
---|
3782 | getresidual,
|
---|
3783 | pack_progress_params(showprogress,
|
---|
3784 | minnrow),
|
---|
3785 | outlog, scsvformat+blfile,
|
---|
3786 | bltable) #
|
---|
3787 |
|
---|
3788 | workscan._add_history("poly_baseline", varlist)
|
---|
3789 |
|
---|
3790 | if insitu:
|
---|
3791 | self._assign(workscan)
|
---|
3792 | else:
|
---|
3793 | return workscan
|
---|
3794 |
|
---|
3795 | except RuntimeError, e:
|
---|
3796 | raise_fitting_failure_exception(e)
|
---|
3797 |
|
---|
3798 | @asaplog_post_dec
|
---|
3799 | def auto_poly_baseline(self, insitu=None, mask=None, order=None,
|
---|
3800 | clipthresh=None, clipniter=None,
|
---|
3801 | edge=None, threshold=None, chan_avg_limit=None,
|
---|
3802 | getresidual=None, plot=None,
|
---|
3803 | showprogress=None, minnrow=None, outlog=None,
|
---|
3804 | blfile=None, csvformat=None, bltable=None):
|
---|
3805 | """\
|
---|
3806 | Return a scan which has been baselined (all rows) by a polynomial.
|
---|
3807 | Spectral lines are detected first using linefinder and masked out
|
---|
3808 | to avoid them affecting the baseline solution.
|
---|
3809 |
|
---|
3810 | Parameters:
|
---|
3811 | insitu: if False a new scantable is returned.
|
---|
3812 | Otherwise, the scaling is done in-situ
|
---|
3813 | The default is taken from .asaprc (False)
|
---|
3814 | mask: an optional mask retreived from scantable
|
---|
3815 | order: the order of the polynomial (default is 0)
|
---|
3816 | clipthresh: Clipping threshold. (default is 3.0, unit: sigma)
|
---|
3817 | clipniter: maximum number of iteration of 'clipthresh'-sigma
|
---|
3818 | clipping (default is 0)
|
---|
3819 | edge: an optional number of channel to drop at
|
---|
3820 | the edge of spectrum. If only one value is
|
---|
3821 | specified, the same number will be dropped
|
---|
3822 | from both sides of the spectrum. Default
|
---|
3823 | is to keep all channels. Nested tuples
|
---|
3824 | represent individual edge selection for
|
---|
3825 | different IFs (a number of spectral channels
|
---|
3826 | can be different)
|
---|
3827 | threshold: the threshold used by line finder. It is
|
---|
3828 | better to keep it large as only strong lines
|
---|
3829 | affect the baseline solution.
|
---|
3830 | chan_avg_limit: a maximum number of consequtive spectral
|
---|
3831 | channels to average during the search of
|
---|
3832 | weak and broad lines. The default is no
|
---|
3833 | averaging (and no search for weak lines).
|
---|
3834 | If such lines can affect the fitted baseline
|
---|
3835 | (e.g. a high order polynomial is fitted),
|
---|
3836 | increase this parameter (usually values up
|
---|
3837 | to 8 are reasonable). Most users of this
|
---|
3838 | method should find the default value sufficient.
|
---|
3839 | plot: plot the fit and the residual. In this each
|
---|
3840 | indivual fit has to be approved, by typing 'y'
|
---|
3841 | or 'n'
|
---|
3842 | getresidual: if False, returns best-fit values instead of
|
---|
3843 | residual. (default is True)
|
---|
3844 | showprogress: show progress status for large data.
|
---|
3845 | default is True.
|
---|
3846 | minnrow: minimum number of input spectra to show.
|
---|
3847 | default is 1000.
|
---|
3848 | outlog: Output the coefficients of the best-fit
|
---|
3849 | function to logger (default is False)
|
---|
3850 | blfile: Name of a text file in which the best-fit
|
---|
3851 | parameter values to be written
|
---|
3852 | (default is "": no file/logger output)
|
---|
3853 | csvformat: if True blfile is csv-formatted, default is False.
|
---|
3854 | bltable: name of a baseline table where fitting results
|
---|
3855 | (coefficients, rms, etc.) are to be written.
|
---|
3856 | if given, fitting results will NOT be output to
|
---|
3857 | scantable (insitu=True) or None will be
|
---|
3858 | returned (insitu=False).
