source: trunk/python/scantable.py@ 1993

Last change on this file since 1993 was 1992, checked in by Kana Sugimoto, 14 years ago

New Development: No

JIRA Issue: No (minor improvements)

Ready for Test: Yes

Interface Changes: No

What Interface Changed:

Test Programs: run scantable.get_row(rowno) and scantable.get_row selector(rowno)

to select single row, rowno, in scantable.

Put in Release Notes: No

Module(s): scantable class

Description:

More straightforward row selection by using a parameter rows in scantable.get_row
and scantable.get_row_selector


  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 93.3 KB
Line 
1"""This module defines the scantable class."""
2
3import os
4import numpy
5try:
6 from functools import wraps as wraps_dec
7except ImportError:
8 from asap.compatibility import wraps as wraps_dec
9
10from asap.env import is_casapy
11from asap._asap import Scantable
12from asap._asap import filler
13from asap.parameters import rcParams
14from asap.logging import asaplog, asaplog_post_dec
15from asap.selector import selector
16from asap.linecatalog import linecatalog
17from asap.coordinate import coordinate
18from asap.utils import _n_bools, mask_not, mask_and, mask_or, page
19from asap.asapfitter import fitter
20
21
22def preserve_selection(func):
23 @wraps_dec(func)
24 def wrap(obj, *args, **kw):
25 basesel = obj.get_selection()
26 try:
27 val = func(obj, *args, **kw)
28 finally:
29 obj.set_selection(basesel)
30 return val
31 return wrap
32
33def is_scantable(filename):
34 """Is the given file a scantable?
35
36 Parameters:
37
38 filename: the name of the file/directory to test
39
40 """
41 if ( os.path.isdir(filename)
42 and os.path.exists(filename+'/table.info')
43 and os.path.exists(filename+'/table.dat') ):
44 f=open(filename+'/table.info')
45 l=f.readline()
46 f.close()
47 #if ( l.find('Scantable') != -1 ):
48 if ( l.find('Measurement Set') == -1 ):
49 return True
50 else:
51 return False
52 else:
53 return False
54## return (os.path.isdir(filename)
55## and not os.path.exists(filename+'/table.f1')
56## and os.path.exists(filename+'/table.info'))
57
58def is_ms(filename):
59 """Is the given file a MeasurementSet?
60
61 Parameters:
62
63 filename: the name of the file/directory to test
64
65 """
66 if ( os.path.isdir(filename)
67 and os.path.exists(filename+'/table.info')
68 and os.path.exists(filename+'/table.dat') ):
69 f=open(filename+'/table.info')
70 l=f.readline()
71 f.close()
72 if ( l.find('Measurement Set') != -1 ):
73 return True
74 else:
75 return False
76 else:
77 return False
78
79class scantable(Scantable):
80 """\
81 The ASAP container for scans (single-dish data).
82 """
83
84 @asaplog_post_dec
85 #def __init__(self, filename, average=None, unit=None, getpt=None,
86 # antenna=None, parallactify=None):
87 def __init__(self, filename, average=None, unit=None, parallactify=None, **args):
88 """\
89 Create a scantable from a saved one or make a reference
90
91 Parameters:
92
93 filename: the name of an asap table on disk
94 or
95 the name of a rpfits/sdfits/ms file
96 (integrations within scans are auto averaged
97 and the whole file is read) or
98 [advanced] a reference to an existing scantable
99
100 average: average all integrations withinb a scan on read.
101 The default (True) is taken from .asaprc.
102
103 unit: brightness unit; must be consistent with K or Jy.
104 Over-rides the default selected by the filler
105 (input rpfits/sdfits/ms) or replaces the value
106 in existing scantables
107
108 getpt: for MeasurementSet input data only:
109 If True, all pointing data are filled.
110 The deafult is False, which makes time to load
111 the MS data faster in some cases.
112
113 antenna: for MeasurementSet input data only:
114 Antenna selection. integer (id) or string (name or id).
115
116 parallactify: Indicate that the data had been parallatified. Default
