source: trunk/python/scantable.py@ 2683

Last change on this file since 2683 was 2672, checked in by Malte Marquarding, 12 years ago

introduce 'reshape' method; this includes a fix to c++ for the upper boundary assertion

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 157.9 KB
Line 
1"""This module defines the scantable class."""
2
3import os
4import tempfile
5import numpy
6try:
7 from functools import wraps as wraps_dec
8except ImportError:
9 from asap.compatibility import wraps as wraps_dec
10
11from asap.env import is_casapy
12from asap._asap import Scantable
13from asap._asap import filler, msfiller
14from asap.parameters import rcParams
15from asap.logging import asaplog, asaplog_post_dec
16from asap.selector import selector
17from asap.linecatalog import linecatalog
18from asap.coordinate import coordinate
19from asap.utils import _n_bools, mask_not, mask_and, mask_or, page
20from asap.asapfitter import fitter
21
22def preserve_selection(func):
23 @wraps_dec(func)
24 def wrap(obj, *args, **kw):
25 basesel = obj.get_selection()
26 try:
27 val = func(obj, *args, **kw)
28 finally:
29 obj.set_selection(basesel)
30 return val
31 return wrap
32
33def is_scantable(filename):
34 """Is the given file a scantable?
35
36 Parameters:
37
38 filename: the name of the file/directory to test
39
40 """
41 if ( os.path.isdir(filename)
42 and os.path.exists(filename+'/table.info')
43 and os.path.exists(filename+'/table.dat') ):
44 f=open(filename+'/table.info')
45 l=f.readline()
46 f.close()
47 #if ( l.find('Scantable') != -1 ):
48 if ( l.find('Measurement Set') == -1 ):
49 return True
50 else:
51 return False
52 else:
53 return False
54## return (os.path.isdir(filename)
55## and not os.path.exists(filename+'/table.f1')
56## and os.path.exists(filename+'/table.info'))
57
58def is_ms(filename):
59 """Is the given file a MeasurementSet?
60
61 Parameters:
62
63 filename: the name of the file/directory to test
64
65 """
66 if ( os.path.isdir(filename)
67 and os.path.exists(filename+'/table.info')
68 and os.path.exists(filename+'/table.dat') ):
69 f=open(filename+'/table.info')
70 l=f.readline()
71 f.close()
72 if ( l.find('Measurement Set') != -1 ):
73 return True
74 else:
75 return False
76 else:
77 return False
78
79def normalise_edge_param(edge):
80 """\
81 Convert a given edge value to a one-dimensional array that can be
82 given to baseline-fitting/subtraction functions.
83 The length of the output value will be an even because values for
84 the both sides of spectra are to be contained for each IF. When
85 the length is 2, the values will be applied to all IFs. If the length
86 is larger than 2, it will be 2*ifnos().
87 Accepted format of edge include:
88 * an integer - will be used for both sides of spectra of all IFs.
89 e.g. 10 is converted to [10,10]
90 * an empty list/tuple [] - converted to [0, 0] and used for all IFs.
91 * a list/tuple containing an integer - same as the above case.
92 e.g. [10] is converted to [10,10]
93 * a list/tuple containing two integers - will be used for all IFs.
94 e.g. [5,10] is output as it is. no need to convert.
95 * a list/tuple of lists/tuples containing TWO integers -
96 each element of edge will be used for each IF.
97 e.g. [[5,10],[15,20]] - [5,10] for IF[0] and [15,20] for IF[1].
98
99 If an element contains the same integer values, the input 'edge'
100 parameter can be given in a simpler shape in the following cases:
101 ** when len(edge)!=2
102 any elements containing the same values can be replaced
103 to single integers.
104 e.g. [[15,15]] can be simplified to [15] (or [15,15] or 15 also).
105 e.g. [[1,1],[2,2],[3,3]] can be simplified to [1,2,3].
106 ** when len(edge)=2
107 care is needed for this case: ONLY ONE of the
108 elements can be a single integer,
109 e.g. [[5,5],[10,10]] can be simplified to [5,[10,10]]
110 or [[5,5],10], but can NOT be simplified to [5,10].
111 when [5,10] given, it is interpreted as
112 [[5,10],[5,10],[5,10],...] instead, as shown before.
113 """
114 from asap import _is_sequence_or_number as _is_valid
115 if isinstance(edge, list) or isinstance(edge, tuple):
116 for edgepar in edge:
117 if not _is_valid(edgepar, int):
118 raise ValueError, "Each element of the 'edge' tuple has \
119 to be a pair of integers or an integer."
120 if isinstance(edgepar, list) or isinstance(edgepar, tuple):
121 if len(edgepar) != 2:
122 raise ValueError, "Each element of the 'edge' tuple has \
123 to be a pair of integers or an integer."
124 else:
125 if not _is_valid(edge, int):
126 raise ValueError, "Parameter 'edge' has to be an integer or a \
127 pair of integers specified as a tuple. \
128 Nested tuples are allowed \
129 to make individual selection for different IFs."
130
131
132 if isinstance(edge, int):
133 edge = [ edge, edge ] # e.g. 3 => [3,3]
134 elif isinstance(edge, list) or isinstance(edge, tuple):
135 if len(edge) == 0:
136 edge = [0, 0] # e.g. [] => [0,0]
137 elif len(edge) == 1:
138 if isinstance(edge[0], int):
139 edge = [ edge[0], edge[0] ] # e.g. [1] => [1,1]
140
141 commonedge = True
142 if len(edge) > 2: commonedge = False
143 else:
144 for edgepar in edge:
145 if isinstance(edgepar, list) or isinstance(edgepar, tuple):
146 commonedge = False
147 break
148
149 if commonedge:
150 if len(edge) > 1:
151 norm_edge = edge
152 else:
153 norm_edge = edge + edge
154 else:
155 norm_edge = []
156 for edgepar in edge:
157 if isinstance(edgepar, int):
158 norm_edge += [edgepar, edgepar]
159 else:
160 norm_edge += edgepar
161
162 return norm_edge
163
164def raise_fitting_failure_exception(e):
165 msg = "The fit failed, possibly because it didn't converge."
166 if rcParams["verbose"]:
167 asaplog.push(str(e))
168 asaplog.push(str(msg))
169 else:
170 raise RuntimeError(str(e)+'\n'+msg)
171
172def pack_progress_params(showprogress, minnrow):
173 return str(showprogress).lower() + ',' + str(minnrow)
174
175class scantable(Scantable):
176 """\
177 The ASAP container for scans (single-dish data).
178 """
179
180 @asaplog_post_dec
181 def __init__(self, filename, average=None, unit=None, parallactify=None,
182 **args):
183 """\
184 Create a scantable from a saved one or make a reference
185
186 Parameters:
187
188 filename: the name of an asap table on disk
189 or
190 the name of a rpfits/sdfits/ms file
191 (integrations within scans are auto averaged
192 and the whole file is read) or
193 [advanced] a reference to an existing scantable
194
195 average: average all integrations withinb a scan on read.
196 The default (True) is taken from .asaprc.
197
198 unit: brightness unit; must be consistent with K or Jy.
199 Over-rides the default selected by the filler
200 (input rpfits/sdfits/ms) or replaces the value
201 in existing scantables
202
203 antenna: for MeasurementSet input data only:
204 Antenna selection. integer (id) or string
205 (name or id).
206
207 parallactify: Indicate that the data had been parallactified.
208 Default (false) is taken from rc file.
209
210 """
211 if average is None:
212 average = rcParams['scantable.autoaverage']
213 parallactify = parallactify or rcParams['scantable.parallactify']
214 varlist = vars()
215 from asap._asap import stmath
216 self._math = stmath( rcParams['insitu'] )
217 if isinstance(filename, Scantable):
218 Scantable.__init__(self, filename)
219 else:
220 if isinstance(filename, str):
221 filename = os.path.expandvars(filename)
222 filename = os.path.expanduser(filename)
223 if not os.path.exists(filename):
224 s = "File '%s' not found." % (filename)
225 raise IOError(s)
226 if is_scantable(filename):
227 ondisk = rcParams['scantable.storage'] == 'disk'
228 Scantable.__init__(self, filename, ondisk)
229 if unit is not None:
230 self.set_fluxunit(unit)
231 if average:
232 self._assign( self.average_time( scanav=True ) )
233 # do not reset to the default freqframe
234 #self.set_freqframe(rcParams['scantable.freqframe'])
235 elif is_ms(filename):
236 # Measurement Set
237 opts={'ms': {}}
238 mskeys=['getpt','antenna']
239 for key in mskeys:
240 if key in args.keys():
241 opts['ms'][key] = args[key]
242 self._fill([filename], unit, average, opts)
243 elif os.path.isfile(filename):
244 self._fill([filename], unit, average)
245 # only apply to new data not "copy constructor"
246 self.parallactify(parallactify)
247 else:
248 msg = "The given file '%s'is not a valid " \
249 "asap table." % (filename)
250 raise IOError(msg)
251 elif (isinstance(filename, list) or isinstance(filename, tuple)) \
252 and isinstance(filename[-1], str):
253 self._fill(filename, unit, average)
254 self.parallactify(parallactify)
255 self._add_history("scantable", varlist)
256
257 @asaplog_post_dec
258 def save(self, name=None, format=None, overwrite=False):
259 """\
260 Store the scantable on disk. This can be an asap (aips++) Table,
261 SDFITS or MS2 format.
262
263 Parameters:
264
265 name: the name of the outputfile. For format 'ASCII'
266 this is the root file name (data in 'name'.txt
267 and header in 'name'_header.txt)
268
269 format: an optional file format. Default is ASAP.
270 Allowed are:
271
272 * 'ASAP' (save as ASAP [aips++] Table),
273 * 'SDFITS' (save as SDFITS file)
274 * 'ASCII' (saves as ascii text file)
275 * 'MS2' (saves as an casacore MeasurementSet V2)
276 * 'FITS' (save as image FITS - not readable by
277 class)
278 * 'CLASS' (save as FITS readable by CLASS)
279
280 overwrite: If the file should be overwritten if it exists.
281 The default False is to return with warning
282 without writing the output. USE WITH CARE.
283
284 Example::
285
286 scan.save('myscan.asap')
287 scan.save('myscan.sdfits', 'SDFITS')
288
289 """
290 from os import path
291 format = format or rcParams['scantable.save']
292 suffix = '.'+format.lower()
293 if name is None or name == "":
294 name = 'scantable'+suffix
295 msg = "No filename given. Using default name %s..." % name
296 asaplog.push(msg)
297 name = path.expandvars(name)
298 if path.isfile(name) or path.isdir(name):
299 if not overwrite:
300 msg = "File %s exists." % name
301 raise IOError(msg)
302 format2 = format.upper()
303 if format2 == 'ASAP':
304 self._save(name)
305 elif format2 == 'MS2':
306 msopt = {'ms': {'overwrite': overwrite } }
307 from asap._asap import mswriter
308 writer = mswriter( self )
309 writer.write( name, msopt )
310 else:
311 from asap._asap import stwriter as stw
312 writer = stw(format2)
313 writer.write(self, name)
314 return
315
316 def copy(self):
317 """Return a copy of this scantable.
318
319 *Note*:
320
321 This makes a full (deep) copy. scan2 = scan1 makes a reference.
322
323 Example::
324
325 copiedscan = scan.copy()
326
327 """
328 sd = scantable(Scantable._copy(self))
329 return sd
330
331 def drop_scan(self, scanid=None):
332 """\
333 Return a new scantable where the specified scan number(s) has(have)
334 been dropped.
335
336 Parameters:
337
338 scanid: a (list of) scan number(s)
339
340 """
341 from asap import _is_sequence_or_number as _is_valid
342 from asap import _to_list
343 from asap import unique
344 if not _is_valid(scanid):
345 raise RuntimeError( 'Please specify a scanno to drop from the'
346 ' scantable' )
347 scanid = _to_list(scanid)
348 allscans = unique([ self.getscan(i) for i in range(self.nrow())])
349 for sid in scanid: allscans.remove(sid)
350 if len(allscans) == 0:
351 raise ValueError("Can't remove all scans")
352 sel = selector(scans=allscans)
353 return self._select_copy(sel)
354
355 def _select_copy(self, selection):
356 orig = self.get_selection()
357 self.set_selection(orig+selection)
358 cp = self.copy()
359 self.set_selection(orig)
360 return cp
361
362 def get_scan(self, scanid=None):
363 """\
364 Return a specific scan (by scanno) or collection of scans (by
365 source name) in a new scantable.
366
367 *Note*:
368
369 See scantable.drop_scan() for the inverse operation.
370
371 Parameters:
372
373 scanid: a (list of) scanno or a source name, unix-style
374 patterns are accepted for source name matching, e.g.
375 '*_R' gets all 'ref scans
376
377 Example::
378
379 # get all scans containing the source '323p459'
380 newscan = scan.get_scan('323p459')
381 # get all 'off' scans
382 refscans = scan.get_scan('*_R')
383 # get a susbset of scans by scanno (as listed in scan.summary())
384 newscan = scan.get_scan([0, 2, 7, 10])
385
386 """
387 if scanid is None:
388 raise RuntimeError( 'Please specify a scan no or name to '
389 'retrieve from the scantable' )
390 try:
391 bsel = self.get_selection()
392 sel = selector()
393 if type(scanid) is str:
394 sel.set_name(scanid)
395 return self._select_copy(sel)
396 elif type(scanid) is int:
397 sel.set_scans([scanid])
398 return self._select_copy(sel)
399 elif type(scanid) is list:
400 sel.set_scans(scanid)
401 return self._select_copy(sel)
402 else:
403 msg = "Illegal scanid type, use 'int' or 'list' if ints."
404 raise TypeError(msg)
405 except RuntimeError:
406 raise
407
408 def __str__(self):
409 tempFile = tempfile.NamedTemporaryFile()
410 Scantable._summary(self, tempFile.name)
411 tempFile.seek(0)
412 asaplog.clear()
413 return tempFile.file.read()
414
415 @asaplog_post_dec
416 def summary(self, filename=None):
417 """\
418 Print a summary of the contents of this scantable.
419
420 Parameters:
421
422 filename: the name of a file to write the putput to
423 Default - no file output
424
425 """
426 if filename is not None:
427 if filename is "":
428 filename = 'scantable_summary.txt'
429 from os.path import expandvars, isdir
430 filename = expandvars(filename)
431 if isdir(filename):
432 msg = "Illegal file name '%s'." % (filename)
433 raise IOError(msg)
434 else:
435 filename = ""
436 Scantable._summary(self, filename)
437
438 def get_spectrum(self, rowno):
439 """Return the spectrum for the current row in the scantable as a list.
440
441 Parameters:
442
443 rowno: the row number to retrieve the spectrum from
444
445 """
446 return self._getspectrum(rowno)
447
448 def get_mask(self, rowno):
449 """Return the mask for the current row in the scantable as a list.
450
451 Parameters:
452
453 rowno: the row number to retrieve the mask from
454
455 """
456 return self._getmask(rowno)
457
458 def set_spectrum(self, spec, rowno):
459 """Set the spectrum for the current row in the scantable.
460
461 Parameters:
462
463 spec: the new spectrum
464
465 rowno: the row number to set the spectrum for
466
467 """
468 assert(len(spec) == self.nchan(self.getif(rowno)))
469 return self._setspectrum(spec, rowno)
470
471 def get_coordinate(self, rowno):
472 """Return the (spectral) coordinate for a a given 'rowno'.
473
474 *Note*:
475
476 * This coordinate is only valid until a scantable method modifies
477 the frequency axis.
478 * This coordinate does contain the original frequency set-up
479 NOT the new frame. The conversions however are done using the user
480 specified frame (e.g. LSRK/TOPO). To get the 'real' coordinate,
481 use scantable.freq_align first. Without it there is no closure,
482 i.e.::
483
484 c = myscan.get_coordinate(0)
485 c.to_frequency(c.get_reference_pixel()) != c.get_reference_value()
486
487 Parameters:
488
489 rowno: the row number for the spectral coordinate
490
491 """
492 return coordinate(Scantable.get_coordinate(self, rowno))
493
494 def get_selection(self):
495 """\
496 Get the selection object currently set on this scantable.
497
498 Example::
499
500 sel = scan.get_selection()
501 sel.set_ifs(0) # select IF 0
502 scan.set_selection(sel) # apply modified selection
503
504 """
505 return selector(self._getselection())
506
507 def set_selection(self, selection=None, **kw):
508 """\
509 Select a subset of the data. All following operations on this scantable
510 are only applied to thi selection.
511
512 Parameters:
513
514 selection: a selector object (default unset the selection), or
515 any combination of 'pols', 'ifs', 'beams', 'scans',
516 'cycles', 'name', 'query'
517
518 Examples::
519
520 sel = selector() # create a selection object
521 self.set_scans([0, 3]) # select SCANNO 0 and 3
522 scan.set_selection(sel) # set the selection
523 scan.summary() # will only print summary of scanno 0 an 3
524 scan.set_selection() # unset the selection
525 # or the equivalent
526 scan.set_selection(scans=[0,3])
527 scan.summary() # will only print summary of scanno 0 an 3
528 scan.set_selection() # unset the selection
529
530 """
531 if selection is None:
532 # reset
533 if len(kw) == 0:
534 selection = selector()
535 else:
536 # try keywords
537 for k in kw:
538 if k not in selector.fields:
539 raise KeyError("Invalid selection key '%s', "
540 "valid keys are %s" % (k,
541 selector.fields))
542 selection = selector(**kw)
543 self._setselection(selection)
544
545 def get_row(self, row=0, insitu=None):
546 """\
547 Select a row in the scantable.
548 Return a scantable with single row.
549
550 Parameters:
551
552 row: row no of integration, default is 0.