|
---|
3859 | (default is "": no table output)
|
---|
3860 |
|
---|
3861 | Example:
|
---|
3862 | bscan = scan.auto_poly_baseline(order=7, insitu=False)
|
---|
3863 | """
|
---|
3864 |
|
---|
3865 | try:
|
---|
3866 | varlist = vars()
|
---|
3867 |
|
---|
3868 | if insitu is None:
|
---|
3869 | insitu = rcParams['insitu']
|
---|
3870 | if insitu:
|
---|
3871 | workscan = self
|
---|
3872 | else:
|
---|
3873 | workscan = self.copy()
|
---|
3874 |
|
---|
3875 | if mask is None: mask = []
|
---|
3876 | if order is None: order = 0
|
---|
3877 | if clipthresh is None: clipthresh = 3.0
|
---|
3878 | if clipniter is None: clipniter = 0
|
---|
3879 | if edge is None: edge = (0, 0)
|
---|
3880 | if threshold is None: threshold = 3
|
---|
3881 | if chan_avg_limit is None: chan_avg_limit = 1
|
---|
3882 | if plot is None: plot = False
|
---|
3883 | if getresidual is None: getresidual = True
|
---|
3884 | if showprogress is None: showprogress = True
|
---|
3885 | if minnrow is None: minnrow = 1000
|
---|
3886 | if outlog is None: outlog = False
|
---|
3887 | if blfile is None: blfile = ''
|
---|
3888 | if csvformat is None: csvformat = False
|
---|
3889 | if bltable is None: bltable = ''
|
---|
3890 |
|
---|
3891 | scsvformat = 'T' if csvformat else 'F'
|
---|
3892 |
|
---|
3893 | edge = normalise_edge_param(edge)
|
---|
3894 |
|
---|
3895 | if plot:
|
---|
3896 | outblfile = (blfile != "") and \
|
---|
3897 | os.path.exists(os.path.expanduser(os.path.expandvars(blfile)))
|
---|
3898 | if outblfile: blf = open(blfile, "a")
|
---|
3899 |
|
---|
3900 | from asap.asaplinefind import linefinder
|
---|
3901 | fl = linefinder()
|
---|
3902 | fl.set_options(threshold=threshold, avg_limit=chan_avg_limit)
|
---|
3903 | fl.set_scan(workscan)
|
---|
3904 |
|
---|
3905 | f = fitter()
|
---|
3906 | f.set_function(lpoly=order)
|
---|
3907 |
|
---|
3908 | rows = xrange(workscan.nrow())
|
---|
3909 | #if len(rows) > 0: workscan._init_blinfo()
|
---|
3910 |
|
---|
3911 | action = "H"
|
---|
3912 | for r in rows:
|
---|
3913 | idx = 2*workscan.getif(r)
|
---|
3914 | if mask:
|
---|
3915 | msk = mask_and(mask, workscan._getmask(r)) # (CAS-1434)
|
---|
3916 | else: # mask=None
|
---|
3917 | msk = workscan._getmask(r)
|
---|
3918 | fl.find_lines(r, msk, edge[idx:idx+2])
|
---|
3919 |
|
---|
3920 | f.x = workscan._getabcissa(r)
|
---|
3921 | f.y = workscan._getspectrum(r)
|
---|
3922 | f.mask = fl.get_mask()
|
---|
3923 | f.data = None
|
---|
3924 | f.fit()
|
---|
3925 |
|
---|
3926 | if action != "Y": # skip plotting when accepting all
|
---|
3927 | f.plot(residual=True)
|
---|
3928 | #accept_fit = raw_input("Accept fit ( [y]/n ): ")
|
---|
3929 | accept_fit = self._get_verify_action("Accept fit?",action)
|
---|
3930 | if r == 0: action = None
|
---|
3931 | if accept_fit.upper() == "N":
|
---|
3932 | #workscan._append_blinfo(None, None, None)
|
---|
3933 | continue
|
---|
3934 | elif accept_fit.upper() == "R":
|
---|
3935 | break
|
---|
3936 | elif accept_fit.upper() == "A":
|
---|
3937 | action = "Y"
|
---|
3938 |
|
---|
3939 | blpars = f.get_parameters()
|
---|
3940 | masklist = workscan.get_masklist(f.mask, row=r, silent=True)
|
---|
3941 | #workscan._append_blinfo(blpars, masklist, f.mask)
|
---|
3942 | workscan._setspectrum(
|
---|
3943 | (f.fitter.getresidual() if getresidual
|
---|
3944 | else f.fitter.getfit()), r
|
---|
3945 | )
|
---|
3946 |
|
---|
3947 | if outblfile:
|
---|
3948 | rms = workscan.get_rms(f.mask, r)
|
---|
3949 | dataout = \
|
---|
3950 | workscan.format_blparams_row(blpars["params"],
|
---|
3951 | blpars["fixed"],
|
---|
3952 | rms, str(masklist),
|
---|
3953 | r, True, csvformat)
|
---|