117 is taken from rc file.
118
119 """
120 if average is None:
121 average = rcParams['scantable.autoaverage']
122 #if getpt is None:
123 # getpt = True
124 #if antenna is not None:
125 # asaplog.push("Antenna selection currently unsupported."
126 # "Using ''")
127 # asaplog.post('WARN')
128 #if antenna is None:
129 # antenna = ''
130 #elif type(antenna) == int:
131 # antenna = '%s' % antenna
132 #elif type(antenna) == list:
133 # tmpstr = ''
134 # for i in range( len(antenna) ):
135 # if type(antenna[i]) == int:
136 # tmpstr = tmpstr + ('%s,'%(antenna[i]))
137 # elif type(antenna[i]) == str:
138 # tmpstr=tmpstr+antenna[i]+','
139 # else:
140 # raise TypeError('Bad antenna selection.')
141 # antenna = tmpstr.rstrip(',')
142 parallactify = parallactify or rcParams['scantable.parallactify']
143 varlist = vars()
144 from asap._asap import stmath
145 self._math = stmath( rcParams['insitu'] )
146 if isinstance(filename, Scantable):
147 Scantable.__init__(self, filename)
148 else:
149 if isinstance(filename, str):
150 filename = os.path.expandvars(filename)
151 filename = os.path.expanduser(filename)
152 if not os.path.exists(filename):
153 s = "File '%s' not found." % (filename)
154 raise IOError(s)
155 if is_scantable(filename):
156 ondisk = rcParams['scantable.storage'] == 'disk'
157 Scantable.__init__(self, filename, ondisk)
158 if unit is not None:
159 self.set_fluxunit(unit)
160 # do not reset to the default freqframe
161 #self.set_freqframe(rcParams['scantable.freqframe'])
162 #elif os.path.isdir(filename) \
163 # and not os.path.exists(filename+'/table.f1'):
164 elif is_ms(filename):
165 # Measurement Set
166 opts={'ms': {}}
167 mskeys=['getpt','antenna']
168 for key in mskeys:
169 if key in args.keys():
170 opts['ms'][key] = args[key]
171 #self._fill([filename], unit, average, getpt, antenna)
172 self._fill([filename], unit, average, opts)
173 elif os.path.isfile(filename):
174 #self._fill([filename], unit, average, getpt, antenna)
175 self._fill([filename], unit, average)
176 else:
177 msg = "The given file '%s'is not a valid " \
178 "asap table." % (filename)
179 raise IOError(msg)
180 elif (isinstance(filename, list) or isinstance(filename, tuple)) \
181 and isinstance(filename[-1], str):
182 #self._fill(filename, unit, average, getpt, antenna)
183 self._fill(filename, unit, average)
184 self.parallactify(parallactify)
185 self._add_history("scantable", varlist)
186
187 @asaplog_post_dec
188 def save(self, name=None, format=None, overwrite=False):
189 """\
190 Store the scantable on disk. This can be an asap (aips++) Table,
191 SDFITS or MS2 format.
192
193 Parameters:
194
195 name: the name of the outputfile. For format "ASCII"
196 this is the root file name (data in 'name'.txt
197 and header in 'name'_header.txt)
198
199 format: an optional file format. Default is ASAP.
200 Allowed are:
201
202 * 'ASAP' (save as ASAP [aips++] Table),
203 * 'SDFITS' (save as SDFITS file)
204 * 'ASCII' (saves as ascii text file)
205 * 'MS2' (saves as an casacore MeasurementSet V2)
206 * 'FITS' (save as image FITS - not readable by class)
207 * 'CLASS' (save as FITS readable by CLASS)
208
209 overwrite: If the file should be overwritten if it exists.
210 The default False is to return with warning
211 without writing the output. USE WITH CARE.
212
213 Example::
214
215 scan.save('myscan.asap')
216 scan.save('myscan.sdfits', 'SDFITS')
217
218 """
219 from os import path
220 format = format or rcParams['scantable.save']
221 suffix = '.'+format.lower()
222 if name is None or name == "":
223 name = 'scantable'+suffix
224 msg = "No filename given. Using default name %s..." % name
225 asaplog.push(msg)
226 name = path.expandvars(name)
227 if path.isfile(name) or path.isdir(name):
228 if not overwrite:
229 msg = "File %s exists." % name
230 raise IOError(msg)