553 insitu: if False a new scantable is returned. Otherwise, the
554 scaling is done in-situ. The default is taken from .asaprc
555 (False)
556
557 """
558 if insitu is None:
559 insitu = rcParams['insitu']
560 if not insitu:
561 workscan = self.copy()
562 else:
563 workscan = self
564 # Select a row
565 sel = selector()
566 sel.set_rows([row])
567 workscan.set_selection(sel)
568 if not workscan.nrow() == 1:
569 msg = "Could not identify single row. %d rows selected." \
570 % (workscan.nrow())
571 raise RuntimeError(msg)
572 if insitu:
573 self._assign(workscan)
574 else:
575 return workscan
576
577 @asaplog_post_dec
578 def stats(self, stat='stddev', mask=None, form='3.3f', row=None):
579 """\
580 Determine the specified statistic of the current beam/if/pol
581 Takes a 'mask' as an optional parameter to specify which
582 channels should be excluded.
583
584 Parameters:
585
586 stat: 'min', 'max', 'min_abc', 'max_abc', 'sumsq', 'sum',
587 'mean', 'var', 'stddev', 'avdev', 'rms', 'median'
588
589 mask: an optional mask specifying where the statistic
590 should be determined.
591
592 form: format string to print statistic values
593
594 row: row number of spectrum to process.
595 (default is None: for all rows)
596
597 Example:
598 scan.set_unit('channel')
599 msk = scan.create_mask([100, 200], [500, 600])
600 scan.stats(stat='mean', mask=m)
601
602 """
603 mask = mask or []
604 if not self._check_ifs():
605 raise ValueError("Cannot apply mask as the IFs have different "
606 "number of channels. Please use setselection() "
607 "to select individual IFs")
608 rtnabc = False
609 if stat.lower().endswith('_abc'): rtnabc = True
610 getchan = False
611 if stat.lower().startswith('min') or stat.lower().startswith('max'):
612 chan = self._math._minmaxchan(self, mask, stat)
613 getchan = True
614 statvals = []
615 if not rtnabc:
616 if row == None:
617 statvals = self._math._stats(self, mask, stat)
618 else:
619 statvals = self._math._statsrow(self, mask, stat, int(row))
620
621 #def cb(i):
622 # return statvals[i]
623
624 #return self._row_callback(cb, stat)
625
626 label=stat
627 #callback=cb
628 out = ""
629 #outvec = []
630 sep = '-'*50
631
632 if row == None:
633 rows = xrange(self.nrow())
634 elif isinstance(row, int):
635 rows = [ row ]
636
637 for i in rows:
638 refstr = ''
639 statunit= ''
640 if getchan:
641 qx, qy = self.chan2data(rowno=i, chan=chan[i])
642 if rtnabc:
643 statvals.append(qx['value'])
644 refstr = ('(value: %'+form) % (qy['value'])+' ['+qy['unit']+'])'
645 statunit= '['+qx['unit']+']'
646 else:
647 refstr = ('(@ %'+form) % (qx['value'])+' ['+qx['unit']+'])'
648
649 tm = self._gettime(i)
650 src = self._getsourcename(i)
651 out += 'Scan[%d] (%s) ' % (self.getscan(i), src)
652 out += 'Time[%s]:\n' % (tm)
653 if self.nbeam(-1) > 1: out += ' Beam[%d] ' % (self.getbeam(i))
654 if self.nif(-1) > 1: out += ' IF[%d] ' % (self.getif(i))
655 if self.npol(-1) > 1: out += ' Pol[%d] ' % (self.getpol(i))
656 #outvec.append(callback(i))
657 if len(rows) > 1:
658 # out += ('= %'+form) % (outvec[i]) +' '+refstr+'\n'
659 out += ('= %'+form) % (statvals[i]) +' '+refstr+'\n'
660 else:
661 # out += ('= %'+form) % (outvec[0]) +' '+refstr+'\n'
662 out += ('= %'+form) % (statvals[0]) +' '+refstr+'\n'
663 out += sep+"\n"
664
665 import os
666 if os.environ.has_key( 'USER' ):
667 usr = os.environ['USER']
668 else:
669 import commands
670 usr = commands.getoutput( 'whoami' )
671 tmpfile = '/tmp/tmp_'+usr+'_casapy_asap_scantable_stats'
672 f = open(tmpfile,'w')
673 print >> f, sep
674 print >> f, ' %s %s' % (label, statunit)
675 print >> f, sep
676 print >> f, out
677 f.close()
678 f = open(tmpfile,'r')
679 x = f.readlines()
680 f.close()
681 asaplog.push(''.join(x), False)
682
683 return statvals
684
685 def chan2data(self, rowno=0, chan=0):
686 """\
687 Returns channel/frequency/velocity and spectral value
688 at an arbitrary row and channel in the scantable.
689
690 Parameters:
691
692 rowno: a row number in the scantable. Default is the
693 first row, i.e. rowno=0
694
695 chan: a channel in the scantable. Default is the first
696 channel, i.e. pos=0
697
698 """
699 if isinstance(rowno, int) and isinstance(chan, int):
700 qx = {'unit': self.get_unit(),
701 'value': self._getabcissa(rowno)[chan]}
702 qy = {'unit': self.get_fluxunit(),
703 'value': self._getspectrum(rowno)[chan]}
704 return qx, qy
705
706 def stddev(self, mask=None):
707 """\
708 Determine the standard deviation of the current beam/if/pol
709 Takes a 'mask' as an optional parameter to specify which
710 channels should be excluded.
711
712 Parameters:
713
714 mask: an optional mask specifying where the standard
715 deviation should be determined.
716
717 Example::
718
719 scan.set_unit('channel')
720 msk = scan.create_mask([100, 200], [500, 600])
721 scan.stddev(mask=m)
722
723 """
724 return self.stats(stat='stddev', mask=mask);
725
726
727 def get_column_names(self):
728 """\
729 Return a list of column names, which can be used for selection.
730 """
731 return list(Scantable.get_column_names(self))
732
733 def get_tsys(self, row=-1):
734 """\
735 Return the System temperatures.
736
737 Parameters:
738
739 row: the rowno to get the information for. (default all rows)
740
741 Returns:
742
743 a list of Tsys values for the current selection
744
745 """
746 if row > -1:
747 return self._get_column(self._gettsys, row)
748 return self._row_callback(self._gettsys, "Tsys")
749
750 def get_tsysspectrum(self, row=-1):
751 """\
752 Return the channel dependent system temperatures.
753
754 Parameters:
755
756 row: the rowno to get the information for. (default all rows)
757
758 Returns:
759
760 a list of Tsys values for the current selection
761
762 """
763 return self._get_column( self._gettsysspectrum, row )
764
765 def get_weather(self, row=-1):
766 """\
767 Return the weather informations.
768
769 Parameters:
770
771 row: the rowno to get the information for. (default all rows)
772
773 Returns:
774
775 a dict or list of of dicts of values for the current selection
776
777 """
778
779 values = self._get_column(self._get_weather, row)
780 if row > -1:
781 return {'temperature': values[0],
782 'pressure': values[1], 'humidity' : values[2],
783 'windspeed' : values[3], 'windaz' : values[4]
784 }
785 else:
786 out = []
787 for r in values:
788
789 out.append({'temperature': r[0],
790 'pressure': r[1], 'humidity' : r[2],
791 'windspeed' : r[3], 'windaz' : r[4]
792 })
793 return out
794
795 def _row_callback(self, callback, label):
796 out = ""
797 outvec = []
798 sep = '-'*50
799 for i in range(self.nrow()):
800 tm = self._gettime(i)
801 src = self._getsourcename(i)
802 out += 'Scan[%d] (%s) ' % (self.getscan(i), src)
803 out += 'Time[%s]:\n' % (tm)
804 if self.nbeam(-1) > 1:
805 out += ' Beam[%d] ' % (self.getbeam(i))
806 if self.nif(-1) > 1: out += ' IF[%d] ' % (self.getif(i))
807 if self.npol(-1) > 1: out += ' Pol[%d] ' % (self.getpol(i))
808 outvec.append(callback(i))
809 out += '= %3.3f\n' % (outvec[i])
810 out += sep+'\n'
811
812 asaplog.push(sep)
813 asaplog.push(" %s" % (label))
814 asaplog.push(sep)
815 asaplog.push(out)
816 asaplog.post()
817 return outvec
818
819 def _get_column(self, callback, row=-1, *args):
820 """
821 """
822 if row == -1:
823 return [callback(i, *args) for i in range(self.nrow())]
824 else:
825 if 0 <= row < self.nrow():
826 return callback(row, *args)
827
828
829 def get_time(self, row=-1, asdatetime=False, prec=-1):
830 """\
831 Get a list of time stamps for the observations.
832 Return a datetime object or a string (default) for each
833 integration time stamp in the scantable.
834
835 Parameters:
836
837 row: row no of integration. Default -1 return all rows
838
839 asdatetime: return values as datetime objects rather than strings
840
841 prec: number of digits shown. Default -1 to automatic
842 calculation.
843 Note this number is equals to the digits of MVTime,
844 i.e., 0<prec<3: dates with hh:: only,
845 <5: with hh:mm:, <7 or 0: with hh:mm:ss,
846 and 6> : with hh:mm:ss.tt... (prec-6 t's added)
847
848 """
849 from datetime import datetime
850 if prec < 0:
851 # automagically set necessary precision +1
852 prec = 7 - \
853 numpy.floor(numpy.log10(numpy.min(self.get_inttime(row))))
854 prec = max(6, int(prec))
855 else:
856 prec = max(0, prec)
857 if asdatetime:
858 #precision can be 1 millisecond at max
859 prec = min(12, prec)
860
861 times = self._get_column(self._gettime, row, prec)
862 if not asdatetime:
863 return times
864 format = "%Y/%m/%d/%H:%M:%S.%f"
865 if prec < 7:
866 nsub = 1 + (((6-prec)/2) % 3)
867 substr = [".%f","%S","%M"]
868 for i in range(nsub):
869 format = format.replace(substr[i],"")
870 if isinstance(times, list):
871 return [datetime.strptime(i, format) for i in times]
872 else:
873 return datetime.strptime(times, format)
874
875
876 def get_inttime(self, row=-1):
877 """\
878 Get a list of integration times for the observations.
879 Return a time in seconds for each integration in the scantable.
880
881 Parameters:
882
883 row: row no of integration. Default -1 return all rows.
884
885 """
886 return self._get_column(self._getinttime, row)
887
888
889 def get_sourcename(self, row=-1):
890 """\
891 Get a list source names for the observations.
892 Return a string for each integration in the scantable.
893 Parameters:
894
895 row: row no of integration. Default -1 return all rows.
896
897 """
898 return self._get_column(self._getsourcename, row)
899
900 def get_elevation(self, row=-1):
901 """\
902 Get a list of elevations for the observations.
903 Return a float for each integration in the scantable.
904
905 Parameters:
906
907 row: row no of integration. Default -1 return all rows.
908
909 """
910 return self._get_column(self._getelevation, row)
911
912 def get_azimuth(self, row=-1):
913 """\
914 Get a list of azimuths for the observations.
915 Return a float for each integration in the scantable.
916
917 Parameters:
918 row: row no of integration. Default -1 return all rows.
919
920 """
921 return self._get_column(self._getazimuth, row)
922
923 def get_parangle(self, row=-1):
924 """\
925 Get a list of parallactic angles for the observations.
926 Return a float for each integration in the scantable.
927
928 Parameters:
929
930 row: row no of integration. Default -1 return all rows.
931
932 """
933 return self._get_column(self._getparangle, row)
934
935 def get_direction(self, row=-1):
936 """
937 Get a list of Positions on the sky (direction) for the observations.
938 Return a string for each integration in the scantable.
939
940 Parameters:
941
942 row: row no of integration. Default -1 return all rows
943
944 """
945 return self._get_column(self._getdirection, row)
946
947 def get_directionval(self, row=-1):
948 """\
949 Get a list of Positions on the sky (direction) for the observations.
950 Return a float for each integration in the scantable.
951
952 Parameters:
953
954 row: row no of integration. Default -1 return all rows
955
956 """
957 return self._get_column(self._getdirectionvec, row)
958
959 @asaplog_post_dec
960 def set_unit(self, unit='channel'):
961 """\
962 Set the unit for all following operations on this scantable
963
964 Parameters:
965
966 unit: optional unit, default is 'channel'. Use one of '*Hz',
967 'km/s', 'channel' or equivalent ''
968
969 """
970 varlist = vars()
971 if unit in ['', 'pixel', 'channel']:
972 unit = ''
973 inf = list(self._getcoordinfo())
974 inf[0] = unit
975 self._setcoordinfo(inf)
976 self._add_history("set_unit", varlist)
977
978 @asaplog_post_dec
979 def set_instrument(self, instr):
980 """\
981 Set the instrument for subsequent processing.
982
983 Parameters:
984
985 instr: Select from 'ATPKSMB', 'ATPKSHOH', 'ATMOPRA',
986 'DSS-43' (Tid), 'CEDUNA', and 'HOBART'
987
988 """
989 self._setInstrument(instr)
990 self._add_history("set_instument", vars())
991
992 @asaplog_post_dec
993 def set_feedtype(self, feedtype):
994 """\
995 Overwrite the feed type, which might not be set correctly.
996
997 Parameters:
998
999 feedtype: 'linear' or 'circular'
1000
1001 """
1002 self._setfeedtype(feedtype)
1003 self._add_history("set_feedtype", vars())
1004
1005 @asaplog_post_dec
1006 def set_doppler(self, doppler='RADIO'):
1007 """\
1008 Set the doppler for all following operations on this scantable.
1009
1010 Parameters:
1011
1012 doppler: One of 'RADIO', 'OPTICAL', 'Z', 'BETA', 'GAMMA'
1013
1014 """
1015 varlist = vars()
1016 inf = list(self._getcoordinfo())
1017 inf[2] = doppler
1018 self._setcoordinfo(inf)
1019 self._add_history("set_doppler", vars())
1020
1021 @asaplog_post_dec
1022 def set_freqframe(self, frame=None):
1023 """\
1024 Set the frame type of the Spectral Axis.
1025
1026 Parameters:
1027
1028 frame: an optional frame type, default 'LSRK'. Valid frames are:
1029 'TOPO', 'LSRD', 'LSRK', 'BARY',
1030 'GEO', 'GALACTO', 'LGROUP', 'CMB'
1031
1032 Example::
1033
1034 scan.set_freqframe('BARY')
1035
1036 """
1037 frame = frame or rcParams['scantable.freqframe']
1038 varlist = vars()
1039 # "REST" is not implemented in casacore
1040 #valid = ['REST', 'TOPO', 'LSRD', 'LSRK', 'BARY', \
1041 # 'GEO', 'GALACTO', 'LGROUP', 'CMB']
1042 valid = ['TOPO', 'LSRD', 'LSRK', 'BARY', \
1043 'GEO', 'GALACTO', 'LGROUP', 'CMB']
1044
1045 if frame in valid:
1046 inf = list(self._getcoordinfo())
1047 inf[1] = frame
1048 self._setcoordinfo(inf)
1049 self._add_history("set_freqframe", varlist)
1050 else:
1051 msg = "Please specify a valid freq type. Valid types are:\n", valid
1052 raise TypeError(msg)
1053
1054 @asaplog_post_dec
1055 def set_dirframe(self, frame=""):
1056 """\
1057 Set the frame type of the Direction on the sky.
1058
1059 Parameters:
1060
1061 frame: an optional frame type, default ''. Valid frames are:
1062 'J2000', 'B1950', 'GALACTIC'
1063
1064 Example:
1065
1066 scan.set_dirframe('GALACTIC')
1067
1068 """
1069 varlist = vars()
1070 Scantable.set_dirframe(self, frame)
1071 self._add_history("set_dirframe", varlist)
1072
1073 def get_unit(self):
1074 """\
1075 Get the default unit set in this scantable
1076
1077 Returns:
1078
1079 A unit string
1080
1081 """
1082 inf = self._getcoordinfo()
1083 unit = inf[0]
1084 if unit == '': unit = 'channel'
1085 return unit
1086
1087 @asaplog_post_dec
1088 def get_abcissa(self, rowno=0):
1089 """\
1090 Get the abcissa in the current coordinate setup for the currently
1091 selected Beam/IF/Pol
1092
1093 Parameters:
1094
1095 rowno: an optional row number in the scantable. Default is the
1096 first row, i.e. rowno=0
1097
1098 Returns:
1099
1100 The abcissa values and the format string (as a dictionary)
1101
1102 """
1103 abc = self._getabcissa(rowno)
1104 lbl = self._getabcissalabel(rowno)
1105 return abc, lbl
1106
1107 @asaplog_post_dec
1108 def flag(self, mask=None, unflag=False, row=-1):
1109 """\
1110 Flag the selected data using an optional channel mask.
1111
1112 Parameters:
1113
1114 mask: an optional channel mask, created with create_mask. Default
1115 (no mask) is all channels.
1116
1117 unflag: if True, unflag the data
1118
1119 row: an optional row number in the scantable.
1120 Default -1 flags all rows
1121
1122 """
1123 varlist = vars()
1124 mask = mask or []
1125 self._flag(row, mask, unflag)
1126 self._add_history("flag", varlist)
1127
1128 @asaplog_post_dec
1129 def flag_row(self, rows=None, unflag=False):
1130 """\
1131 Flag the selected data in row-based manner.
1132
1133 Parameters:
1134
1135 rows: list of row numbers to be flagged. Default is no row
1136 (must be explicitly specified to execute row-based
1137 flagging).
1138
1139 unflag: if True, unflag the data.
1140
1141 """
1142 varlist = vars()
1143 if rows is None:
1144 rows = []
1145 self._flag_row(rows, unflag)
1146 self._add_history("flag_row", varlist)
1147
1148 @asaplog_post_dec
1149 def clip(self, uthres=None, dthres=None, clipoutside=True, unflag=False):
1150 """\
1151 Flag the selected data outside a specified range (in channel-base)
1152
1153 Parameters:
1154
1155 uthres: upper threshold.