3954 | blf.write(dataout)
|
---|
3955 |
|
---|
3956 | f._p.unmap()
|
---|
3957 | f._p = None
|
---|
3958 |
|
---|
3959 | if outblfile: blf.close()
|
---|
3960 | else:
|
---|
3961 | workscan._auto_poly_baseline(mask, order,
|
---|
3962 | clipthresh, clipniter,
|
---|
3963 | edge, threshold,
|
---|
3964 | chan_avg_limit, getresidual,
|
---|
3965 | pack_progress_params(showprogress,
|
---|
3966 | minnrow),
|
---|
3967 | outlog, scsvformat+blfile,
|
---|
3968 | bltable)
|
---|
3969 | workscan._add_history("auto_poly_baseline", varlist)
|
---|
3970 |
|
---|
3971 | if bltable == '':
|
---|
3972 | if insitu:
|
---|
3973 | self._assign(workscan)
|
---|
3974 | else:
|
---|
3975 | return workscan
|
---|
3976 | else:
|
---|
3977 | if not insitu:
|
---|
3978 | return None
|
---|
3979 |
|
---|
3980 | except RuntimeError, e:
|
---|
3981 | raise_fitting_failure_exception(e)
|
---|
3982 |
|
---|
3983 | def _init_blinfo(self):
|
---|
3984 | """\
|
---|
3985 | Initialise the following three auxiliary members:
|
---|
3986 | blpars : parameters of the best-fit baseline,
|
---|
3987 | masklists : mask data (edge positions of masked channels) and
|
---|
3988 | actualmask : mask data (in boolean list),
|
---|
3989 | to keep for use later (including output to logger/text files).
|
---|
3990 | Used by poly_baseline() and auto_poly_baseline() in case of
|
---|
3991 | 'plot=True'.
|
---|
3992 | """
|
---|
3993 | self.blpars = []
|
---|
3994 | self.masklists = []
|
---|
3995 | self.actualmask = []
|
---|
3996 | return
|
---|
3997 |
|
---|
3998 | def _append_blinfo(self, data_blpars, data_masklists, data_actualmask):
|
---|
3999 | """\
|
---|
4000 | Append baseline-fitting related info to blpars, masklist and
|
---|
4001 | actualmask.
|
---|
4002 | """
|
---|
4003 | self.blpars.append(data_blpars)
|
---|
4004 | self.masklists.append(data_masklists)
|
---|
4005 | self.actualmask.append(data_actualmask)
|
---|
4006 | return
|
---|
4007 |
|
---|
4008 | @asaplog_post_dec
|
---|
4009 | def rotate_linpolphase(self, angle):
|
---|
4010 | """\
|
---|
4011 | Rotate the phase of the complex polarization O=Q+iU correlation.
|
---|
4012 | This is always done in situ in the raw data. So if you call this
|
---|
4013 | function more than once then each call rotates the phase further.
|
---|
4014 |
|
---|
4015 | Parameters:
|
---|
4016 |
|
---|
4017 | angle: The angle (degrees) to rotate (add) by.
|
---|
4018 |
|
---|
4019 | Example::
|
---|
4020 |
|
---|
4021 | scan.rotate_linpolphase(2.3)
|
---|
4022 |
|
---|
4023 | """
|
---|
4024 | varlist = vars()
|
---|
4025 | self._math._rotate_linpolphase(self, angle)
|
---|
4026 | self._add_history("rotate_linpolphase", varlist)
|
---|
4027 | return
|
---|
4028 |
|
---|
4029 | @asaplog_post_dec
|
---|
4030 | def rotate_xyphase(self, angle):
|
---|
4031 | """\
|
---|
4032 | Rotate the phase of the XY correlation. This is always done in situ
|
---|
4033 | in the data. So if you call this function more than once
|
---|
4034 | then each call rotates the phase further.
|
---|
4035 |
|
---|
4036 | Parameters:
|
---|
4037 |
|
---|
4038 | angle: The angle (degrees) to rotate (add) by.
|
---|
4039 |
|
---|
4040 | Example::
|
---|
4041 |
|
---|
4042 | scan.rotate_xyphase(2.3)
|
---|
4043 |
|
---|
4044 | """
|
---|
4045 | varlist = vars()
|
---|
4046 | self._math._rotate_xyphase(self, angle)
|
---|
4047 | self._add_history("rotate_xyphase", varlist)
|
---|
4048 | return
|
---|
4049 |
|
---|
4050 | @asaplog_post_dec
|
---|
4051 | def swap_linears(self):
|
---|
4052 | """\
|
---|
4053 | Swap the linear polarisations XX and YY, or better the first two
|
---|
4054 | polarisations as this also works for ciculars.