231 format2 = format.upper()
232 if format2 == 'ASAP':
233 self._save(name)
234 else:
235 from asap._asap import stwriter as stw
236 writer = stw(format2)
237 writer.write(self, name)
238 return
239
240 def copy(self):
241 """Return a copy of this scantable.
242
243 *Note*:
244
245 This makes a full (deep) copy. scan2 = scan1 makes a reference.
246
247 Example::
248
249 copiedscan = scan.copy()
250
251 """
252 sd = scantable(Scantable._copy(self))
253 return sd
254
255 def drop_scan(self, scanid=None):
256 """\
257 Return a new scantable where the specified scan number(s) has(have)
258 been dropped.
259
260 Parameters:
261
262 scanid: a (list of) scan number(s)
263
264 """
265 from asap import _is_sequence_or_number as _is_valid
266 from asap import _to_list
267 from asap import unique
268 if not _is_valid(scanid):
269 raise RuntimeError( 'Please specify a scanno to drop from the scantable' )
270 scanid = _to_list(scanid)
271 allscans = unique([ self.getscan(i) for i in range(self.nrow())])
272 for sid in scanid: allscans.remove(sid)
273 if len(allscans) == 0:
274 raise ValueError("Can't remove all scans")
275 sel = selector(scans=allscans)
276 return self._select_copy(sel)
277
278 def _select_copy(self, selection):
279 orig = self.get_selection()
280 self.set_selection(orig+selection)
281 cp = self.copy()
282 self.set_selection(orig)
283 return cp
284
285 def get_scan(self, scanid=None):
286 """\
287 Return a specific scan (by scanno) or collection of scans (by
288 source name) in a new scantable.
289
290 *Note*:
291
292 See scantable.drop_scan() for the inverse operation.
293
294 Parameters:
295
296 scanid: a (list of) scanno or a source name, unix-style
297 patterns are accepted for source name matching, e.g.
298 '*_R' gets all 'ref scans
299
300 Example::
301
302 # get all scans containing the source '323p459'
303 newscan = scan.get_scan('323p459')
304 # get all 'off' scans
305 refscans = scan.get_scan('*_R')
306 # get a susbset of scans by scanno (as listed in scan.summary())
307 newscan = scan.get_scan([0, 2, 7, 10])
308
309 """
310 if scanid is None:
311 raise RuntimeError( 'Please specify a scan no or name to '
312 'retrieve from the scantable' )
313 try:
314 bsel = self.get_selection()
315 sel = selector()
316 if type(scanid) is str:
317 sel.set_name(scanid)
318 return self._select_copy(sel)
319 elif type(scanid) is int:
320 sel.set_scans([scanid])
321 return self._select_copy(sel)
322 elif type(scanid) is list:
323 sel.set_scans(scanid)
324 return self._select_copy(sel)
325 else:
326 msg = "Illegal scanid type, use 'int' or 'list' if ints."
327 raise TypeError(msg)
328 except RuntimeError:
329 raise
330
331 def __str__(self):
332 return Scantable._summary(self, True)
333
334 def summary(self, filename=None):
335 """\
336 Print a summary of the contents of this scantable.
337
338 Parameters:
339
340 filename: the name of a file to write the putput to
341 Default - no file output
342
343 """
344 info = Scantable._summary(self, True)
345 if filename is not None:
346 if filename is "":
347 filename = 'scantable_summary.txt'
348 from os.path import expandvars, isdir
349 filename = expandvars(filename)
350 if not isdir(filename):
351 data = open(filename, 'w')
352 data.write(info)
353 data.close()
354 else:
355 msg = "Illegal file name '%s'." % (filename)
356 raise IOError(msg)
357 return page(info)
358
359 def get_spectrum(self, rowno):
360 """Return the spectrum for the current row in the scantable as a list.
361
362 Parameters:
363
364 rowno: the row number to retrieve the spectrum from
365
366 """
367 return self._getspectrum(rowno)
368
369 def get_mask(self, rowno):
370 """Return the mask for the current row in the scantable as a list.
371
372 Parameters:
373
374 rowno: the row number to retrieve the mask from
375
376 """
377 return self._getmask(rowno)
378