1156
1157 dthres: lower threshold
1158
1159 clipoutside: True for flagging data outside the range
1160 [dthres:uthres].
1161 False for flagging data inside the range.
1162
1163 unflag: if True, unflag the data.
1164
1165 """
1166 varlist = vars()
1167 self._clip(uthres, dthres, clipoutside, unflag)
1168 self._add_history("clip", varlist)
1169
1170 @asaplog_post_dec
1171 def lag_flag(self, start, end, unit="MHz", insitu=None):
1172 """\
1173 Flag the data in 'lag' space by providing a frequency to remove.
1174 Flagged data in the scantable get interpolated over the region.
1175 No taper is applied.
1176
1177 Parameters:
1178
1179 start: the start frequency (really a period within the
1180 bandwidth) or period to remove
1181
1182 end: the end frequency or period to remove
1183
1184 unit: the frequency unit (default 'MHz') or '' for
1185 explicit lag channels
1186
1187 *Notes*:
1188
1189 It is recommended to flag edges of the band or strong
1190 signals beforehand.
1191
1192 """
1193 if insitu is None: insitu = rcParams['insitu']
1194 self._math._setinsitu(insitu)
1195 varlist = vars()
1196 base = { "GHz": 1000000000., "MHz": 1000000., "kHz": 1000., "Hz": 1.}
1197 if not (unit == "" or base.has_key(unit)):
1198 raise ValueError("%s is not a valid unit." % unit)
1199 if unit == "":
1200 s = scantable(self._math._lag_flag(self, start, end, "lags"))
1201 else:
1202 s = scantable(self._math._lag_flag(self, start*base[unit],
1203 end*base[unit], "frequency"))
1204 s._add_history("lag_flag", varlist)
1205 if insitu:
1206 self._assign(s)
1207 else:
1208 return s
1209
1210 @asaplog_post_dec
1211 def fft(self, rowno=None, mask=None, getrealimag=False):
1212 """\
1213 Apply FFT to the spectra.
1214 Flagged data in the scantable get interpolated over the region.
1215
1216 Parameters:
1217
1218 rowno: The row number(s) to be processed. int, list
1219 and tuple are accepted. By default (None), FFT
1220 is applied to the whole data.
1221
1222 mask: Auxiliary channel mask(s). Given as a boolean
1223 list, it is applied to all specified rows.
1224 A list of boolean lists can also be used to
1225 apply different masks. In the latter case, the
1226 length of 'mask' must be the same as that of
1227 'rowno'. The default is None.
1228
1229 getrealimag: If True, returns the real and imaginary part
1230 values of the complex results.
1231 If False (the default), returns the amplitude
1232 (absolute value) normalised with Ndata/2 and
1233 phase (argument, in unit of radian).
1234
1235 Returns:
1236
1237 A list of dictionaries containing the results for each spectrum.
1238 Each dictionary contains two values, the real and the imaginary
1239 parts when getrealimag = True, or the amplitude(absolute value)
1240 and the phase(argument) when getrealimag = False. The key for
1241 these values are 'real' and 'imag', or 'ampl' and 'phase',
1242 respectively.
1243 """
1244 if rowno is None:
1245 rowno = []
1246 if isinstance(rowno, int):
1247 rowno = [rowno]
1248 elif not (isinstance(rowno, list) or isinstance(rowno, tuple)):
1249 raise TypeError("The row number(s) must be int, list or tuple.")
1250 if len(rowno) == 0: rowno = [i for i in xrange(self.nrow())]
1251
1252 usecommonmask = True
1253
1254 if mask is None:
1255 mask = []
1256 if isinstance(mask, list) or isinstance(mask, tuple):
1257 if len(mask) == 0:
1258 mask = [[]]
1259 else:
1260 if isinstance(mask[0], bool):
1261 if len(mask) != self.nchan(self.getif(rowno[0])):
1262 raise ValueError("The spectra and the mask have "
1263 "different length.")
1264 mask = [mask]
1265 elif isinstance(mask[0], list) or isinstance(mask[0], tuple):
1266 usecommonmask = False
1267 if len(mask) != len(rowno):
1268 raise ValueError("When specifying masks for each "
1269 "spectrum, the numbers of them "
1270 "must be identical.")
1271 for i in xrange(mask):
1272 if len(mask[i]) != self.nchan(self.getif(rowno[i])):
1273 raise ValueError("The spectra and the mask have "
1274 "different length.")
1275 else:
1276 raise TypeError("The mask must be a boolean list or "
1277 "a list of boolean list.")
1278 else:
1279 raise TypeError("The mask must be a boolean list or a list of "
1280 "boolean list.")
1281
1282 res = []
1283
1284 imask = 0
1285 for whichrow in rowno:
1286 fspec = self._fft(whichrow, mask[imask], getrealimag)
1287 nspec = len(fspec)
1288
1289 i = 0
1290 v1 = []
1291 v2 = []
1292 reselem = {"real":[],"imag":[]} if getrealimag \
1293 else {"ampl":[],"phase":[]}
1294
1295 while (i < nspec):
1296 v1.append(fspec[i])
1297 v2.append(fspec[i+1])
1298 i += 2
1299
1300 if getrealimag:
1301 reselem["real"] += v1
1302 reselem["imag"] += v2
1303 else:
1304 reselem["ampl"] += v1
1305 reselem["phase"] += v2
1306
1307 res.append(reselem)
1308
1309 if not usecommonmask:
1310 imask += 1
1311
1312 return res
1313
1314 @asaplog_post_dec
1315 def create_mask(self, *args, **kwargs):
1316 """\
1317 Compute and return a mask based on [min, max] windows.
1318 The specified windows are to be INCLUDED, when the mask is
1319 applied.
1320
1321 Parameters:
1322
1323 [min, max], [min2, max2], ...
1324 Pairs of start/end points (inclusive)specifying the regions
1325 to be masked
1326
1327 invert: optional argument. If specified as True,
1328 return an inverted mask, i.e. the regions
1329 specified are EXCLUDED
1330
1331 row: create the mask using the specified row for
1332 unit conversions, default is row=0
1333 only necessary if frequency varies over rows.
1334
1335 Examples::
1336
1337 scan.set_unit('channel')
1338 # a)
1339 msk = scan.create_mask([400, 500], [800, 900])
1340 # masks everything outside 400 and 500
1341 # and 800 and 900 in the unit 'channel'
1342
1343 # b)
1344 msk = scan.create_mask([400, 500], [800, 900], invert=True)
1345 # masks the regions between 400 and 500
1346 # and 800 and 900 in the unit 'channel'
1347
1348 # c)
1349 #mask only channel 400
1350 msk = scan.create_mask([400])
1351
1352 """
1353 row = kwargs.get("row", 0)
1354 data = self._getabcissa(row)
1355 u = self._getcoordinfo()[0]
1356 if u == "":
1357 u = "channel"
1358 msg = "The current mask window unit is %s" % u
1359 i = self._check_ifs()
1360 if not i:
1361 msg += "\nThis mask is only valid for IF=%d" % (self.getif(i))
1362 asaplog.push(msg)
1363 n = len(data)
1364 msk = _n_bools(n, False)
1365 # test if args is a 'list' or a 'normal *args - UGLY!!!
1366
1367 ws = (isinstance(args[-1][-1], int)
1368 or isinstance(args[-1][-1], float)) and args or args[0]
1369 for window in ws:
1370 if len(window) == 1:
1371 window = [window[0], window[0]]
1372 if len(window) == 0 or len(window) > 2:
1373 raise ValueError("A window needs to be defined as "
1374 "[start(, end)]")
1375 if window[0] > window[1]:
1376 tmp = window[0]
1377 window[0] = window[1]
1378 window[1] = tmp
1379 for i in range(n):
1380 if data[i] >= window[0] and data[i] <= window[1]:
1381 msk[i] = True
1382 if kwargs.has_key('invert'):
1383 if kwargs.get('invert'):
1384 msk = mask_not(msk)
1385 return msk
1386
1387 def get_masklist(self, mask=None, row=0, silent=False):
1388 """\
1389 Compute and return a list of mask windows, [min, max].
1390
1391 Parameters:
1392
1393 mask: channel mask, created with create_mask.
1394
1395 row: calcutate the masklist using the specified row
1396 for unit conversions, default is row=0
1397 only necessary if frequency varies over rows.
1398
1399 Returns:
1400
1401 [min, max], [min2, max2], ...
1402 Pairs of start/end points (inclusive)specifying
1403 the masked regions
1404
1405 """
1406 if not (isinstance(mask,list) or isinstance(mask, tuple)):
1407 raise TypeError("The mask should be list or tuple.")
1408 if len(mask) <= 0:
1409 raise TypeError("The mask elements should be > 0")
1410 data = self._getabcissa(row)
1411 if len(data) != len(mask):
1412 msg = "Number of channels in scantable != number of mask elements"
1413 raise TypeError(msg)
1414 u = self._getcoordinfo()[0]
1415 if u == "":
1416 u = "channel"
1417 msg = "The current mask window unit is %s" % u
1418 i = self._check_ifs()
1419 if not i:
1420 msg += "\nThis mask is only valid for IF=%d" % (self.getif(i))
1421 if not silent:
1422 asaplog.push(msg)
1423 masklist = []
1424 ist, ien = None, None
1425 ist, ien=self.get_mask_indices(mask)
1426 if ist is not None and ien is not None:
1427 for i in xrange(len(ist)):
1428 range=[data[ist[i]],data[ien[i]]]
1429 range.sort()
1430 masklist.append([range[0],range[1]])
1431 return masklist
1432
1433 def get_mask_indices(self, mask=None):
1434 """\
1435 Compute and Return lists of mask start indices and mask end indices.
1436
1437 Parameters:
1438
1439 mask: channel mask, created with create_mask.
1440
1441 Returns:
1442
1443 List of mask start indices and that of mask end indices,
1444 i.e., [istart1,istart2,....], [iend1,iend2,....].
1445
1446 """
1447 if not (isinstance(mask,list) or isinstance(mask, tuple)):
1448 raise TypeError("The mask should be list or tuple.")
1449 if len(mask) <= 0:
1450 raise TypeError("The mask elements should be > 0")
1451 istart = []
1452 iend = []
1453 if mask[0]:
1454 istart.append(0)
1455 for i in range(len(mask)-1):
1456 if not mask[i] and mask[i+1]:
1457 istart.append(i+1)
1458 elif mask[i] and not mask[i+1]:
1459 iend.append(i)
1460 if mask[len(mask)-1]:
1461 iend.append(len(mask)-1)
1462 if len(istart) != len(iend):
1463 raise RuntimeError("Numbers of mask start != mask end.")
1464 for i in range(len(istart)):
1465 if istart[i] > iend[i]:
1466 raise RuntimeError("Mask start index > mask end index")
1467 break
1468 return istart,iend
1469
1470 @asaplog_post_dec
1471 def parse_maskexpr(self, maskstring):
1472 """
1473 Parse CASA type mask selection syntax (IF dependent).
1474
1475 Parameters:
1476 maskstring : A string mask selection expression.
1477 A comma separated selections mean different IF -
1478 channel combinations. IFs and channel selections
1479 are partitioned by a colon, ':'.
1480 examples:
1481 '' = all IFs (all channels)
1482 '<2,4~6,9' = IFs 0,1,4,5,6,9 (all channels)
1483 '3:3~45;60' = channels 3 to 45 and 60 in IF 3
1484 '0~1:2~6,8' = channels 2 to 6 in IFs 0,1, and
1485 all channels in IF8
1486 Returns:
1487 A dictionary of selected (valid) IF and masklist pairs,
1488 e.g. {'0': [[50,250],[350,462]], '2': [[100,400],[550,974]]}
1489 """
1490 if not isinstance(maskstring,str):
1491 asaplog.post()
1492 asaplog.push("Mask expression should be a string.")
1493 asaplog.post("ERROR")
1494
1495 valid_ifs = self.getifnos()
1496 frequnit = self.get_unit()
1497 seldict = {}
1498 if maskstring == "":
1499 maskstring = str(valid_ifs)[1:-1]
1500 ## split each selection "IF range[:CHAN range]"
1501 sellist = maskstring.split(',')
1502 for currselstr in sellist:
1503 selset = currselstr.split(':')
1504 # spw and mask string (may include ~, < or >)
1505 spwmasklist = self._parse_selection(selset[0], typestr='integer',
1506 minval=min(valid_ifs),
1507 maxval=max(valid_ifs))
1508 for spwlist in spwmasklist:
1509 selspws = []
1510 for ispw in range(spwlist[0],spwlist[1]+1):
1511 # Put into the list only if ispw exists
1512 if valid_ifs.count(ispw):
1513 selspws.append(ispw)
1514 del spwmasklist, spwlist
1515
1516 # parse frequency mask list
1517 if len(selset) > 1:
1518 freqmasklist = self._parse_selection(selset[1], typestr='float',
1519 offset=0.)
1520 else:
1521 # want to select the whole spectrum
1522 freqmasklist = [None]
1523
1524 ## define a dictionary of spw - masklist combination
1525 for ispw in selspws:
1526 #print "working on", ispw
1527 spwstr = str(ispw)
1528 if len(selspws) == 0:
1529 # empty spw
1530 continue
1531 else:
1532 ## want to get min and max of the spw and
1533 ## offset to set for '<' and '>'
1534 if frequnit == 'channel':
1535 minfreq = 0
1536 maxfreq = self.nchan(ifno=ispw)
1537 offset = 0.5
1538 else:
1539 ## This is ugly part. need improvement
1540 for ifrow in xrange(self.nrow()):
1541 if self.getif(ifrow) == ispw:
1542 #print "IF",ispw,"found in row =",ifrow
1543 break
1544 freqcoord = self.get_coordinate(ifrow)
1545 freqs = self._getabcissa(ifrow)
1546 minfreq = min(freqs)
1547 maxfreq = max(freqs)
1548 if len(freqs) == 1:
1549 offset = 0.5
1550 elif frequnit.find('Hz') > 0:
1551 offset = abs(freqcoord.to_frequency(1,
1552 unit=frequnit)
1553 -freqcoord.to_frequency(0,
1554 unit=frequnit)
1555 )*0.5
1556 elif frequnit.find('m/s') > 0:
1557 offset = abs(freqcoord.to_velocity(1,
1558 unit=frequnit)
1559 -freqcoord.to_velocity(0,
1560 unit=frequnit)
1561 )*0.5
1562 else:
1563 asaplog.post()
1564 asaplog.push("Invalid frequency unit")
1565 asaplog.post("ERROR")
1566 del freqs, freqcoord, ifrow
1567 for freq in freqmasklist:
1568 selmask = freq or [minfreq, maxfreq]
1569 if selmask[0] == None:
1570 ## selection was "<freq[1]".
1571 if selmask[1] < minfreq:
1572 ## avoid adding region selection
1573 selmask = None
1574 else:
1575 selmask = [minfreq,selmask[1]-offset]
1576 elif selmask[1] == None:
1577 ## selection was ">freq[0]"
1578 if selmask[0] > maxfreq:
1579 ## avoid adding region selection
1580 selmask = None
1581 else:
1582 selmask = [selmask[0]+offset,maxfreq]
1583 if selmask:
1584 if not seldict.has_key(spwstr):
1585 # new spw selection
1586 seldict[spwstr] = []
1587 seldict[spwstr] += [selmask]
1588 del minfreq,maxfreq,offset,freq,selmask
1589 del spwstr
1590 del freqmasklist
1591 del valid_ifs
1592 if len(seldict) == 0:
1593 asaplog.post()
1594 asaplog.push("No valid selection in the mask expression: "
1595 +maskstring)
1596 asaplog.post("WARN")
1597 return None
1598 msg = "Selected masklist:\n"
1599 for sif, lmask in seldict.iteritems():
1600 msg += " IF"+sif+" - "+str(lmask)+"\n"
1601 asaplog.push(msg)
1602 return seldict
1603
1604 @asaplog_post_dec
1605 def parse_idx_selection(self, mode, selexpr):
1606 """
1607 Parse CASA type mask selection syntax of SCANNO, IFNO, POLNO,
1608 BEAMNO, and row number
1609
1610 Parameters:
1611 mode : which column to select.
1612 ['scan',|'if'|'pol'|'beam'|'row']
1613 selexpr : A comma separated selection expression.
1614 examples:
1615 '' = all (returns [])
1616 '<2,4~6,9' = indices less than 2, 4 to 6 and 9
1617 (returns [0,1,4,5,6,9])
1618 Returns:
1619 A List of selected indices
1620 """
1621 if selexpr == "":
1622 return []
1623 valid_modes = {'s': 'scan', 'i': 'if', 'p': 'pol',
1624 'b': 'beam', 'r': 'row'}
1625 smode = mode.lower()[0]
1626 if not (smode in valid_modes.keys()):
1627 msg = "Invalid mode '%s'. Valid modes are %s" %\
1628 (mode, str(valid_modes.values()))
1629 asaplog.post()
1630 asaplog.push(msg)
1631 asaplog.post("ERROR")
1632 mode = valid_modes[smode]
1633 minidx = None
1634 maxidx = None
1635 if smode == 'r':
1636 minidx = 0
1637 maxidx = self.nrow()
1638 else:
1639 idx = getattr(self,"get"+mode+"nos")()
1640 minidx = min(idx)
1641 maxidx = max(idx)
1642 del idx
1643 sellist = selexpr.split(',')
1644 idxlist = []
1645 for currselstr in sellist:
1646 # single range (may include ~, < or >)
1647 currlist = self._parse_selection(currselstr, typestr='integer',
1648 minval=minidx,maxval=maxidx)
1649 for thelist in currlist:
1650 idxlist += range(thelist[0],thelist[1]+1)
1651 msg = "Selected %s: %s" % (mode.upper()+"NO", str(idxlist))
1652 asaplog.push(msg)
1653 return idxlist
1654
1655 def _parse_selection(self, selstr, typestr='float', offset=0.,
1656 minval=None, maxval=None):
1657 """
1658 Parameters:
1659 selstr : The Selection string, e.g., '<3;5~7;100~103;9'
1660 typestr : The type of the values in returned list
1661 ('integer' or 'float')
1662 offset : The offset value to subtract from or add to
1663 the boundary value if the selection string
1664 includes '<' or '>' [Valid only for typestr='float']
1665 minval, maxval : The minimum/maximum values to set if the
1666 selection string includes '<' or '>'.