|
---|
4055 | """
|
---|
4056 | varlist = vars()
|
---|
4057 | self._math._swap_linears(self)
|
---|
4058 | self._add_history("swap_linears", varlist)
|
---|
4059 | return
|
---|
4060 |
|
---|
4061 | @asaplog_post_dec
|
---|
4062 | def invert_phase(self):
|
---|
4063 | """\
|
---|
4064 | Invert the phase of the complex polarisation
|
---|
4065 | """
|
---|
4066 | varlist = vars()
|
---|
4067 | self._math._invert_phase(self)
|
---|
4068 | self._add_history("invert_phase", varlist)
|
---|
4069 | return
|
---|
4070 |
|
---|
4071 | @asaplog_post_dec
|
---|
4072 | def add(self, offset, insitu=None):
|
---|
4073 | """\
|
---|
4074 | Return a scan where all spectra have the offset added
|
---|
4075 |
|
---|
4076 | Parameters:
|
---|
4077 |
|
---|
4078 | offset: the offset
|
---|
4079 |
|
---|
4080 | insitu: if False a new scantable is returned.
|
---|
4081 | Otherwise, the scaling is done in-situ
|
---|
4082 | The default is taken from .asaprc (False)
|
---|
4083 |
|
---|
4084 | """
|
---|
4085 | if insitu is None: insitu = rcParams['insitu']
|
---|
4086 | self._math._setinsitu(insitu)
|
---|
4087 | varlist = vars()
|
---|
4088 | s = scantable(self._math._unaryop(self, offset, "ADD", False))
|
---|
4089 | s._add_history("add", varlist)
|
---|
4090 | if insitu:
|
---|
4091 | self._assign(s)
|
---|
4092 | else:
|
---|
4093 | return s
|
---|
4094 |
|
---|
4095 | @asaplog_post_dec
|
---|
4096 | def scale(self, factor, tsys=True, insitu=None):
|
---|
4097 | """\
|
---|
4098 |
|
---|
4099 | Return a scan where all spectra are scaled by the given 'factor'
|
---|
4100 |
|
---|
4101 | Parameters:
|
---|
4102 |
|
---|
4103 | factor: the scaling factor (float or 1D float list)
|
---|
4104 |
|
---|
4105 | insitu: if False a new scantable is returned.
|
---|
4106 | Otherwise, the scaling is done in-situ
|
---|
4107 | The default is taken from .asaprc (False)
|
---|
4108 |
|
---|
4109 | tsys: if True (default) then apply the operation to Tsys
|
---|
4110 | as well as the data
|
---|
4111 |
|
---|
4112 | """
|
---|
4113 | if insitu is None: insitu = rcParams['insitu']
|
---|
4114 | self._math._setinsitu(insitu)
|
---|
4115 | varlist = vars()
|
---|
4116 | s = None
|
---|
4117 | import numpy
|
---|
4118 | if isinstance(factor, list) or isinstance(factor, numpy.ndarray):
|
---|
4119 | if isinstance(factor[0], list) or isinstance(factor[0],
|
---|
4120 | numpy.ndarray):
|
---|
4121 | from asapmath import _array2dOp
|
---|
4122 | s = _array2dOp( self, factor, "MUL", tsys, insitu )
|
---|
4123 | else:
|
---|
4124 | s = scantable( self._math._arrayop( self, factor,
|
---|
4125 | "MUL", tsys ) )
|
---|
4126 | else:
|
---|
4127 | s = scantable(self._math._unaryop(self, factor, "MUL", tsys))
|
---|
4128 | s._add_history("scale", varlist)
|
---|
4129 | if insitu:
|
---|
4130 | self._assign(s)
|
---|
4131 | else:
|
---|
4132 | return s
|
---|
4133 |
|
---|
4134 | @preserve_selection
|
---|
4135 | def set_sourcetype(self, match, matchtype="pattern",
|
---|
4136 | sourcetype="reference"):
|
---|
4137 | """\
|
---|
4138 | Set the type of the source to be an source or reference scan
|
---|
4139 | using the provided pattern.