1667 The list element is filled with None by default.
1668 Returns:
1669 A list of min/max pair of selections.
1670 Example:
1671 _parse_selection('<3;5~7;9',typestr='int',minval=0)
1672 --> returns [[0,2],[5,7],[9,9]]
1673 _parse_selection('<3;5~7;9',typestr='float',offset=0.5,minval=0)
1674 --> returns [[0.,2.5],[5.0,7.0],[9.,9.]]
1675 """
1676 selgroups = selstr.split(';')
1677 sellists = []
1678 if typestr.lower().startswith('int'):
1679 formatfunc = int
1680 offset = 1
1681 else:
1682 formatfunc = float
1683
1684 for currsel in selgroups:
1685 if currsel.find('~') > 0:
1686 # val0 <= x <= val1
1687 minsel = formatfunc(currsel.split('~')[0].strip())
1688 maxsel = formatfunc(currsel.split('~')[1].strip())
1689 elif currsel.strip().find('<=') > -1:
1690 bound = currsel.split('<=')
1691 try: # try "x <= val"
1692 minsel = minval
1693 maxsel = formatfunc(bound[1].strip())
1694 except ValueError: # now "val <= x"
1695 minsel = formatfunc(bound[0].strip())
1696 maxsel = maxval
1697 elif currsel.strip().find('>=') > -1:
1698 bound = currsel.split('>=')
1699 try: # try "x >= val"
1700 minsel = formatfunc(bound[1].strip())
1701 maxsel = maxval
1702 except ValueError: # now "val >= x"
1703 minsel = minval
1704 maxsel = formatfunc(bound[0].strip())
1705 elif currsel.strip().find('<') > -1:
1706 bound = currsel.split('<')
1707 try: # try "x < val"
1708 minsel = minval
1709 maxsel = formatfunc(bound[1].strip()) \
1710 - formatfunc(offset)
1711 except ValueError: # now "val < x"
1712 minsel = formatfunc(bound[0].strip()) \
1713 + formatfunc(offset)
1714 maxsel = maxval
1715 elif currsel.strip().find('>') > -1:
1716 bound = currsel.split('>')
1717 try: # try "x > val"
1718 minsel = formatfunc(bound[1].strip()) \
1719 + formatfunc(offset)
1720 maxsel = maxval
1721 except ValueError: # now "val > x"
1722 minsel = minval
1723 maxsel = formatfunc(bound[0].strip()) \
1724 - formatfunc(offset)
1725 else:
1726 minsel = formatfunc(currsel)
1727 maxsel = formatfunc(currsel)
1728 sellists.append([minsel,maxsel])
1729 return sellists
1730
1731# def get_restfreqs(self):
1732# """
1733# Get the restfrequency(s) stored in this scantable.
1734# The return value(s) are always of unit 'Hz'
1735# Parameters:
1736# none
1737# Returns:
1738# a list of doubles
1739# """
1740# return list(self._getrestfreqs())
1741
1742 def get_restfreqs(self, ids=None):
1743 """\
1744 Get the restfrequency(s) stored in this scantable.
1745 The return value(s) are always of unit 'Hz'
1746
1747 Parameters:
1748
1749 ids: (optional) a list of MOLECULE_ID for that restfrequency(s) to
1750 be retrieved
1751
1752 Returns:
1753
1754 dictionary containing ids and a list of doubles for each id
1755
1756 """
1757 if ids is None:
1758 rfreqs = {}
1759 idlist = self.getmolnos()
1760 for i in idlist:
1761 rfreqs[i] = list(self._getrestfreqs(i))
1762 return rfreqs
1763 else:
1764 if type(ids) == list or type(ids) == tuple:
1765 rfreqs = {}
1766 for i in ids:
1767 rfreqs[i] = list(self._getrestfreqs(i))
1768 return rfreqs
1769 else:
1770 return list(self._getrestfreqs(ids))
1771
1772 @asaplog_post_dec
1773 def set_restfreqs(self, freqs=None, unit='Hz'):
1774 """\
1775 Set or replace the restfrequency specified and
1776 if the 'freqs' argument holds a scalar,
1777 then that rest frequency will be applied to all the selected
1778 data. If the 'freqs' argument holds
1779 a vector, then it MUST be of equal or smaller length than
1780 the number of IFs (and the available restfrequencies will be
1781 replaced by this vector). In this case, *all* data have
1782 the restfrequency set per IF according
1783 to the corresponding value you give in the 'freqs' vector.
1784 E.g. 'freqs=[1e9, 2e9]' would mean IF 0 gets restfreq 1e9 and
1785 IF 1 gets restfreq 2e9.
1786
1787 You can also specify the frequencies via a linecatalog.
1788
1789 Parameters:
1790
1791 freqs: list of rest frequency values or string idenitfiers
1792
1793 unit: unit for rest frequency (default 'Hz')
1794
1795
1796 Example::
1797
1798 # set the given restfrequency for the all currently selected IFs
1799 scan.set_restfreqs(freqs=1.4e9)
1800 # set restfrequencies for the n IFs (n > 1) in the order of the
1801 # list, i.e
1802 # IF0 -> 1.4e9, IF1 -> 1.41e9, IF3 -> 1.42e9
1803 # len(list_of_restfreqs) == nIF
1804 # for nIF == 1 the following will set multiple restfrequency for
1805 # that IF
1806 scan.set_restfreqs(freqs=[1.4e9, 1.41e9, 1.42e9])
1807 # set multiple restfrequencies per IF. as a list of lists where
1808 # the outer list has nIF elements, the inner s arbitrary
1809 scan.set_restfreqs(freqs=[[1.4e9, 1.41e9], [1.67e9]])
1810
1811 *Note*:
1812
1813 To do more sophisticate Restfrequency setting, e.g. on a
1814 source and IF basis, use scantable.set_selection() before using
1815 this function::
1816
1817 # provided your scantable is called scan
1818 selection = selector()
1819 selection.set_name('ORION*')
1820 selection.set_ifs([1])
1821 scan.set_selection(selection)
1822 scan.set_restfreqs(freqs=86.6e9)
1823
1824 """
1825 varlist = vars()
1826 from asap import linecatalog
1827 # simple value
1828 if isinstance(freqs, int) or isinstance(freqs, float):
1829 self._setrestfreqs([freqs], [""], unit)
1830 # list of values
1831 elif isinstance(freqs, list) or isinstance(freqs, tuple):
1832 # list values are scalars
1833 if isinstance(freqs[-1], int) or isinstance(freqs[-1], float):
1834 if len(freqs) == 1:
1835 self._setrestfreqs(freqs, [""], unit)
1836 else:
1837 # allow the 'old' mode of setting mulitple IFs
1838 savesel = self._getselection()
1839 sel = self.get_selection()
1840 iflist = self.getifnos()
1841 if len(freqs)>len(iflist):
1842 raise ValueError("number of elements in list of list "
1843 "exeeds the current IF selections")
1844 iflist = self.getifnos()
1845 for i, fval in enumerate(freqs):
1846 sel.set_ifs(iflist[i])
1847 self._setselection(sel)
1848 self._setrestfreqs([fval], [""], unit)
1849 self._setselection(savesel)
1850
1851 # list values are dict, {'value'=, 'name'=)
1852 elif isinstance(freqs[-1], dict):
1853 values = []
1854 names = []
1855 for d in freqs:
1856 values.append(d["value"])
1857 names.append(d["name"])
1858 self._setrestfreqs(values, names, unit)
1859 elif isinstance(freqs[-1], list) or isinstance(freqs[-1], tuple):
1860 savesel = self._getselection()
1861 sel = self.get_selection()
1862 iflist = self.getifnos()
1863 if len(freqs)>len(iflist):
1864 raise ValueError("number of elements in list of list exeeds"
1865 " the current IF selections")
1866 for i, fval in enumerate(freqs):
1867 sel.set_ifs(iflist[i])
1868 self._setselection(sel)
1869 self._setrestfreqs(fval, [""], unit)
1870 self._setselection(savesel)
1871 # freqs are to be taken from a linecatalog
1872 elif isinstance(freqs, linecatalog):
1873 savesel = self._getselection()
1874 sel = self.get_selection()
1875 for i in xrange(freqs.nrow()):
1876 sel.set_ifs(iflist[i])
1877 self._setselection(sel)
1878 self._setrestfreqs([freqs.get_frequency(i)],
1879 [freqs.get_name(i)], "MHz")
1880 # ensure that we are not iterating past nIF
1881 if i == self.nif()-1: break
1882 self._setselection(savesel)
1883 else:
1884 return
1885 self._add_history("set_restfreqs", varlist)
1886
1887 @asaplog_post_dec
1888 def shift_refpix(self, delta):
1889 """\
1890 Shift the reference pixel of the Spectra Coordinate by an
1891 integer amount.
1892
1893 Parameters:
1894
1895 delta: the amount to shift by
1896
1897 *Note*:
1898
1899 Be careful using this with broadband data.
1900
1901 """
1902 varlist = vars()
1903 Scantable.shift_refpix(self, delta)
1904 s._add_history("shift_refpix", varlist)
1905
1906 @asaplog_post_dec
1907 def history(self, filename=None):
1908 """\
1909 Print the history. Optionally to a file.
1910
1911 Parameters:
1912
1913 filename: The name of the file to save the history to.
1914
1915 """
1916 hist = list(self._gethistory())
1917 out = "-"*80
1918 for h in hist:
1919 if h.startswith("---"):
1920 out = "\n".join([out, h])
1921 else:
1922 items = h.split("##")
1923 date = items[0]
1924 func = items[1]
1925 items = items[2:]
1926 out += "\n"+date+"\n"
1927 out += "Function: %s\n Parameters:" % (func)
1928 for i in items:
1929 if i == '':
1930 continue
1931 s = i.split("=")
1932 out += "\n %s = %s" % (s[0], s[1])
1933 out = "\n".join([out, "-"*80])
1934 if filename is not None:
1935 if filename is "":
1936 filename = 'scantable_history.txt'
1937 import os
1938 filename = os.path.expandvars(os.path.expanduser(filename))
1939 if not os.path.isdir(filename):
1940 data = open(filename, 'w')
1941 data.write(out)
1942 data.close()
1943 else:
1944 msg = "Illegal file name '%s'." % (filename)
1945 raise IOError(msg)
1946 return page(out)
1947
1948 #
1949 # Maths business
1950 #
1951 @asaplog_post_dec
1952 def average_time(self, mask=None, scanav=False, weight='tint', align=False):
1953 """\
1954 Return the (time) weighted average of a scan. Scans will be averaged
1955 only if the source direction (RA/DEC) is within 1' otherwise
1956
1957 *Note*:
1958
1959 in channels only - align if necessary
1960
1961 Parameters:
1962
1963 mask: an optional mask (only used for 'var' and 'tsys'
1964 weighting)
1965
1966 scanav: True averages each scan separately
1967 False (default) averages all scans together,
1968
1969 weight: Weighting scheme.
1970 'none' (mean no weight)
1971 'var' (1/var(spec) weighted)
1972 'tsys' (1/Tsys**2 weighted)
1973 'tint' (integration time weighted)
1974 'tintsys' (Tint/Tsys**2)
1975 'median' ( median averaging)
1976 The default is 'tint'
1977
1978 align: align the spectra in velocity before averaging. It takes
1979 the time of the first spectrum as reference time.
1980
1981 Example::
1982
1983 # time average the scantable without using a mask
1984 newscan = scan.average_time()
1985
1986 """
1987 varlist = vars()
1988 weight = weight or 'TINT'
1989 mask = mask or ()
1990 scanav = (scanav and 'SCAN') or 'NONE'
1991 scan = (self, )
1992
1993 if align:
1994 scan = (self.freq_align(insitu=False), )
1995 s = None
1996 if weight.upper() == 'MEDIAN':
1997 s = scantable(self._math._averagechannel(scan[0], 'MEDIAN',
1998 scanav))
1999 else:
2000 s = scantable(self._math._average(scan, mask, weight.upper(),
2001 scanav))
2002 s._add_history("average_time", varlist)
2003 return s
2004
2005 @asaplog_post_dec
2006 def convert_flux(self, jyperk=None, eta=None, d=None, insitu=None):
2007 """\
2008 Return a scan where all spectra are converted to either
2009 Jansky or Kelvin depending upon the flux units of the scan table.
2010 By default the function tries to look the values up internally.
2011 If it can't find them (or if you want to over-ride), you must
2012 specify EITHER jyperk OR eta (and D which it will try to look up
2013 also if you don't set it). jyperk takes precedence if you set both.
2014
2015 Parameters:
2016
2017 jyperk: the Jy / K conversion factor
2018
2019 eta: the aperture efficiency
2020
2021 d: the geometric diameter (metres)
2022
2023 insitu: if False a new scantable is returned.
2024 Otherwise, the scaling is done in-situ
2025 The default is taken from .asaprc (False)
2026
2027 """
2028 if insitu is None: insitu = rcParams['insitu']
2029 self._math._setinsitu(insitu)
2030 varlist = vars()
2031 jyperk = jyperk or -1.0
2032 d = d or -1.0
2033 eta = eta or -1.0
2034 s = scantable(self._math._convertflux(self, d, eta, jyperk))
2035 s._add_history("convert_flux", varlist)
2036 if insitu: self._assign(s)
2037 else: return s
2038
2039 @asaplog_post_dec
2040 def gain_el(self, poly=None, filename="", method="linear", insitu=None):
2041 """\
2042 Return a scan after applying a gain-elevation correction.
2043 The correction can be made via either a polynomial or a
2044 table-based interpolation (and extrapolation if necessary).
2045 You specify polynomial coefficients, an ascii table or neither.
2046 If you specify neither, then a polynomial correction will be made
2047 with built in coefficients known for certain telescopes (an error
2048 will occur if the instrument is not known).
2049 The data and Tsys are *divided* by the scaling factors.
2050
2051 Parameters:
2052
2053 poly: Polynomial coefficients (default None) to compute a
2054 gain-elevation correction as a function of
2055 elevation (in degrees).
2056
2057 filename: The name of an ascii file holding correction factors.
2058 The first row of the ascii file must give the column
2059 names and these MUST include columns
2060 'ELEVATION' (degrees) and 'FACTOR' (multiply data
2061 by this) somewhere.
2062 The second row must give the data type of the
2063 column. Use 'R' for Real and 'I' for Integer.
2064 An example file would be
2065 (actual factors are arbitrary) :
2066
2067 TIME ELEVATION FACTOR
2068 R R R
2069 0.1 0 0.8
2070 0.2 20 0.85
2071 0.3 40 0.9
2072 0.4 60 0.85
2073 0.5 80 0.8
2074 0.6 90 0.75
2075
2076 method: Interpolation method when correcting from a table.
2077 Values are 'nearest', 'linear' (default), 'cubic'
2078 and 'spline'
2079
2080 insitu: if False a new scantable is returned.
2081 Otherwise, the scaling is done in-situ
2082 The default is taken from .asaprc (False)
2083
2084 """
2085
2086 if insitu is None: insitu = rcParams['insitu']
2087 self._math._setinsitu(insitu)
2088 varlist = vars()
2089 poly = poly or ()
2090 from os.path import expandvars
2091 filename = expandvars(filename)
2092 s = scantable(self._math._gainel(self, poly, filename, method))
2093 s._add_history("gain_el", varlist)
2094 if insitu:
2095 self._assign(s)
2096 else:
2097 return s
2098
2099 @asaplog_post_dec
2100 def freq_align(self, reftime=None, method='cubic', insitu=None):
2101 """\
2102 Return a scan where all rows have been aligned in frequency/velocity.
2103 The alignment frequency frame (e.g. LSRK) is that set by function
2104 set_freqframe.
2105
2106 Parameters:
2107
2108 reftime: reference time to align at. By default, the time of
2109 the first row of data is used.
2110
2111 method: Interpolation method for regridding the spectra.
2112 Choose from 'nearest', 'linear', 'cubic' (default)
2113 and 'spline'
2114
2115 insitu: if False a new scantable is returned.
2116 Otherwise, the scaling is done in-situ
2117 The default is taken from .asaprc (False)
2118
2119 """
2120 if insitu is None: insitu = rcParams["insitu"]
2121 oldInsitu = self._math._insitu()
2122 self._math._setinsitu(insitu)
2123 varlist = vars()
2124 reftime = reftime or ""
2125 s = scantable(self._math._freq_align(self, reftime, method))
2126 s._add_history("freq_align", varlist)
2127 self._math._setinsitu(oldInsitu)
2128 if insitu:
2129 self._assign(s)
2130 else:
2131 return s
2132
2133 @asaplog_post_dec
2134 def opacity(self, tau=None, insitu=None):
2135 """\
2136 Apply an opacity correction. The data
2137 and Tsys are multiplied by the correction factor.
2138
2139 Parameters:
2140
2141 tau: (list of) opacity from which the correction factor is
2142 exp(tau*ZD)
2143 where ZD is the zenith-distance.
2144 If a list is provided, it has to be of length nIF,
2145 nIF*nPol or 1 and in order of IF/POL, e.g.