|
---|
4140 |
|
---|
4141 | Parameters:
|
---|
4142 |
|
---|
4143 | match: a Unix style pattern, regular expression or selector
|
---|
4144 |
|
---|
4145 | matchtype: 'pattern' (default) UNIX style pattern or
|
---|
4146 | 'regex' regular expression
|
---|
4147 |
|
---|
4148 | sourcetype: the type of the source to use (source/reference)
|
---|
4149 |
|
---|
4150 | """
|
---|
4151 | varlist = vars()
|
---|
4152 | stype = -1
|
---|
4153 | if sourcetype.lower().startswith("r") or sourcetype.lower() == "off":
|
---|
4154 | stype = 1
|
---|
4155 | elif sourcetype.lower().startswith("s") or sourcetype.lower() == "on":
|
---|
4156 | stype = 0
|
---|
4157 | else:
|
---|
4158 | raise ValueError("Illegal sourcetype use s(ource)/on or r(eference)/off")
|
---|
4159 | if matchtype.lower().startswith("p"):
|
---|
4160 | matchtype = "pattern"
|
---|
4161 | elif matchtype.lower().startswith("r"):
|
---|
4162 | matchtype = "regex"
|
---|
4163 | else:
|
---|
4164 | raise ValueError("Illegal matchtype, use p(attern) or r(egex)")
|
---|
4165 | sel = selector()
|
---|
4166 | if isinstance(match, selector):
|
---|
4167 | sel = match
|
---|
4168 | else:
|
---|
4169 | sel.set_query("SRCNAME=%s('%s')" % (matchtype, match))
|
---|
4170 | self.set_selection(sel)
|
---|
4171 | self._setsourcetype(stype)
|
---|
4172 | self._add_history("set_sourcetype", varlist)
|
---|
4173 |
|
---|
4174 | @asaplog_post_dec
|
---|
4175 | @preserve_selection
|
---|
4176 | def auto_quotient(self, preserve=True, mode='paired', verify=False):
|
---|
4177 | """\
|
---|
4178 | This function allows to build quotients automatically.
|
---|
4179 | It assumes the observation to have the same number of
|
---|
4180 | "ons" and "offs"
|
---|
4181 |
|
---|
4182 | Parameters:
|
---|
4183 |
|
---|
4184 | preserve: you can preserve (default) the continuum or
|
---|
4185 | remove it. The equations used are
|
---|
4186 |
|
---|
4187 | preserve: Output = Toff * (on/off) - Toff
|
---|
4188 |
|
---|
4189 | remove: Output = Toff * (on/off) - Ton
|
---|
4190 |
|
---|
4191 | mode: the on/off detection mode
|
---|
4192 | 'paired' (default)
|
---|
4193 | identifies 'off' scans by the
|
---|
4194 | trailing '_R' (Mopra/Parkes) or
|
---|
4195 | '_e'/'_w' (Tid) and matches
|
---|
4196 | on/off pairs from the observing pattern
|
---|
4197 | 'time'
|
---|
4198 | finds the closest off in time
|
---|
4199 |
|
---|
4200 | .. todo:: verify argument is not implemented
|
---|
4201 |
|
---|
4202 | """
|
---|
4203 | varlist = vars()
|
---|
4204 | modes = ["time", "paired"]
|
---|
4205 | if not mode in modes:
|
---|
4206 | msg = "please provide valid mode. Valid modes are %s" % (modes)
|
---|
4207 | raise ValueError(msg)
|
---|
4208 | s = None
|
---|
4209 | if mode.lower() == "paired":
|
---|
4210 | sel = self.get_selection()
|
---|
4211 | sel.set_query("SRCTYPE==psoff")
|
---|
4212 | self.set_selection(sel)
|
---|
4213 | offs = self.copy()
|
---|
4214 | sel.set_query("SRCTYPE==pson")
|
---|
4215 | self.set_selection(sel)
|
---|
4216 | ons = self.copy()
|
---|
4217 | s = scantable(self._math._quotient(ons, offs, preserve))
|
---|
4218 | elif mode.lower() == "time":
|
---|
4219 | s = scantable(self._math._auto_quotient(self, mode, preserve))
|
---|
4220 | s._add_history("auto_quotient", varlist)
|
---|
4221 | return s
|
---|
4222 |
|
---|
4223 | @asaplog_post_dec
|
---|
4224 | def mx_quotient(self, mask = None, weight='median', preserve=True):
|
---|
4225 | """\
|
---|
4226 | Form a quotient using "off" beams when observing in "MX" mode.
|
---|
4227 |
|
---|
4228 | Parameters:
|
---|
4229 |
|
---|
4230 | mask: an optional mask to be used when weight == 'stddev'
|
---|
4231 |
|
---|
4232 | weight: How to average the off beams. Default is 'median'.
|
---|
4233 |
|
---|
4234 | preserve: you can preserve (default) the continuum or
|
---|
4235 | remove it. The equations used are:
|
---|
4236 |
|
---|
4237 | preserve: Output = Toff * (on/off) - Toff
|
---|
4238 |
|
---|
4239 | remove: Output = Toff * (on/off) - Ton
|
---|
4240 |
|
---|
4241 | """
|
---|
4242 | mask = mask or ()
|
---|
4243 | varlist = vars()
|
---|
4244 | on = scantable(self._math._mx_extract(self, 'on'))
|
---|
4245 | preoff = scantable(self._math._mx_extract(self, 'off'))
|
---|
4246 | off = preoff.average_time(mask=mask, weight=weight, scanav=False)
|
---|
4247 | from asapmath import quotient
|
---|
4248 | q = quotient(on, off, preserve)
|
---|
4249 | q._add_history("mx_quotient", varlist)
|
---|
4250 | return q
|
---|
4251 |
|
---|
4252 | @asaplog_post_dec
|
---|
4253 | def freq_switch(self, insitu=None):
|
---|
4254 | """\
|
---|
4255 | Apply frequency switching to the data.