2146 [opif0pol0, opif0pol1, opif1pol0 ...]
2147 if tau is `None` the opacities are determined from a
2148 model.
2149
2150 insitu: if False a new scantable is returned.
2151 Otherwise, the scaling is done in-situ
2152 The default is taken from .asaprc (False)
2153
2154 """
2155 if insitu is None:
2156 insitu = rcParams['insitu']
2157 self._math._setinsitu(insitu)
2158 varlist = vars()
2159 if not hasattr(tau, "__len__"):
2160 tau = [tau]
2161 s = scantable(self._math._opacity(self, tau))
2162 s._add_history("opacity", varlist)
2163 if insitu:
2164 self._assign(s)
2165 else:
2166 return s
2167
2168 @asaplog_post_dec
2169 def bin(self, width=5, insitu=None):
2170 """\
2171 Return a scan where all spectra have been binned up.
2172
2173 Parameters:
2174
2175 width: The bin width (default=5) in pixels
2176
2177 insitu: if False a new scantable is returned.
2178 Otherwise, the scaling is done in-situ
2179 The default is taken from .asaprc (False)
2180
2181 """
2182 if insitu is None:
2183 insitu = rcParams['insitu']
2184 self._math._setinsitu(insitu)
2185 varlist = vars()
2186 s = scantable(self._math._bin(self, width))
2187 s._add_history("bin", varlist)
2188 if insitu:
2189 self._assign(s)
2190 else:
2191 return s
2192
2193 @asaplog_post_dec
2194 def reshape(self, first, last, insitu=None):
2195 """Resize the band by providing first and last channel.
2196 This will cut off all channels outside [first, last].
2197 """
2198 if insitu is None:
2199 insitu = rcParams['insitu']
2200 varlist = vars()
2201 if last < 0:
2202 last = self.nchan()-1 + last
2203 s = None
2204 if insitu:
2205 s = self
2206 else:
2207 s = self.copy()
2208 s._reshape(first,last)
2209 s._add_history("reshape", varlist)
2210 if not insitu:
2211 return s
2212
2213 @asaplog_post_dec
2214 def resample(self, width=5, method='cubic', insitu=None):
2215 """\
2216 Return a scan where all spectra have been binned up.
2217
2218 Parameters:
2219
2220 width: The bin width (default=5) in pixels
2221
2222 method: Interpolation method when correcting from a table.
2223 Values are 'nearest', 'linear', 'cubic' (default)
2224 and 'spline'
2225
2226 insitu: if False a new scantable is returned.
2227 Otherwise, the scaling is done in-situ
2228 The default is taken from .asaprc (False)
2229
2230 """
2231 if insitu is None:
2232 insitu = rcParams['insitu']
2233 self._math._setinsitu(insitu)
2234 varlist = vars()
2235 s = scantable(self._math._resample(self, method, width))
2236 s._add_history("resample", varlist)
2237 if insitu:
2238 self._assign(s)
2239 else:
2240 return s
2241
2242 @asaplog_post_dec
2243 def average_pol(self, mask=None, weight='none'):
2244 """\
2245 Average the Polarisations together.
2246
2247 Parameters:
2248
2249 mask: An optional mask defining the region, where the
2250 averaging will be applied. The output will have all
2251 specified points masked.
2252
2253 weight: Weighting scheme. 'none' (default), 'var' (1/var(spec)
2254 weighted), or 'tsys' (1/Tsys**2 weighted)
2255
2256 """
2257 varlist = vars()
2258 mask = mask or ()
2259 s = scantable(self._math._averagepol(self, mask, weight.upper()))
2260 s._add_history("average_pol", varlist)
2261 return s
2262
2263 @asaplog_post_dec
2264 def average_beam(self, mask=None, weight='none'):
2265 """\
2266 Average the Beams together.
2267
2268 Parameters:
2269 mask: An optional mask defining the region, where the
2270 averaging will be applied. The output will have all
2271 specified points masked.
2272
2273 weight: Weighting scheme. 'none' (default), 'var' (1/var(spec)
2274 weighted), or 'tsys' (1/Tsys**2 weighted)
2275
2276 """
2277 varlist = vars()
2278 mask = mask or ()
2279 s = scantable(self._math._averagebeams(self, mask, weight.upper()))
2280 s._add_history("average_beam", varlist)
2281 return s
2282
2283 def parallactify(self, pflag):
2284 """\
2285 Set a flag to indicate whether this data should be treated as having
2286 been 'parallactified' (total phase == 0.0)
2287
2288 Parameters:
2289
2290 pflag: Bool indicating whether to turn this on (True) or
2291 off (False)
2292
2293 """
2294 varlist = vars()
2295 self._parallactify(pflag)
2296 self._add_history("parallactify", varlist)
2297
2298 @asaplog_post_dec
2299 def convert_pol(self, poltype=None):
2300 """\
2301 Convert the data to a different polarisation type.
2302 Note that you will need cross-polarisation terms for most conversions.
2303
2304 Parameters:
2305
2306 poltype: The new polarisation type. Valid types are:
2307 'linear', 'circular', 'stokes' and 'linpol'
2308
2309 """
2310 varlist = vars()
2311 s = scantable(self._math._convertpol(self, poltype))
2312 s._add_history("convert_pol", varlist)
2313 return s
2314
2315 @asaplog_post_dec
2316 def smooth(self, kernel="hanning", width=5.0, order=2, plot=False,
2317 insitu=None):
2318 """\
2319 Smooth the spectrum by the specified kernel (conserving flux).
2320
2321 Parameters:
2322
2323 kernel: The type of smoothing kernel. Select from
2324 'hanning' (default), 'gaussian', 'boxcar', 'rmedian'
2325 or 'poly'
2326
2327 width: The width of the kernel in pixels. For hanning this is
2328 ignored otherwise it defauls to 5 pixels.
2329 For 'gaussian' it is the Full Width Half
2330 Maximum. For 'boxcar' it is the full width.
2331 For 'rmedian' and 'poly' it is the half width.
2332
2333 order: Optional parameter for 'poly' kernel (default is 2), to
2334 specify the order of the polnomial. Ignored by all other
2335 kernels.
2336
2337 plot: plot the original and the smoothed spectra.
2338 In this each indivual fit has to be approved, by
2339 typing 'y' or 'n'
2340
2341 insitu: if False a new scantable is returned.
2342 Otherwise, the scaling is done in-situ
2343 The default is taken from .asaprc (False)
2344
2345 """
2346 if insitu is None: insitu = rcParams['insitu']
2347 self._math._setinsitu(insitu)
2348 varlist = vars()
2349
2350 if plot: orgscan = self.copy()
2351
2352 s = scantable(self._math._smooth(self, kernel.lower(), width, order))
2353 s._add_history("smooth", varlist)
2354
2355 action = 'H'
2356 if plot:
2357 from asap.asapplotter import new_asaplot
2358 theplot = new_asaplot(rcParams['plotter.gui'])
2359 from matplotlib import rc as rcp
2360 rcp('lines', linewidth=1)
2361 theplot.set_panels()
2362 ylab=s._get_ordinate_label()
2363 #theplot.palette(0,["#777777","red"])
2364 for r in xrange(s.nrow()):
2365 xsm=s._getabcissa(r)
2366 ysm=s._getspectrum(r)
2367 xorg=orgscan._getabcissa(r)
2368 yorg=orgscan._getspectrum(r)
2369 if action != "N": #skip plotting if rejecting all
2370 theplot.clear()
2371 theplot.hold()
2372 theplot.set_axes('ylabel',ylab)
2373 theplot.set_axes('xlabel',s._getabcissalabel(r))
2374 theplot.set_axes('title',s._getsourcename(r))
2375 theplot.set_line(label='Original',color="#777777")
2376 theplot.plot(xorg,yorg)
2377 theplot.set_line(label='Smoothed',color="red")
2378 theplot.plot(xsm,ysm)
2379 ### Ugly part for legend
2380 for i in [0,1]:
2381 theplot.subplots[0]['lines'].append(
2382 [theplot.subplots[0]['axes'].lines[i]]
2383 )
2384 theplot.release()
2385 ### Ugly part for legend
2386 theplot.subplots[0]['lines']=[]
2387 res = self._get_verify_action("Accept smoothing?",action)
2388 #print "IF%d, POL%d: got result = %s" %(s.getif(r),s.getpol(r),res)
2389 if r == 0: action = None
2390 #res = raw_input("Accept smoothing ([y]/n): ")
2391 if res.upper() == 'N':
2392 # reject for the current rows
2393 s._setspectrum(yorg, r)
2394 elif res.upper() == 'R':
2395 # reject all the following rows
2396 action = "N"
2397 s._setspectrum(yorg, r)
2398 elif res.upper() == 'A':
2399 # accept all the following rows
2400 break
2401 theplot.quit()
2402 del theplot
2403 del orgscan
2404
2405 if insitu: self._assign(s)
2406 else: return s
2407
2408 @asaplog_post_dec
2409 def regrid_channel(self, width=5, plot=False, insitu=None):
2410 """\
2411 Regrid the spectra by the specified channel width
2412
2413 Parameters:
2414
2415 width: The channel width (float) of regridded spectra
2416 in the current spectral unit.
2417
2418 plot: [NOT IMPLEMENTED YET]
2419 plot the original and the regridded spectra.
2420 In this each indivual fit has to be approved, by
2421 typing 'y' or 'n'
2422
2423 insitu: if False a new scantable is returned.
2424 Otherwise, the scaling is done in-situ
2425 The default is taken from .asaprc (False)
2426
2427 """
2428 if insitu is None: insitu = rcParams['insitu']
2429 varlist = vars()
2430
2431 if plot:
2432 asaplog.post()
2433 asaplog.push("Verification plot is not implemtnetd yet.")
2434 asaplog.post("WARN")
2435
2436 s = self.copy()
2437 s._regrid_specchan(width)
2438
2439 s._add_history("regrid_channel", varlist)
2440
2441# if plot:
2442# from asap.asapplotter import new_asaplot
2443# theplot = new_asaplot(rcParams['plotter.gui'])
2444# from matplotlib import rc as rcp
2445# rcp('lines', linewidth=1)
2446# theplot.set_panels()
2447# ylab=s._get_ordinate_label()
2448# #theplot.palette(0,["#777777","red"])
2449# for r in xrange(s.nrow()):
2450# xsm=s._getabcissa(r)
2451# ysm=s._getspectrum(r)
2452# xorg=orgscan._getabcissa(r)
2453# yorg=orgscan._getspectrum(r)
2454# theplot.clear()
2455# theplot.hold()
2456# theplot.set_axes('ylabel',ylab)
2457# theplot.set_axes('xlabel',s._getabcissalabel(r))
2458# theplot.set_axes('title',s._getsourcename(r))
2459# theplot.set_line(label='Original',color="#777777")
2460# theplot.plot(xorg,yorg)
2461# theplot.set_line(label='Smoothed',color="red")
2462# theplot.plot(xsm,ysm)
2463# ### Ugly part for legend
2464# for i in [0,1]:
2465# theplot.subplots[0]['lines'].append(
2466# [theplot.subplots[0]['axes'].lines[i]]
2467# )
2468# theplot.release()
2469# ### Ugly part for legend
2470# theplot.subplots[0]['lines']=[]
2471# res = raw_input("Accept smoothing ([y]/n): ")
2472# if res.upper() == 'N':
2473# s._setspectrum(yorg, r)
2474# theplot.quit()
2475# del theplot
2476# del orgscan
2477
2478 if insitu: self._assign(s)
2479 else: return s
2480
2481 @asaplog_post_dec
2482 def _parse_wn(self, wn):
2483 if isinstance(wn, list) or isinstance(wn, tuple):
2484 return wn
2485 elif isinstance(wn, int):
2486 return [ wn ]
2487 elif isinstance(wn, str):
2488 if '-' in wn: # case 'a-b' : return [a,a+1,...,b-1,b]
2489 val = wn.split('-')
2490 val = [int(val[0]), int(val[1])]
2491 val.sort()
2492 res = [i for i in xrange(val[0], val[1]+1)]
2493 elif wn[:2] == '<=' or wn[:2] == '=<': # cases '<=a','=<a' : return [0,1,...,a-1,a]
2494 val = int(wn[2:])+1
2495 res = [i for i in xrange(val)]
2496 elif wn[-2:] == '>=' or wn[-2:] == '=>': # cases 'a>=','a=>' : return [0,1,...,a-1,a]
2497 val = int(wn[:-2])+1
2498 res = [i for i in xrange(val)]
2499 elif wn[0] == '<': # case '<a' : return [0,1,...,a-2,a-1]
2500 val = int(wn[1:])
2501 res = [i for i in xrange(val)]
2502 elif wn[-1] == '>': # case 'a>' : return [0,1,...,a-2,a-1]
2503 val = int(wn[:-1])
2504 res = [i for i in xrange(val)]
2505 elif wn[:2] == '>=' or wn[:2] == '=>': # cases '>=a','=>a' : return [a,-999], which is
2506 # then interpreted in C++
2507 # side as [a,a+1,...,a_nyq]
2508 # (CAS-3759)
2509 val = int(wn[2:])
2510 res = [val, -999]
2511 #res = [i for i in xrange(val, self.nchan()/2+1)]
2512 elif wn[-2:] == '<=' or wn[-2:] == '=<': # cases 'a<=','a=<' : return [a,-999], which is
2513 # then interpreted in C++
2514 # side as [a,a+1,...,a_nyq]
2515 # (CAS-3759)
2516 val = int(wn[:-2])
2517 res = [val, -999]
2518 #res = [i for i in xrange(val, self.nchan()/2+1)]
2519 elif wn[0] == '>': # case '>a' : return [a+1,-999], which is
2520 # then interpreted in C++
2521 # side as [a+1,a+2,...,a_nyq]
2522 # (CAS-3759)
2523 val = int(wn[1:])+1
2524 res = [val, -999]
2525 #res = [i for i in xrange(val, self.nchan()/2+1)]
2526 elif wn[-1] == '<': # case 'a<' : return [a+1,-999], which is
2527 # then interpreted in C++
2528 # side as [a+1,a+2,...,a_nyq]
2529 # (CAS-3759)
2530 val = int(wn[:-1])+1
2531 res = [val, -999]
2532 #res = [i for i in xrange(val, self.nchan()/2+1)]
2533
2534 return res
2535 else:
2536 msg = 'wrong value given for addwn/rejwn'
2537 raise RuntimeError(msg)
2538
2539
2540 @asaplog_post_dec
2541 def sinusoid_baseline(self, insitu=None, mask=None, applyfft=None,
2542 fftmethod=None, fftthresh=None,
2543 addwn=None, rejwn=None, clipthresh=None,
2544 clipniter=None, plot=None,
2545 getresidual=None, showprogress=None,
2546 minnrow=None, outlog=None, blfile=None, csvformat=None):
2547 """\
2548 Return a scan which has been baselined (all rows) with sinusoidal
2549 functions.
2550
2551 Parameters:
2552 insitu: if False a new scantable is returned.
2553 Otherwise, the scaling is done in-situ
2554 The default is taken from .asaprc (False)
2555 mask: an optional mask
2556 applyfft: if True use some method, such as FFT, to find
2557 strongest sinusoidal components in the wavenumber
2558 domain to be used for baseline fitting.
2559 default is True.
2560 fftmethod: method to find the strong sinusoidal components.
2561 now only 'fft' is available and it is the default.
2562 fftthresh: the threshold to select wave numbers to be used for
2563 fitting from the distribution of amplitudes in the
2564 wavenumber domain.
2565 both float and string values accepted.
2566 given a float value, the unit is set to sigma.
2567 for string values, allowed formats include:
2568 'xsigma' or 'x' (= x-sigma level. e.g.,
2569 '3sigma'), or
2570 'topx' (= the x strongest ones, e.g. 'top5').
2571 default is 3.0 (unit: sigma).
2572 addwn: the additional wave numbers to be used for fitting.
2573 list or integer value is accepted to specify every
2574 wave numbers. also string value can be used in case
2575 you need to specify wave numbers in a certain range,
2576 e.g., 'a-b' (= a, a+1, a+2, ..., b-1, b),
2577 '<a' (= 0,1,...,a-2,a-1),
2578 '>=a' (= a, a+1, ... up to the maximum wave
2579 number corresponding to the Nyquist
2580 frequency for the case of FFT).
2581 default is [0].
2582 rejwn: the wave numbers NOT to be used for fitting.
2583 can be set just as addwn but has higher priority:
2584 wave numbers which are specified both in addwn
2585 and rejwn will NOT be used. default is [].
2586 clipthresh: Clipping threshold. (default is 3.0, unit: sigma)
2587 clipniter: maximum number of iteration of 'clipthresh'-sigma
2588 clipping (default is 0)
2589 plot: *** CURRENTLY UNAVAILABLE, ALWAYS FALSE ***
2590 plot the fit and the residual. In this each
2591 indivual fit has to be approved, by typing 'y'
2592 or 'n'
2593 getresidual: if False, returns best-fit values instead of
2594 residual. (default is True)
2595 showprogress: show progress status for large data.
2596 default is True.
2597 minnrow: minimum number of input spectra to show.
2598 default is 1000.
2599 outlog: Output the coefficients of the best-fit
2600 function to logger (default is False)
2601 blfile: Name of a text file in which the best-fit
2602 parameter values to be written
2603 (default is '': no file/logger output)
2604 csvformat: if True blfile is csv-formatted, default is False.
2605
2606 Example:
2607 # return a scan baselined by a combination of sinusoidal curves
2608 # having wave numbers in spectral window up to 10,
2609 # also with 3-sigma clipping, iteration up to 4 times
2610 bscan = scan.sinusoid_baseline(addwn='<=10',clipthresh=3.0,clipniter=4)
2611
2612 Note:
2613 The best-fit parameter values output in logger and/or blfile are now
2614 based on specunit of 'channel'.