|
---|
4256 |
|
---|
4257 | Parameters:
|
---|
4258 |
|
---|
4259 | insitu: if False a new scantable is returned.
|
---|
4260 | Otherwise, the swictching is done in-situ
|
---|
4261 | The default is taken from .asaprc (False)
|
---|
4262 |
|
---|
4263 | """
|
---|
4264 | if insitu is None: insitu = rcParams['insitu']
|
---|
4265 | self._math._setinsitu(insitu)
|
---|
4266 | varlist = vars()
|
---|
4267 | s = scantable(self._math._freqswitch(self))
|
---|
4268 | s._add_history("freq_switch", varlist)
|
---|
4269 | if insitu:
|
---|
4270 | self._assign(s)
|
---|
4271 | else:
|
---|
4272 | return s
|
---|
4273 |
|
---|
4274 | @asaplog_post_dec
|
---|
4275 | def recalc_azel(self):
|
---|
4276 | """Recalculate the azimuth and elevation for each position."""
|
---|
4277 | varlist = vars()
|
---|
4278 | self._recalcazel()
|
---|
4279 | self._add_history("recalc_azel", varlist)
|
---|
4280 | return
|
---|
4281 |
|
---|
4282 | @asaplog_post_dec
|
---|
4283 | def __add__(self, other):
|
---|
4284 | """
|
---|
4285 | implicit on all axes and on Tsys
|
---|
4286 | """
|
---|
4287 | varlist = vars()
|
---|
4288 | s = self.__op( other, "ADD" )
|
---|
4289 | s._add_history("operator +", varlist)
|
---|
4290 | return s
|
---|
4291 |
|
---|
4292 | @asaplog_post_dec
|
---|
4293 | def __sub__(self, other):
|
---|
4294 | """
|
---|
4295 | implicit on all axes and on Tsys
|
---|
4296 | """
|
---|
4297 | varlist = vars()
|
---|
4298 | s = self.__op( other, "SUB" )
|
---|
4299 | s._add_history("operator -", varlist)
|
---|
4300 | return s
|
---|
4301 |
|
---|
4302 | @asaplog_post_dec
|
---|
4303 | def __mul__(self, other):
|
---|
4304 | """
|
---|
4305 | implicit on all axes and on Tsys
|
---|
4306 | """
|
---|
4307 | varlist = vars()
|
---|
4308 | s = self.__op( other, "MUL" ) ;
|
---|
4309 | s._add_history("operator *", varlist)
|
---|
4310 | return s
|
---|
4311 |
|
---|
4312 |
|
---|
4313 | @asaplog_post_dec
|
---|
4314 | def __div__(self, other):
|
---|
4315 | """
|
---|
4316 | implicit on all axes and on Tsys
|
---|
4317 | """
|
---|
4318 | varlist = vars()
|
---|
4319 | s = self.__op( other, "DIV" )
|
---|
4320 | s._add_history("operator /", varlist)
|
---|
4321 | return s
|
---|
4322 |
|
---|
4323 | @asaplog_post_dec
|
---|
4324 | def __op( self, other, mode ):
|
---|
4325 | s = None
|
---|
4326 | if isinstance(other, scantable):
|
---|
4327 | s = scantable(self._math._binaryop(self, other, mode))
|
---|
4328 | elif isinstance(other, float):
|
---|
4329 | if other == 0.0:
|
---|
4330 | raise ZeroDivisionError("Dividing by zero is not recommended")
|
---|
4331 | s = scantable(self._math._unaryop(self, other, mode, False))
|
---|
4332 | elif isinstance(other, list) or isinstance(other, numpy.ndarray):
|
---|
4333 | if isinstance(other[0], list) \
|
---|
4334 | or isinstance(other[0], numpy.ndarray):
|
---|
4335 | from asapmath import _array2dOp
|
---|
4336 | s = _array2dOp( self, other, mode, False )
|
---|
4337 | else:
|
---|
4338 | s = scantable( self._math._arrayop( self, other,
|
---|
4339 | mode, False ) )
|
---|
4340 | else:
|
---|
4341 | raise TypeError("Other input is not a scantable or float value")
|
---|
4342 | return s
|
---|
4343 |
|
---|
4344 | @asaplog_post_dec
|
---|
4345 | def get_fit(self, row=0):
|
---|
4346 | """\
|
---|
4347 | Print or return the stored fits for a row in the scantable
|
---|
4348 |
|
---|
4349 | Parameters:
|
---|
4350 |
|
---|
4351 | row: the row which the fit has been applied to.