2615 """
2616
2617 try:
2618 varlist = vars()
2619
2620 if insitu is None: insitu = rcParams['insitu']
2621 if insitu:
2622 workscan = self
2623 else:
2624 workscan = self.copy()
2625
2626 #if mask is None: mask = [True for i in xrange(workscan.nchan())]
2627 if mask is None: mask = []
2628 if applyfft is None: applyfft = True
2629 if fftmethod is None: fftmethod = 'fft'
2630 if fftthresh is None: fftthresh = 3.0
2631 if addwn is None: addwn = [0]
2632 if rejwn is None: rejwn = []
2633 if clipthresh is None: clipthresh = 3.0
2634 if clipniter is None: clipniter = 0
2635 if plot is None: plot = False
2636 if getresidual is None: getresidual = True
2637 if showprogress is None: showprogress = True
2638 if minnrow is None: minnrow = 1000
2639 if outlog is None: outlog = False
2640 if blfile is None: blfile = ''
2641 if csvformat is None: csvformat = False
2642
2643 if csvformat:
2644 scsvformat = "T"
2645 else:
2646 scsvformat = "F"
2647
2648 #CURRENTLY, PLOT=true is UNAVAILABLE UNTIL sinusoidal fitting is implemented as a fitter method.
2649 workscan._sinusoid_baseline(mask, applyfft, fftmethod.lower(),
2650 str(fftthresh).lower(),
2651 workscan._parse_wn(addwn),
2652 workscan._parse_wn(rejwn),
2653 clipthresh, clipniter,
2654 getresidual,
2655 pack_progress_params(showprogress,
2656 minnrow),
2657 outlog, scsvformat+blfile)
2658 workscan._add_history('sinusoid_baseline', varlist)
2659
2660 if insitu:
2661 self._assign(workscan)
2662 else:
2663 return workscan
2664
2665 except RuntimeError, e:
2666 raise_fitting_failure_exception(e)
2667
2668
2669 @asaplog_post_dec
2670 def auto_sinusoid_baseline(self, insitu=None, mask=None, applyfft=None,
2671 fftmethod=None, fftthresh=None,
2672 addwn=None, rejwn=None, clipthresh=None,
2673 clipniter=None, edge=None, threshold=None,
2674 chan_avg_limit=None, plot=None,
2675 getresidual=None, showprogress=None,
2676 minnrow=None, outlog=None, blfile=None, csvformat=None):
2677 """\
2678 Return a scan which has been baselined (all rows) with sinusoidal
2679 functions.
2680 Spectral lines are detected first using linefinder and masked out
2681 to avoid them affecting the baseline solution.
2682
2683 Parameters:
2684 insitu: if False a new scantable is returned.
2685 Otherwise, the scaling is done in-situ
2686 The default is taken from .asaprc (False)
2687 mask: an optional mask retreived from scantable
2688 applyfft: if True use some method, such as FFT, to find
2689 strongest sinusoidal components in the wavenumber
2690 domain to be used for baseline fitting.
2691 default is True.
2692 fftmethod: method to find the strong sinusoidal components.
2693 now only 'fft' is available and it is the default.
2694 fftthresh: the threshold to select wave numbers to be used for
2695 fitting from the distribution of amplitudes in the
2696 wavenumber domain.
2697 both float and string values accepted.
2698 given a float value, the unit is set to sigma.
2699 for string values, allowed formats include:
2700 'xsigma' or 'x' (= x-sigma level. e.g.,
2701 '3sigma'), or
2702 'topx' (= the x strongest ones, e.g. 'top5').
2703 default is 3.0 (unit: sigma).
2704 addwn: the additional wave numbers to be used for fitting.
2705 list or integer value is accepted to specify every
2706 wave numbers. also string value can be used in case
2707 you need to specify wave numbers in a certain range,
2708 e.g., 'a-b' (= a, a+1, a+2, ..., b-1, b),
2709 '<a' (= 0,1,...,a-2,a-1),
2710 '>=a' (= a, a+1, ... up to the maximum wave
2711 number corresponding to the Nyquist
2712 frequency for the case of FFT).
2713 default is [0].
2714 rejwn: the wave numbers NOT to be used for fitting.
2715 can be set just as addwn but has higher priority:
2716 wave numbers which are specified both in addwn
2717 and rejwn will NOT be used. default is [].
2718 clipthresh: Clipping threshold. (default is 3.0, unit: sigma)
2719 clipniter: maximum number of iteration of 'clipthresh'-sigma
2720 clipping (default is 0)
2721 edge: an optional number of channel to drop at
2722 the edge of spectrum. If only one value is
2723 specified, the same number will be dropped
2724 from both sides of the spectrum. Default
2725 is to keep all channels. Nested tuples
2726 represent individual edge selection for
2727 different IFs (a number of spectral channels
2728 can be different)
2729 threshold: the threshold used by line finder. It is
2730 better to keep it large as only strong lines
2731 affect the baseline solution.
2732 chan_avg_limit: a maximum number of consequtive spectral
2733 channels to average during the search of
2734 weak and broad lines. The default is no
2735 averaging (and no search for weak lines).
2736 If such lines can affect the fitted baseline
2737 (e.g. a high order polynomial is fitted),
2738 increase this parameter (usually values up
2739 to 8 are reasonable). Most users of this
2740 method should find the default value sufficient.
2741 plot: *** CURRENTLY UNAVAILABLE, ALWAYS FALSE ***
2742 plot the fit and the residual. In this each
2743 indivual fit has to be approved, by typing 'y'
2744 or 'n'
2745 getresidual: if False, returns best-fit values instead of
2746 residual. (default is True)
2747 showprogress: show progress status for large data.
2748 default is True.
2749 minnrow: minimum number of input spectra to show.
2750 default is 1000.
2751 outlog: Output the coefficients of the best-fit
2752 function to logger (default is False)
2753 blfile: Name of a text file in which the best-fit
2754 parameter values to be written
2755 (default is "": no file/logger output)
2756 csvformat: if True blfile is csv-formatted, default is False.
2757
2758 Example:
2759 bscan = scan.auto_sinusoid_baseline(addwn='<=10', insitu=False)
2760
2761 Note:
2762 The best-fit parameter values output in logger and/or blfile are now
2763 based on specunit of 'channel'.
2764 """
2765
2766 try:
2767 varlist = vars()
2768
2769 if insitu is None: insitu = rcParams['insitu']
2770 if insitu:
2771 workscan = self
2772 else:
2773 workscan = self.copy()
2774
2775 #if mask is None: mask = [True for i in xrange(workscan.nchan())]
2776 if mask is None: mask = []
2777 if applyfft is None: applyfft = True
2778 if fftmethod is None: fftmethod = 'fft'
2779 if fftthresh is None: fftthresh = 3.0
2780 if addwn is None: addwn = [0]
2781 if rejwn is None: rejwn = []
2782 if clipthresh is None: clipthresh = 3.0
2783 if clipniter is None: clipniter = 0
2784 if edge is None: edge = (0,0)
2785 if threshold is None: threshold = 3
2786 if chan_avg_limit is None: chan_avg_limit = 1
2787 if plot is None: plot = False
2788 if getresidual is None: getresidual = True
2789 if showprogress is None: showprogress = True
2790 if minnrow is None: minnrow = 1000
2791 if outlog is None: outlog = False
2792 if blfile is None: blfile = ''
2793 if csvformat is None: csvformat = False
2794
2795 if csvformat:
2796 scsvformat = "T"
2797 else:
2798 scsvformat = "F"
2799
2800 #CURRENTLY, PLOT=true is UNAVAILABLE UNTIL sinusoidal fitting is implemented as a fitter method.
2801 workscan._auto_sinusoid_baseline(mask, applyfft,
2802 fftmethod.lower(),
2803 str(fftthresh).lower(),
2804 workscan._parse_wn(addwn),
2805 workscan._parse_wn(rejwn),
2806 clipthresh, clipniter,
2807 normalise_edge_param(edge),
2808 threshold, chan_avg_limit,
2809 getresidual,
2810 pack_progress_params(showprogress,
2811 minnrow),
2812 outlog, scsvformat+blfile)
2813 workscan._add_history("auto_sinusoid_baseline", varlist)
2814
2815 if insitu:
2816 self._assign(workscan)
2817 else:
2818 return workscan
2819
2820 except RuntimeError, e:
2821 raise_fitting_failure_exception(e)
2822
2823 @asaplog_post_dec
2824 def cspline_baseline(self, insitu=None, mask=None, npiece=None,
2825 clipthresh=None, clipniter=None, plot=None,
2826 getresidual=None, showprogress=None, minnrow=None,
2827 outlog=None, blfile=None, csvformat=None):
2828 """\
2829 Return a scan which has been baselined (all rows) by cubic spline
2830 function (piecewise cubic polynomial).
2831
2832 Parameters:
2833 insitu: If False a new scantable is returned.
2834 Otherwise, the scaling is done in-situ
2835 The default is taken from .asaprc (False)
2836 mask: An optional mask
2837 npiece: Number of pieces. (default is 2)
2838 clipthresh: Clipping threshold. (default is 3.0, unit: sigma)
2839 clipniter: maximum number of iteration of 'clipthresh'-sigma
2840 clipping (default is 0)
2841 plot: *** CURRENTLY UNAVAILABLE, ALWAYS FALSE ***
2842 plot the fit and the residual. In this each
2843 indivual fit has to be approved, by typing 'y'
2844 or 'n'
2845 getresidual: if False, returns best-fit values instead of
2846 residual. (default is True)
2847 showprogress: show progress status for large data.
2848 default is True.
2849 minnrow: minimum number of input spectra to show.
2850 default is 1000.
2851 outlog: Output the coefficients of the best-fit
2852 function to logger (default is False)
2853 blfile: Name of a text file in which the best-fit
2854 parameter values to be written
2855 (default is "": no file/logger output)
2856 csvformat: if True blfile is csv-formatted, default is False.
2857
2858 Example:
2859 # return a scan baselined by a cubic spline consisting of 2 pieces
2860 # (i.e., 1 internal knot),
2861 # also with 3-sigma clipping, iteration up to 4 times
2862 bscan = scan.cspline_baseline(npiece=2,clipthresh=3.0,clipniter=4)
2863
2864 Note:
2865 The best-fit parameter values output in logger and/or blfile are now
2866 based on specunit of 'channel'.
2867 """
2868
2869 try:
2870 varlist = vars()
2871
2872 if insitu is None: insitu = rcParams['insitu']
2873 if insitu:
2874 workscan = self
2875 else:
2876 workscan = self.copy()
2877
2878 #if mask is None: mask = [True for i in xrange(workscan.nchan())]
2879 if mask is None: mask = []
2880 if npiece is None: npiece = 2
2881 if clipthresh is None: clipthresh = 3.0
2882 if clipniter is None: clipniter = 0
2883 if plot is None: plot = False
2884 if getresidual is None: getresidual = True
2885 if showprogress is None: showprogress = True
2886 if minnrow is None: minnrow = 1000
2887 if outlog is None: outlog = False
2888 if blfile is None: blfile = ''
2889 if csvformat is None: csvformat = False
2890
2891 if csvformat:
2892 scsvformat = "T"
2893 else:
2894 scsvformat = "F"
2895
2896 #CURRENTLY, PLOT=true UNAVAILABLE UNTIL cubic spline fitting is implemented as a fitter method.
2897 workscan._cspline_baseline(mask, npiece, clipthresh, clipniter,
2898 getresidual,
2899 pack_progress_params(showprogress,
2900 minnrow),
2901 outlog, scsvformat+blfile)
2902 workscan._add_history("cspline_baseline", varlist)
2903
2904 if insitu:
2905 self._assign(workscan)
2906 else:
2907 return workscan
2908
2909 except RuntimeError, e:
2910 raise_fitting_failure_exception(e)
2911
2912 @asaplog_post_dec
2913 def auto_cspline_baseline(self, insitu=None, mask=None, npiece=None,
2914 clipthresh=None, clipniter=None,
2915 edge=None, threshold=None, chan_avg_limit=None,
2916 getresidual=None, plot=None,
2917 showprogress=None, minnrow=None, outlog=None,
2918 blfile=None, csvformat=None):
2919 """\
2920 Return a scan which has been baselined (all rows) by cubic spline
2921 function (piecewise cubic polynomial).
2922 Spectral lines are detected first using linefinder and masked out
2923 to avoid them affecting the baseline solution.
2924
2925 Parameters:
2926 insitu: if False a new scantable is returned.
2927 Otherwise, the scaling is done in-situ
2928 The default is taken from .asaprc (False)
2929 mask: an optional mask retreived from scantable
2930 npiece: Number of pieces. (default is 2)
2931 clipthresh: Clipping threshold. (default is 3.0, unit: sigma)
2932 clipniter: maximum number of iteration of 'clipthresh'-sigma
2933 clipping (default is 0)
2934 edge: an optional number of channel to drop at
2935 the edge of spectrum. If only one value is
2936 specified, the same number will be dropped
2937 from both sides of the spectrum. Default
2938 is to keep all channels. Nested tuples
2939 represent individual edge selection for
2940 different IFs (a number of spectral channels
2941 can be different)
2942 threshold: the threshold used by line finder. It is
2943 better to keep it large as only strong lines
2944 affect the baseline solution.
2945 chan_avg_limit: a maximum number of consequtive spectral
2946 channels to average during the search of
2947 weak and broad lines. The default is no
2948 averaging (and no search for weak lines).
2949 If such lines can affect the fitted baseline
2950 (e.g. a high order polynomial is fitted),
2951 increase this parameter (usually values up
2952 to 8 are reasonable). Most users of this
2953 method should find the default value sufficient.
2954 plot: *** CURRENTLY UNAVAILABLE, ALWAYS FALSE ***
2955 plot the fit and the residual. In this each
2956 indivual fit has to be approved, by typing 'y'
2957 or 'n'
2958 getresidual: if False, returns best-fit values instead of
2959 residual. (default is True)
2960 showprogress: show progress status for large data.
2961 default is True.
2962 minnrow: minimum number of input spectra to show.
2963 default is 1000.
2964 outlog: Output the coefficients of the best-fit
2965 function to logger (default is False)
2966 blfile: Name of a text file in which the best-fit
2967 parameter values to be written
2968 (default is "": no file/logger output)
2969 csvformat: if True blfile is csv-formatted, default is False.
2970
2971 Example:
2972 bscan = scan.auto_cspline_baseline(npiece=3, insitu=False)
2973
2974 Note:
2975 The best-fit parameter values output in logger and/or blfile are now
2976 based on specunit of 'channel'.
2977 """
2978
2979 try:
2980 varlist = vars()
2981
2982 if insitu is None: insitu = rcParams['insitu']
2983 if insitu:
2984 workscan = self
2985 else:
2986 workscan = self.copy()
2987
2988 #if mask is None: mask = [True for i in xrange(workscan.nchan())]
2989 if mask is None: mask = []
2990 if npiece is None: npiece = 2
2991 if clipthresh is None: clipthresh = 3.0
2992 if clipniter is None: clipniter = 0
2993 if edge is None: edge = (0, 0)
2994 if threshold is None: threshold = 3
2995 if chan_avg_limit is None: chan_avg_limit = 1
2996 if plot is None: plot = False
2997 if getresidual is None: getresidual = True
2998 if showprogress is None: showprogress = True
2999 if minnrow is None: minnrow = 1000
3000 if outlog is None: outlog = False
3001 if blfile is None: blfile = ''
3002 if csvformat is None: csvformat = False
3003
3004 if csvformat:
3005 scsvformat = "T"
3006 else:
3007 scsvformat = "F"
3008
3009 #CURRENTLY, PLOT=true UNAVAILABLE UNTIL cubic spline fitting is implemented as a fitter method.
3010 workscan._auto_cspline_baseline(mask, npiece, clipthresh,
3011 clipniter,
3012 normalise_edge_param(edge),
3013 threshold,
3014 chan_avg_limit, getresidual,
3015 pack_progress_params(showprogress,
3016 minnrow),
3017 outlog, scsvformat+blfile)
3018 workscan._add_history("auto_cspline_baseline", varlist)
3019
3020 if insitu:
3021 self._assign(workscan)
3022 else:
3023 return workscan
3024
3025 except RuntimeError, e:
3026 raise_fitting_failure_exception(e)
3027
3028 @asaplog_post_dec
3029 def chebyshev_baseline(self, insitu=None, mask=None, order=None,
3030 clipthresh=None, clipniter=None, plot=None,
3031 getresidual=None, showprogress=None, minnrow=None,
3032 outlog=None, blfile=None, csvformat=None):
3033 """\
3034 Return a scan which has been baselined (all rows) by Chebyshev polynomials.
3035
3036 Parameters:
3037 insitu: If False a new scantable is returned.
3038 Otherwise, the scaling is done in-situ
3039 The default is taken from .asaprc (False)
3040 mask: An optional mask
3041 order: the maximum order of Chebyshev polynomial (default is 5)
3042 clipthresh: Clipping threshold. (default is 3.0, unit: sigma)
3043 clipniter: maximum number of iteration of 'clipthresh'-sigma
3044 clipping (default is 0)
3045 plot: *** CURRENTLY UNAVAILABLE, ALWAYS FALSE ***
3046 plot the fit and the residual. In this each
3047 indivual fit has to be approved, by typing 'y'
3048 or 'n'
3049 getresidual: if False, returns best-fit values instead of
3050 residual. (default is True)
3051 showprogress: show progress status for large data.
3052 default is True.
3053 minnrow: minimum number of input spectra to show.
3054 default is 1000.
3055 outlog: Output the coefficients of the best-fit
3056 function to logger (default is False)
3057 blfile: Name of a text file in which the best-fit
3058 parameter values to be written
3059 (default is "": no file/logger output)
3060 csvformat: if True blfile is csv-formatted, default is False.