|
---|
4352 |
|
---|
4353 | """
|
---|
4354 | if row > self.nrow():
|
---|
4355 | return
|
---|
4356 | from asap.asapfit import asapfit
|
---|
4357 | fit = asapfit(self._getfit(row))
|
---|
4358 | asaplog.push( '%s' %(fit) )
|
---|
4359 | return fit.as_dict()
|
---|
4360 |
|
---|
4361 | @preserve_selection
|
---|
4362 | def flag_nans(self):
|
---|
4363 | """\
|
---|
4364 | Utility function to flag NaN values in the scantable.
|
---|
4365 | """
|
---|
4366 | import numpy
|
---|
4367 | basesel = self.get_selection()
|
---|
4368 | for i in range(self.nrow()):
|
---|
4369 | sel = self.get_row_selector(i)
|
---|
4370 | self.set_selection(basesel+sel)
|
---|
4371 | nans = numpy.isnan(self._getspectrum(0))
|
---|
4372 | if numpy.any(nans):
|
---|
4373 | bnans = [ bool(v) for v in nans]
|
---|
4374 | self.flag(bnans)
|
---|
4375 |
|
---|
4376 | def get_row_selector(self, rowno):
|
---|
4377 | return selector(rows=[rowno])
|
---|
4378 |
|
---|
4379 | def _add_history(self, funcname, parameters):
|
---|
4380 | if not rcParams['scantable.history']:
|
---|
4381 | return
|
---|
4382 | # create date
|
---|
4383 | sep = "##"
|
---|
4384 | from datetime import datetime
|
---|
4385 | dstr = datetime.now().strftime('%Y/%m/%d %H:%M:%S')
|
---|
4386 | hist = dstr+sep
|
---|
4387 | hist += funcname+sep#cdate+sep
|
---|
4388 | if parameters.has_key('self'):
|
---|
4389 | del parameters['self']
|
---|
4390 | for k, v in parameters.iteritems():
|
---|
4391 | if type(v) is dict:
|
---|
4392 | for k2, v2 in v.iteritems():
|
---|
4393 | hist += k2
|
---|
4394 | hist += "="
|
---|
4395 | if isinstance(v2, scantable):
|
---|
4396 | hist += 'scantable'
|
---|
4397 | elif k2 == 'mask':
|
---|
4398 | if isinstance(v2, list) or isinstance(v2, tuple):
|
---|
4399 | hist += str(self._zip_mask(v2))
|
---|
4400 | else:
|
---|
4401 | hist += str(v2)
|
---|
4402 | else:
|
---|
4403 | hist += str(v2)
|
---|
4404 | else:
|
---|
4405 | hist += k
|
---|
4406 | hist += "="
|
---|
4407 | if isinstance(v, scantable):
|
---|
4408 | hist += 'scantable'
|
---|
4409 | elif k == 'mask':
|
---|
4410 | if isinstance(v, list) or isinstance(v, tuple):
|
---|
4411 | hist += str(self._zip_mask(v))
|
---|
4412 | else:
|
---|
4413 | hist += str(v)
|
---|
4414 | else:
|
---|
4415 | hist += str(v)
|
---|
4416 | hist += sep
|
---|
4417 | hist = hist[:-2] # remove trailing '##'
|
---|
4418 | self._addhistory(hist)
|
---|
4419 |
|
---|
4420 |
|
---|
4421 | def _zip_mask(self, mask):
|
---|
4422 | mask = list(mask)
|
---|
4423 | i = 0
|
---|
4424 | segments = []
|
---|
4425 | while mask[i:].count(1):
|
---|
4426 | i += mask[i:].index(1)
|
---|
4427 | if mask[i:].count(0):
|
---|
4428 | j = i + mask[i:].index(0)
|
---|
4429 | else:
|
---|
4430 | j = len(mask)
|
---|
4431 | segments.append([i, j])
|
---|
4432 | i = j
|
---|
4433 | return segments
|
---|
4434 |
|
---|
4435 | def _get_ordinate_label(self):
|
---|
4436 | fu = "("+self.get_fluxunit()+")"
|
---|
4437 | import re
|
---|
4438 | lbl = "Intensity"
|
---|
4439 | if re.match(".K.", fu):
|
---|
4440 | lbl = "Brightness Temperature "+ fu
|
---|
4441 | elif re.match(".Jy.", fu):
|
---|
4442 | lbl = "Flux density "+ fu
|
---|
4443 | return lbl
|
---|
4444 |
|
---|
4445 | def _check_ifs(self):
|
---|
4446 | # return len(set([self.nchan(i) for i in self.getifnos()])) == 1
|
---|
4447 | nchans = [self.nchan(i) for i in self.getifnos()]
|
---|
4448 | nchans = filter(lambda t: t > 0, nchans)
|
---|