3061
3062 Example:
3063 # return a scan baselined by a cubic spline consisting of 2 pieces
3064 # (i.e., 1 internal knot),
3065 # also with 3-sigma clipping, iteration up to 4 times
3066 bscan = scan.cspline_baseline(npiece=2,clipthresh=3.0,clipniter=4)
3067
3068 Note:
3069 The best-fit parameter values output in logger and/or blfile are now
3070 based on specunit of 'channel'.
3071 """
3072
3073 try:
3074 varlist = vars()
3075
3076 if insitu is None: insitu = rcParams['insitu']
3077 if insitu:
3078 workscan = self
3079 else:
3080 workscan = self.copy()
3081
3082 #if mask is None: mask = [True for i in xrange(workscan.nchan())]
3083 if mask is None: mask = []
3084 if order is None: order = 5
3085 if clipthresh is None: clipthresh = 3.0
3086 if clipniter is None: clipniter = 0
3087 if plot is None: plot = False
3088 if getresidual is None: getresidual = True
3089 if showprogress is None: showprogress = True
3090 if minnrow is None: minnrow = 1000
3091 if outlog is None: outlog = False
3092 if blfile is None: blfile = ''
3093 if csvformat is None: csvformat = False
3094
3095 if csvformat:
3096 scsvformat = "T"
3097 else:
3098 scsvformat = "F"
3099
3100 #CURRENTLY, PLOT=true UNAVAILABLE UNTIL cubic spline fitting is implemented as a fitter method.
3101 workscan._chebyshev_baseline(mask, order, clipthresh, clipniter,
3102 getresidual,
3103 pack_progress_params(showprogress,
3104 minnrow),
3105 outlog, scsvformat+blfile)
3106 workscan._add_history("chebyshev_baseline", varlist)
3107
3108 if insitu:
3109 self._assign(workscan)
3110 else:
3111 return workscan
3112
3113 except RuntimeError, e:
3114 raise_fitting_failure_exception(e)
3115
3116 @asaplog_post_dec
3117 def auto_chebyshev_baseline(self, insitu=None, mask=None, order=None,
3118 clipthresh=None, clipniter=None,
3119 edge=None, threshold=None, chan_avg_limit=None,
3120 getresidual=None, plot=None,
3121 showprogress=None, minnrow=None, outlog=None,
3122 blfile=None, csvformat=None):
3123 """\
3124 Return a scan which has been baselined (all rows) by Chebyshev polynomials.
3125 Spectral lines are detected first using linefinder and masked out
3126 to avoid them affecting the baseline solution.
3127
3128 Parameters:
3129 insitu: if False a new scantable is returned.
3130 Otherwise, the scaling is done in-situ
3131 The default is taken from .asaprc (False)
3132 mask: an optional mask retreived from scantable
3133 order: the maximum order of Chebyshev polynomial (default is 5)
3134 clipthresh: Clipping threshold. (default is 3.0, unit: sigma)
3135 clipniter: maximum number of iteration of 'clipthresh'-sigma
3136 clipping (default is 0)
3137 edge: an optional number of channel to drop at
3138 the edge of spectrum. If only one value is
3139 specified, the same number will be dropped
3140 from both sides of the spectrum. Default
3141 is to keep all channels. Nested tuples
3142 represent individual edge selection for
3143 different IFs (a number of spectral channels
3144 can be different)
3145 threshold: the threshold used by line finder. It is
3146 better to keep it large as only strong lines
3147 affect the baseline solution.
3148 chan_avg_limit: a maximum number of consequtive spectral
3149 channels to average during the search of
3150 weak and broad lines. The default is no
3151 averaging (and no search for weak lines).
3152 If such lines can affect the fitted baseline
3153 (e.g. a high order polynomial is fitted),
3154 increase this parameter (usually values up
3155 to 8 are reasonable). Most users of this
3156 method should find the default value sufficient.
3157 plot: *** CURRENTLY UNAVAILABLE, ALWAYS FALSE ***
3158 plot the fit and the residual. In this each
3159 indivual fit has to be approved, by typing 'y'
3160 or 'n'
3161 getresidual: if False, returns best-fit values instead of
3162 residual. (default is True)
3163 showprogress: show progress status for large data.
3164 default is True.
3165 minnrow: minimum number of input spectra to show.
3166 default is 1000.
3167 outlog: Output the coefficients of the best-fit
3168 function to logger (default is False)
3169 blfile: Name of a text file in which the best-fit
3170 parameter values to be written
3171 (default is "": no file/logger output)
3172 csvformat: if True blfile is csv-formatted, default is False.
3173
3174 Example:
3175 bscan = scan.auto_cspline_baseline(npiece=3, insitu=False)
3176
3177 Note:
3178 The best-fit parameter values output in logger and/or blfile are now
3179 based on specunit of 'channel'.
3180 """
3181
3182 try:
3183 varlist = vars()
3184
3185 if insitu is None: insitu = rcParams['insitu']
3186 if insitu:
3187 workscan = self
3188 else:
3189 workscan = self.copy()
3190
3191 #if mask is None: mask = [True for i in xrange(workscan.nchan())]
3192 if mask is None: mask = []
3193 if order is None: order = 5
3194 if clipthresh is None: clipthresh = 3.0
3195 if clipniter is None: clipniter = 0
3196 if edge is None: edge = (0, 0)
3197 if threshold is None: threshold = 3
3198 if chan_avg_limit is None: chan_avg_limit = 1
3199 if plot is None: plot = False
3200 if getresidual is None: getresidual = True
3201 if showprogress is None: showprogress = True
3202 if minnrow is None: minnrow = 1000
3203 if outlog is None: outlog = False
3204 if blfile is None: blfile = ''
3205 if csvformat is None: csvformat = False
3206
3207 if csvformat:
3208 scsvformat = "T"
3209 else:
3210 scsvformat = "F"
3211
3212 #CURRENTLY, PLOT=true UNAVAILABLE UNTIL cubic spline fitting is implemented as a fitter method.
3213 workscan._auto_chebyshev_baseline(mask, order, clipthresh,
3214 clipniter,
3215 normalise_edge_param(edge),
3216 threshold,
3217 chan_avg_limit, getresidual,
3218 pack_progress_params(showprogress,
3219 minnrow),
3220 outlog, scsvformat+blfile)
3221 workscan._add_history("auto_chebyshev_baseline", varlist)
3222
3223 if insitu:
3224 self._assign(workscan)
3225 else:
3226 return workscan
3227
3228 except RuntimeError, e:
3229 raise_fitting_failure_exception(e)
3230
3231 @asaplog_post_dec
3232 def poly_baseline(self, mask=None, order=None, insitu=None, plot=None,
3233 getresidual=None, showprogress=None, minnrow=None,
3234 outlog=None, blfile=None, csvformat=None):
3235 """\
3236 Return a scan which has been baselined (all rows) by a polynomial.
3237 Parameters:
3238 insitu: if False a new scantable is returned.
3239 Otherwise, the scaling is done in-situ
3240 The default is taken from .asaprc (False)
3241 mask: an optional mask
3242 order: the order of the polynomial (default is 0)
3243 plot: plot the fit and the residual. In this each
3244 indivual fit has to be approved, by typing 'y'
3245 or 'n'
3246 getresidual: if False, returns best-fit values instead of
3247 residual. (default is True)
3248 showprogress: show progress status for large data.
3249 default is True.
3250 minnrow: minimum number of input spectra to show.
3251 default is 1000.
3252 outlog: Output the coefficients of the best-fit
3253 function to logger (default is False)
3254 blfile: Name of a text file in which the best-fit
3255 parameter values to be written
3256 (default is "": no file/logger output)
3257 csvformat: if True blfile is csv-formatted, default is False.
3258
3259 Example:
3260 # return a scan baselined by a third order polynomial,
3261 # not using a mask
3262 bscan = scan.poly_baseline(order=3)
3263 """
3264
3265 try:
3266 varlist = vars()
3267
3268 if insitu is None:
3269 insitu = rcParams["insitu"]
3270 if insitu:
3271 workscan = self
3272 else:
3273 workscan = self.copy()
3274
3275 #if mask is None: mask = [True for i in \
3276 # xrange(workscan.nchan())]
3277 if mask is None: mask = []
3278 if order is None: order = 0
3279 if plot is None: plot = False
3280 if getresidual is None: getresidual = True
3281 if showprogress is None: showprogress = True
3282 if minnrow is None: minnrow = 1000
3283 if outlog is None: outlog = False
3284 if blfile is None: blfile = ""
3285 if csvformat is None: csvformat = False
3286
3287 if csvformat:
3288 scsvformat = "T"
3289 else:
3290 scsvformat = "F"
3291
3292 if plot:
3293 outblfile = (blfile != "") and \
3294 os.path.exists(os.path.expanduser(
3295 os.path.expandvars(blfile))
3296 )
3297 if outblfile:
3298 blf = open(blfile, "a")
3299
3300 f = fitter()
3301 f.set_function(lpoly=order)
3302
3303 rows = xrange(workscan.nrow())
3304 #if len(rows) > 0: workscan._init_blinfo()
3305
3306 action = "H"
3307 for r in rows:
3308 f.x = workscan._getabcissa(r)
3309 f.y = workscan._getspectrum(r)
3310 if mask:
3311 f.mask = mask_and(mask, workscan._getmask(r)) # (CAS-1434)
3312 else: # mask=None
3313 f.mask = workscan._getmask(r)
3314
3315 f.data = None
3316 f.fit()
3317
3318 if action != "Y": # skip plotting when accepting all
3319 f.plot(residual=True)
3320 #accept_fit = raw_input("Accept fit ( [y]/n ): ")
3321 #if accept_fit.upper() == "N":
3322 # #workscan._append_blinfo(None, None, None)
3323 # continue
3324 accept_fit = self._get_verify_action("Accept fit?",action)
3325 if r == 0: action = None
3326 if accept_fit.upper() == "N":
3327 continue
3328 elif accept_fit.upper() == "R":
3329 break
3330 elif accept_fit.upper() == "A":
3331 action = "Y"
3332
3333 blpars = f.get_parameters()
3334 masklist = workscan.get_masklist(f.mask, row=r, silent=True)
3335 #workscan._append_blinfo(blpars, masklist, f.mask)
3336 workscan._setspectrum((f.fitter.getresidual()
3337 if getresidual else f.fitter.getfit()), r)
3338
3339 if outblfile:
3340 rms = workscan.get_rms(f.mask, r)
3341 dataout = \
3342 workscan.format_blparams_row(blpars["params"],
3343 blpars["fixed"],
3344 rms, str(masklist),
3345 r, True, csvformat)
3346 blf.write(dataout)
3347
3348 f._p.unmap()
3349 f._p = None
3350
3351 if outblfile:
3352 blf.close()
3353 else:
3354 workscan._poly_baseline(mask, order, getresidual,
3355 pack_progress_params(showprogress,
3356 minnrow),
3357 outlog, scsvformat+blfile)
3358
3359 workscan._add_history("poly_baseline", varlist)
3360
3361 if insitu:
3362 self._assign(workscan)
3363 else:
3364 return workscan
3365
3366 except RuntimeError, e:
3367 raise_fitting_failure_exception(e)
3368
3369 @asaplog_post_dec
3370 def auto_poly_baseline(self, mask=None, order=None, edge=None,
3371 threshold=None, chan_avg_limit=None,
3372 plot=None, insitu=None,
3373 getresidual=None, showprogress=None,
3374 minnrow=None, outlog=None, blfile=None, csvformat=None):
3375 """\
3376 Return a scan which has been baselined (all rows) by a polynomial.
3377 Spectral lines are detected first using linefinder and masked out
3378 to avoid them affecting the baseline solution.
3379
3380 Parameters:
3381 insitu: if False a new scantable is returned.
3382 Otherwise, the scaling is done in-situ
3383 The default is taken from .asaprc (False)
3384 mask: an optional mask retreived from scantable
3385 order: the order of the polynomial (default is 0)
3386 edge: an optional number of channel to drop at
3387 the edge of spectrum. If only one value is
3388 specified, the same number will be dropped
3389 from both sides of the spectrum. Default
3390 is to keep all channels. Nested tuples
3391 represent individual edge selection for
3392 different IFs (a number of spectral channels
3393 can be different)
3394 threshold: the threshold used by line finder. It is
3395 better to keep it large as only strong lines
3396 affect the baseline solution.
3397 chan_avg_limit: a maximum number of consequtive spectral
3398 channels to average during the search of
3399 weak and broad lines. The default is no
3400 averaging (and no search for weak lines).
3401 If such lines can affect the fitted baseline
3402 (e.g. a high order polynomial is fitted),
3403 increase this parameter (usually values up
3404 to 8 are reasonable). Most users of this
3405 method should find the default value sufficient.
3406 plot: plot the fit and the residual. In this each
3407 indivual fit has to be approved, by typing 'y'
3408 or 'n'
3409 getresidual: if False, returns best-fit values instead of
3410 residual. (default is True)
3411 showprogress: show progress status for large data.
3412 default is True.
3413 minnrow: minimum number of input spectra to show.
3414 default is 1000.
3415 outlog: Output the coefficients of the best-fit
3416 function to logger (default is False)
3417 blfile: Name of a text file in which the best-fit
3418 parameter values to be written
3419 (default is "": no file/logger output)
3420 csvformat: if True blfile is csv-formatted, default is False.
3421
3422 Example:
3423 bscan = scan.auto_poly_baseline(order=7, insitu=False)
3424 """
3425
3426 try:
3427 varlist = vars()
3428
3429 if insitu is None:
3430 insitu = rcParams['insitu']
3431 if insitu:
3432 workscan = self
3433 else:
3434 workscan = self.copy()
3435
3436 #if mask is None: mask = [True for i in xrange(workscan.nchan())]
3437 if mask is None: mask = []
3438 if order is None: order = 0
3439 if edge is None: edge = (0, 0)
3440 if threshold is None: threshold = 3
3441 if chan_avg_limit is None: chan_avg_limit = 1
3442 if plot is None: plot = False
3443 if getresidual is None: getresidual = True
3444 if showprogress is None: showprogress = True
3445 if minnrow is None: minnrow = 1000
3446 if outlog is None: outlog = False
3447 if blfile is None: blfile = ''
3448 if csvformat is None: csvformat = False
3449
3450 if csvformat:
3451 scsvformat = "T"
3452 else:
3453 scsvformat = "F"
3454
3455 edge = normalise_edge_param(edge)
3456
3457 if plot:
3458 outblfile = (blfile != "") and \
3459 os.path.exists(os.path.expanduser(os.path.expandvars(blfile)))
3460 if outblfile: blf = open(blfile, "a")
3461
3462 from asap.asaplinefind import linefinder
3463 fl = linefinder()
3464 fl.set_options(threshold=threshold, avg_limit=chan_avg_limit)
3465 fl.set_scan(workscan)
3466
3467 f = fitter()
3468 f.set_function(lpoly=order)
3469
3470 rows = xrange(workscan.nrow())
3471 #if len(rows) > 0: workscan._init_blinfo()
3472
3473 action = "H"
3474 for r in rows:
3475 idx = 2*workscan.getif(r)
3476 if mask:
3477 msk = mask_and(mask, workscan._getmask(r)) # (CAS-1434)
3478 else: # mask=None
3479 msk = workscan._getmask(r)
3480 fl.find_lines(r, msk, edge[idx:idx+2])
3481
3482 f.x = workscan._getabcissa(r)
3483 f.y = workscan._getspectrum(r)
3484 f.mask = fl.get_mask()
3485 f.data = None
3486 f.fit()
3487
3488 if action != "Y": # skip plotting when accepting all
3489 f.plot(residual=True)
3490 #accept_fit = raw_input("Accept fit ( [y]/n ): ")
3491 accept_fit = self._get_verify_action("Accept fit?",action)
3492 if r == 0: action = None
3493 if accept_fit.upper() == "N":
3494 #workscan._append_blinfo(None, None, None)
3495 continue
3496 elif accept_fit.upper() == "R":
3497 break
3498 elif accept_fit.upper() == "A":
3499 action = "Y"
3500
3501 blpars = f.get_parameters()
3502 masklist = workscan.get_masklist(f.mask, row=r, silent=True)
3503 #workscan._append_blinfo(blpars, masklist, f.mask)
3504 workscan._setspectrum(
3505 (f.fitter.getresidual() if getresidual
3506 else f.fitter.getfit()), r
3507 )
3508
3509 if outblfile:
3510 rms = workscan.get_rms(f.mask, r)
3511 dataout = \
3512 workscan.format_blparams_row(blpars["params"],
3513 blpars["fixed"],
3514 rms, str(masklist),
3515 r, True, csvformat)
3516 blf.write(dataout)
3517
3518 f._p.unmap()
3519 f._p = None
3520
3521 if outblfile: blf.close()
3522 else:
3523 workscan._auto_poly_baseline(mask, order, edge, threshold,
3524 chan_avg_limit, getresidual,
3525 pack_progress_params(showprogress,
3526 minnrow),
3527 outlog, scsvformat+blfile)
3528
3529 workscan._add_history("auto_poly_baseline", varlist)
3530
3531 if insitu:
3532 self._assign(workscan)
3533 else:
3534 return workscan
3535
3536 except RuntimeError, e:
3537 raise_fitting_failure_exception(e)
3538
3539 def _init_blinfo(self):
3540 """\
3541 Initialise the following three auxiliary members:
3542 blpars : parameters of the best-fit baseline,
3543 masklists : mask data (edge positions of masked channels) and
3544 actualmask : mask data (in boolean list),
3545 to keep for use later (including output to logger/text files).
3546 Used by poly_baseline() and auto_poly_baseline() in case of
3547 'plot=True'.