4449 | return (sum(nchans)/len(nchans) == nchans[0])
|
---|
4450 |
|
---|
4451 | @asaplog_post_dec
|
---|
4452 | def _fill(self, names, unit, average, opts={}):
|
---|
4453 | first = True
|
---|
4454 | fullnames = []
|
---|
4455 | for name in names:
|
---|
4456 | name = os.path.expandvars(name)
|
---|
4457 | name = os.path.expanduser(name)
|
---|
4458 | if not os.path.exists(name):
|
---|
4459 | msg = "File '%s' does not exists" % (name)
|
---|
4460 | raise IOError(msg)
|
---|
4461 | fullnames.append(name)
|
---|
4462 | if average:
|
---|
4463 | asaplog.push('Auto averaging integrations')
|
---|
4464 | stype = int(rcParams['scantable.storage'].lower() == 'disk')
|
---|
4465 | for name in fullnames:
|
---|
4466 | tbl = Scantable(stype)
|
---|
4467 | if is_ms( name ):
|
---|
4468 | r = msfiller( tbl )
|
---|
4469 | else:
|
---|
4470 | r = filler( tbl )
|
---|
4471 | msg = "Importing %s..." % (name)
|
---|
4472 | asaplog.push(msg, False)
|
---|
4473 | r.open(name, opts)
|
---|
4474 | rx = rcParams['scantable.reference']
|
---|
4475 | r.setreferenceexpr(rx)
|
---|
4476 | r.fill()
|
---|
4477 | if average:
|
---|
4478 | tbl = self._math._average((tbl, ), (), 'NONE', 'SCAN')
|
---|
4479 | if not first:
|
---|
4480 | tbl = self._math._merge([self, tbl])
|
---|
4481 | Scantable.__init__(self, tbl)
|
---|
4482 | r.close()
|
---|
4483 | del r, tbl
|
---|
4484 | first = False
|
---|
4485 | #flush log
|
---|
4486 | asaplog.post()
|
---|
4487 | if unit is not None:
|
---|
4488 | self.set_fluxunit(unit)
|
---|
4489 | if not is_casapy():
|
---|
4490 | self.set_freqframe(rcParams['scantable.freqframe'])
|
---|
4491 |
|
---|
4492 | def _get_verify_action( self, msg, action=None ):
|
---|
4493 | valid_act = ['Y', 'N', 'A', 'R']
|
---|
4494 | if not action or not isinstance(action, str):
|
---|
4495 | action = raw_input("%s [Y/n/a/r] (h for help): " % msg)
|
---|
4496 | if action == '':
|
---|
4497 | return "Y"
|
---|
4498 | elif (action.upper()[0] in valid_act):
|
---|
4499 | return action.upper()[0]
|
---|
4500 | elif (action.upper()[0] in ['H','?']):
|
---|
4501 | print "Available actions of verification [Y|n|a|r]"
|
---|
4502 | print " Y : Yes for current data (default)"
|
---|
4503 | print " N : No for current data"
|
---|
4504 | print " A : Accept all in the following and exit from verification"
|
---|
4505 | print " R : Reject all in the following and exit from verification"
|
---|
4506 | print " H or ?: help (show this message)"
|
---|
4507 | return self._get_verify_action(msg)
|
---|
4508 | else:
|
---|
4509 | return 'Y'
|
---|
4510 |
|
---|
4511 | def __getitem__(self, key):
|
---|
4512 | if key < 0:
|
---|
4513 | key += self.nrow()
|
---|
4514 | if key >= self.nrow():
|
---|
4515 | raise IndexError("Row index out of range.")
|
---|
4516 | return self._getspectrum(key)
|
---|
4517 |
|
---|
4518 | def __setitem__(self, key, value):
|
---|
4519 | if key < 0:
|
---|
4520 | key += self.nrow()
|
---|
4521 | if key >= self.nrow():
|
---|
4522 | raise IndexError("Row index out of range.")
|
---|
4523 | if not hasattr(value, "__len__") or \
|
---|
4524 | len(value) > self.nchan(self.getif(key)):
|
---|
4525 | raise ValueError("Spectrum length doesn't match.")
|
---|
4526 | return self._setspectrum(value, key)
|
---|
4527 |
|
---|
4528 | def __len__(self):
|
---|
4529 | return self.nrow()
|
---|
4530 |
|
---|
4531 | def __iter__(self):
|
---|
4532 | for i in range(len(self)):
|
---|
4533 | yield self[i]
|
---|