3548 """
3549 self.blpars = []
3550 self.masklists = []
3551 self.actualmask = []
3552 return
3553
3554 def _append_blinfo(self, data_blpars, data_masklists, data_actualmask):
3555 """\
3556 Append baseline-fitting related info to blpars, masklist and
3557 actualmask.
3558 """
3559 self.blpars.append(data_blpars)
3560 self.masklists.append(data_masklists)
3561 self.actualmask.append(data_actualmask)
3562 return
3563
3564 @asaplog_post_dec
3565 def rotate_linpolphase(self, angle):
3566 """\
3567 Rotate the phase of the complex polarization O=Q+iU correlation.
3568 This is always done in situ in the raw data. So if you call this
3569 function more than once then each call rotates the phase further.
3570
3571 Parameters:
3572
3573 angle: The angle (degrees) to rotate (add) by.
3574
3575 Example::
3576
3577 scan.rotate_linpolphase(2.3)
3578
3579 """
3580 varlist = vars()
3581 self._math._rotate_linpolphase(self, angle)
3582 self._add_history("rotate_linpolphase", varlist)
3583 return
3584
3585 @asaplog_post_dec
3586 def rotate_xyphase(self, angle):
3587 """\
3588 Rotate the phase of the XY correlation. This is always done in situ
3589 in the data. So if you call this function more than once
3590 then each call rotates the phase further.
3591
3592 Parameters:
3593
3594 angle: The angle (degrees) to rotate (add) by.
3595
3596 Example::
3597
3598 scan.rotate_xyphase(2.3)
3599
3600 """
3601 varlist = vars()
3602 self._math._rotate_xyphase(self, angle)
3603 self._add_history("rotate_xyphase", varlist)
3604 return
3605
3606 @asaplog_post_dec
3607 def swap_linears(self):
3608 """\
3609 Swap the linear polarisations XX and YY, or better the first two
3610 polarisations as this also works for ciculars.
3611 """
3612 varlist = vars()
3613 self._math._swap_linears(self)
3614 self._add_history("swap_linears", varlist)
3615 return
3616
3617 @asaplog_post_dec
3618 def invert_phase(self):
3619 """\
3620 Invert the phase of the complex polarisation
3621 """
3622 varlist = vars()
3623 self._math._invert_phase(self)
3624 self._add_history("invert_phase", varlist)
3625 return
3626
3627 @asaplog_post_dec
3628 def add(self, offset, insitu=None):
3629 """\
3630 Return a scan where all spectra have the offset added
3631
3632 Parameters:
3633
3634 offset: the offset
3635
3636 insitu: if False a new scantable is returned.
3637 Otherwise, the scaling is done in-situ
3638 The default is taken from .asaprc (False)
3639
3640 """
3641 if insitu is None: insitu = rcParams['insitu']
3642 self._math._setinsitu(insitu)
3643 varlist = vars()
3644 s = scantable(self._math._unaryop(self, offset, "ADD", False))
3645 s._add_history("add", varlist)
3646 if insitu:
3647 self._assign(s)
3648 else:
3649 return s
3650
3651 @asaplog_post_dec
3652 def scale(self, factor, tsys=True, insitu=None):
3653 """\
3654
3655 Return a scan where all spectra are scaled by the given 'factor'
3656
3657 Parameters:
3658
3659 factor: the scaling factor (float or 1D float list)
3660
3661 insitu: if False a new scantable is returned.
3662 Otherwise, the scaling is done in-situ
3663 The default is taken from .asaprc (False)
3664
3665 tsys: if True (default) then apply the operation to Tsys
3666 as well as the data
3667
3668 """
3669 if insitu is None: insitu = rcParams['insitu']
3670 self._math._setinsitu(insitu)
3671 varlist = vars()
3672 s = None
3673 import numpy
3674 if isinstance(factor, list) or isinstance(factor, numpy.ndarray):
3675 if isinstance(factor[0], list) or isinstance(factor[0],
3676 numpy.ndarray):
3677 from asapmath import _array2dOp
3678 s = _array2dOp( self, factor, "MUL", tsys, insitu )
3679 else:
3680 s = scantable( self._math._arrayop( self, factor,
3681 "MUL", tsys ) )
3682 else:
3683 s = scantable(self._math._unaryop(self, factor, "MUL", tsys))
3684 s._add_history("scale", varlist)
3685 if insitu:
3686 self._assign(s)
3687 else:
3688 return s
3689
3690 @preserve_selection
3691 def set_sourcetype(self, match, matchtype="pattern",
3692 sourcetype="reference"):
3693 """\
3694 Set the type of the source to be an source or reference scan
3695 using the provided pattern.
3696
3697 Parameters:
3698
3699 match: a Unix style pattern, regular expression or selector
3700
3701 matchtype: 'pattern' (default) UNIX style pattern or
3702 'regex' regular expression
3703
3704 sourcetype: the type of the source to use (source/reference)
3705
3706 """
3707 varlist = vars()
3708 stype = -1
3709 if sourcetype.lower().startswith("r") or sourcetype.lower() == "off":
3710 stype = 1
3711 elif sourcetype.lower().startswith("s") or sourcetype.lower() == "on":
3712 stype = 0
3713 else:
3714 raise ValueError("Illegal sourcetype use s(ource)/on or r(eference)/off")
3715 if matchtype.lower().startswith("p"):
3716 matchtype = "pattern"
3717 elif matchtype.lower().startswith("r"):
3718 matchtype = "regex"
3719 else:
3720 raise ValueError("Illegal matchtype, use p(attern) or r(egex)")
3721 sel = selector()
3722 if isinstance(match, selector):
3723 sel = match
3724 else:
3725 sel.set_query("SRCNAME=%s('%s')" % (matchtype, match))
3726 self.set_selection(sel)
3727 self._setsourcetype(stype)
3728 self._add_history("set_sourcetype", varlist)
3729
3730 @asaplog_post_dec
3731 @preserve_selection
3732 def auto_quotient(self, preserve=True, mode='paired', verify=False):
3733 """\
3734 This function allows to build quotients automatically.
3735 It assumes the observation to have the same number of
3736 "ons" and "offs"
3737
3738 Parameters:
3739
3740 preserve: you can preserve (default) the continuum or
3741 remove it. The equations used are
3742
3743 preserve: Output = Toff * (on/off) - Toff
3744
3745 remove: Output = Toff * (on/off) - Ton
3746
3747 mode: the on/off detection mode
3748 'paired' (default)
3749 identifies 'off' scans by the
3750 trailing '_R' (Mopra/Parkes) or
3751 '_e'/'_w' (Tid) and matches
3752 on/off pairs from the observing pattern
3753 'time'
3754 finds the closest off in time
3755
3756 .. todo:: verify argument is not implemented
3757
3758 """
3759 varlist = vars()
3760 modes = ["time", "paired"]
3761 if not mode in modes:
3762 msg = "please provide valid mode. Valid modes are %s" % (modes)
3763 raise ValueError(msg)
3764 s = None
3765 if mode.lower() == "paired":
3766 sel = self.get_selection()
3767 sel.set_query("SRCTYPE==psoff")
3768 self.set_selection(sel)
3769 offs = self.copy()
3770 sel.set_query("SRCTYPE==pson")
3771 self.set_selection(sel)
3772 ons = self.copy()
3773 s = scantable(self._math._quotient(ons, offs, preserve))
3774 elif mode.lower() == "time":
3775 s = scantable(self._math._auto_quotient(self, mode, preserve))
3776 s._add_history("auto_quotient", varlist)
3777 return s
3778
3779 @asaplog_post_dec
3780 def mx_quotient(self, mask = None, weight='median', preserve=True):
3781 """\
3782 Form a quotient using "off" beams when observing in "MX" mode.
3783
3784 Parameters:
3785
3786 mask: an optional mask to be used when weight == 'stddev'
3787
3788 weight: How to average the off beams. Default is 'median'.
3789
3790 preserve: you can preserve (default) the continuum or
3791 remove it. The equations used are:
3792
3793 preserve: Output = Toff * (on/off) - Toff
3794
3795 remove: Output = Toff * (on/off) - Ton
3796
3797 """
3798 mask = mask or ()
3799 varlist = vars()
3800 on = scantable(self._math._mx_extract(self, 'on'))
3801 preoff = scantable(self._math._mx_extract(self, 'off'))
3802 off = preoff.average_time(mask=mask, weight=weight, scanav=False)
3803 from asapmath import quotient
3804 q = quotient(on, off, preserve)
3805 q._add_history("mx_quotient", varlist)
3806 return q
3807
3808 @asaplog_post_dec
3809 def freq_switch(self, insitu=None):
3810 """\
3811 Apply frequency switching to the data.
3812
3813 Parameters:
3814
3815 insitu: if False a new scantable is returned.
3816 Otherwise, the swictching is done in-situ
3817 The default is taken from .asaprc (False)
3818
3819 """
3820 if insitu is None: insitu = rcParams['insitu']
3821 self._math._setinsitu(insitu)
3822 varlist = vars()
3823 s = scantable(self._math._freqswitch(self))
3824 s._add_history("freq_switch", varlist)
3825 if insitu:
3826 self._assign(s)
3827 else:
3828 return s
3829
3830 @asaplog_post_dec
3831 def recalc_azel(self):
3832 """Recalculate the azimuth and elevation for each position."""
3833 varlist = vars()
3834 self._recalcazel()
3835 self._add_history("recalc_azel", varlist)
3836 return
3837
3838 @asaplog_post_dec
3839 def __add__(self, other):
3840 """
3841 implicit on all axes and on Tsys
3842 """
3843 varlist = vars()
3844 s = self.__op( other, "ADD" )
3845 s._add_history("operator +", varlist)
3846 return s
3847
3848 @asaplog_post_dec
3849 def __sub__(self, other):
3850 """
3851 implicit on all axes and on Tsys
3852 """
3853 varlist = vars()
3854 s = self.__op( other, "SUB" )
3855 s._add_history("operator -", varlist)
3856 return s
3857
3858 @asaplog_post_dec
3859 def __mul__(self, other):
3860 """
3861 implicit on all axes and on Tsys
3862 """
3863 varlist = vars()
3864 s = self.__op( other, "MUL" ) ;
3865 s._add_history("operator *", varlist)
3866 return s
3867
3868
3869 @asaplog_post_dec
3870 def __div__(self, other):
3871 """
3872 implicit on all axes and on Tsys
3873 """
3874 varlist = vars()
3875 s = self.__op( other, "DIV" )
3876 s._add_history("operator /", varlist)
3877 return s
3878
3879 @asaplog_post_dec
3880 def __op( self, other, mode ):
3881 s = None
3882 if isinstance(other, scantable):
3883 s = scantable(self._math._binaryop(self, other, mode))
3884 elif isinstance(other, float):
3885 if other == 0.0:
3886 raise ZeroDivisionError("Dividing by zero is not recommended")
3887 s = scantable(self._math._unaryop(self, other, mode, False))
3888 elif isinstance(other, list) or isinstance(other, numpy.ndarray):
3889 if isinstance(other[0], list) \
3890 or isinstance(other[0], numpy.ndarray):
3891 from asapmath import _array2dOp
3892 s = _array2dOp( self, other, mode, False )
3893 else:
3894 s = scantable( self._math._arrayop( self, other,
3895 mode, False ) )
3896 else:
3897 raise TypeError("Other input is not a scantable or float value")
3898 return s
3899
3900 @asaplog_post_dec
3901 def get_fit(self, row=0):
3902 """\
3903 Print or return the stored fits for a row in the scantable
3904
3905 Parameters:
3906
3907 row: the row which the fit has been applied to.
3908
3909 """
3910 if row > self.nrow():
3911 return
3912 from asap.asapfit import asapfit
3913 fit = asapfit(self._getfit(row))
3914 asaplog.push( '%s' %(fit) )
3915 return fit.as_dict()
3916
3917 @preserve_selection
3918 def flag_nans(self):
3919 """\
3920 Utility function to flag NaN values in the scantable.
3921 """
3922 import numpy
3923 basesel = self.get_selection()
3924 for i in range(self.nrow()):
3925 sel = self.get_row_selector(i)
3926 self.set_selection(basesel+sel)
3927 nans = numpy.isnan(self._getspectrum(0))
3928 if numpy.any(nans):
3929 bnans = [ bool(v) for v in nans]
3930 self.flag(bnans)
3931
3932 def get_row_selector(self, rowno):
3933 return selector(rows=[rowno])
3934
3935 def _add_history(self, funcname, parameters):
3936 if not rcParams['scantable.history']:
3937 return
3938 # create date
3939 sep = "##"
3940 from datetime import datetime
3941 dstr = datetime.now().strftime('%Y/%m/%d %H:%M:%S')
3942 hist = dstr+sep
3943 hist += funcname+sep#cdate+sep
3944 if parameters.has_key('self'):
3945 del parameters['self']
3946 for k, v in parameters.iteritems():
3947 if type(v) is dict:
3948 for k2, v2 in v.iteritems():
3949 hist += k2
3950 hist += "="
3951 if isinstance(v2, scantable):
3952 hist += 'scantable'
3953 elif k2 == 'mask':
3954 if isinstance(v2, list) or isinstance(v2, tuple):
3955 hist += str(self._zip_mask(v2))
3956 else:
3957 hist += str(v2)
3958 else:
3959 hist += str(v2)
3960 else:
3961 hist += k
3962 hist += "="
3963 if isinstance(v, scantable):
3964 hist += 'scantable'
3965 elif k == 'mask':
3966 if isinstance(v, list) or isinstance(v, tuple):
3967 hist += str(self._zip_mask(v))
3968 else:
3969 hist += str(v)
3970 else:
3971 hist += str(v)
3972 hist += sep
3973 hist = hist[:-2] # remove trailing '##'
3974 self._addhistory(hist)
3975
3976
3977 def _zip_mask(self, mask):
3978 mask = list(mask)
3979 i = 0
3980 segments = []
3981 while mask[i:].count(1):
3982 i += mask[i:].index(1)
3983 if mask[i:].count(0):
3984 j = i + mask[i:].index(0)
3985 else:
3986 j = len(mask)
3987 segments.append([i, j])
3988 i = j
3989 return segments
3990
3991 def _get_ordinate_label(self):
3992 fu = "("+self.get_fluxunit()+")"
3993 import re
3994 lbl = "Intensity"
3995 if re.match(".K.", fu):
3996 lbl = "Brightness Temperature "+ fu
3997 elif re.match(".Jy.", fu):
3998 lbl = "Flux density "+ fu
3999 return lbl
4000
4001 def _check_ifs(self):
4002# return len(set([self.nchan(i) for i in self.getifnos()])) == 1
4003 nchans = [self.nchan(i) for i in self.getifnos()]
4004 nchans = filter(lambda t: t > 0, nchans)
4005 return (sum(nchans)/len(nchans) == nchans[0])
4006
4007 @asaplog_post_dec
4008 def _fill(self, names, unit, average, opts={}):
4009 first = True
4010 fullnames = []
4011 for name in names:
4012 name = os.path.expandvars(name)
4013 name = os.path.expanduser(name)
4014 if not os.path.exists(name):
4015 msg = "File '%s' does not exists" % (name)
4016 raise IOError(msg)
4017 fullnames.append(name)
4018 if average:
4019 asaplog.push('Auto averaging integrations')
4020 stype = int(rcParams['scantable.storage'].lower() == 'disk')
4021 for name in fullnames:
4022 tbl = Scantable(stype)
4023 if is_ms( name ):
4024 r = msfiller( tbl )
4025 else:
4026 r = filler( tbl )
4027 msg = "Importing %s..." % (name)
4028 asaplog.push(msg, False)
4029 r.open(name, opts)
4030 rx = rcParams['scantable.reference']
4031 r.setreferenceexpr(rx)
4032 r.fill()
4033 if average:
4034 tbl = self._math._average((tbl, ), (), 'NONE', 'SCAN')
4035 if not first:
4036 tbl = self._math._merge([self, tbl])
4037 Scantable.__init__(self, tbl)
4038 r.close()
4039 del r, tbl
4040 first = False
4041 #flush log
4042 asaplog.post()
4043 if unit is not None:
4044 self.set_fluxunit(unit)
4045 if not is_casapy():
4046 self.set_freqframe(rcParams['scantable.freqframe'])
4047
4048 def _get_verify_action( self, msg, action=None ):
4049 valid_act = ['Y', 'N', 'A', 'R']
4050 if not action or not isinstance(action, str):
4051 action = raw_input("%s [Y/n/a/r] (h for help): " % msg)
4052 if action == '':
4053 return "Y"
4054 elif (action.upper()[0] in valid_act):
4055 return action.upper()[0]
4056 elif (action.upper()[0] in ['H','?']):
4057 print "Available actions of verification [Y|n|a|r]"
4058 print " Y : Yes for current data (default)"
4059 print " N : No for current data"
4060 print " A : Accept all in the following and exit from verification"
4061 print " R : Reject all in the following and exit from verification"
4062 print " H or ?: help (show this message)"
4063 return self._get_verify_action(msg)
4064 else:
4065 return 'Y'
4066
4067 def __getitem__(self, key):
4068 if key < 0:
4069 key += self.nrow()
4070 if key >= self.nrow():
4071 raise IndexError("Row index out of range.")
4072 return self._getspectrum(key)
4073
4074 def __setitem__(self, key, value):
4075 if key < 0:
4076 key += self.nrow()
4077 if key >= self.nrow():
4078 raise IndexError("Row index out of range.")
4079 if not hasattr(value, "__len__") or \
4080 len(value) > self.nchan(self.getif(key)):
4081 raise ValueError("Spectrum length doesn't match.")
4082 return self._setspectrum(value, key)
4083
4084 def __len__(self):
4085 return self.nrow()
4086
4087 def __iter__(self):
4088 for i in range(len(self)):
4089 yield self[i]
Note: See TracBrowser for help on using the repository browser.