379 def set_spectrum(self, spec, rowno):
380 """Set the spectrum for the current row in the scantable.
381
382 Parameters:
383
384 spec: the new spectrum
385
386 rowno: the row number to set the spectrum for
387
388 """
389 assert(len(spec) == self.nchan())
390 return self._setspectrum(spec, rowno)
391
392 def get_coordinate(self, rowno):
393 """Return the (spectral) coordinate for a a given 'rowno'.
394
395 *Note*:
396
397 * This coordinate is only valid until a scantable method modifies
398 the frequency axis.
399 * This coordinate does contain the original frequency set-up
400 NOT the new frame. The conversions however are done using the user
401 specified frame (e.g. LSRK/TOPO). To get the 'real' coordinate,
402 use scantable.freq_align first. Without it there is no closure,
403 i.e.::
404
405 c = myscan.get_coordinate(0)
406 c.to_frequency(c.get_reference_pixel()) != c.get_reference_value()
407
408 Parameters:
409
410 rowno: the row number for the spectral coordinate
411
412 """
413 return coordinate(Scantable.get_coordinate(self, rowno))
414
415 def get_selection(self):
416 """\
417 Get the selection object currently set on this scantable.
418
419 Example::
420
421 sel = scan.get_selection()
422 sel.set_ifs(0) # select IF 0
423 scan.set_selection(sel) # apply modified selection
424
425 """
426 return selector(self._getselection())
427
428 def set_selection(self, selection=None, **kw):
429 """\
430 Select a subset of the data. All following operations on this scantable
431 are only applied to thi selection.
432
433 Parameters:
434
435 selection: a selector object (default unset the selection), or
436 any combination of "pols", "ifs", "beams", "scans",
437 "cycles", "name", "query"
438
439 Examples::
440
441 sel = selector() # create a selection object
442 self.set_scans([0, 3]) # select SCANNO 0 and 3
443 scan.set_selection(sel) # set the selection
444 scan.summary() # will only print summary of scanno 0 an 3
445 scan.set_selection() # unset the selection
446 # or the equivalent
447 scan.set_selection(scans=[0,3])
448 scan.summary() # will only print summary of scanno 0 an 3
449 scan.set_selection() # unset the selection
450
451 """
452 if selection is None:
453 # reset
454 if len(kw) == 0:
455 selection = selector()
456 else:
457 # try keywords
458 for k in kw:
459 if k not in selector.fields:
460 raise KeyError("Invalid selection key '%s', valid keys are %s" % (k, selector.fields))
461 selection = selector(**kw)
462 self._setselection(selection)
463
464 def get_row(self, row=0, insitu=None):
465 """\
466 Select a row in the scantable.
467 Return a scantable with single row.
468
469 Parameters:
470
471 row: row no of integration, default is 0.
472 insitu: if False a new scantable is returned. Otherwise, the
473 scaling is done in-situ. The default is taken from .asaprc
474 (False)
475
476 """
477 if insitu is None: insitu = rcParams['insitu']
478 if not insitu:
479 workscan = self.copy()
480 else:
481 workscan = self
482 # Select a row
483 sel=selector()
484 sel.set_rows([row])
485 #sel.set_scans([workscan.getscan(row)])
486 #sel.set_cycles([workscan.getcycle(row)])
487 #sel.set_beams([workscan.getbeam(row)])
488 #sel.set_ifs([workscan.getif(row)])
489 #sel.set_polarisations([workscan.getpol(row)])
490 #sel.set_name(workscan._getsourcename(row))
491 workscan.set_selection(sel)
492 if not workscan.nrow() == 1:
493 msg = "Cloud not identify single row. %d rows selected."%(workscan.nrow())
494 raise RuntimeError(msg)
495 del sel
496 if insitu:
497 self._assign(workscan)
498 else:
499 return workscan
500
501 @asaplog_post_dec
502 def stats(self, stat='stddev', mask=None, form='3.3f', row=None):
503 """\
504 Determine the specified statistic of the current beam/if/pol
505 Takes a 'mask' as an optional parameter to specify which
506 channels should be excluded.
507
508 Parameters:
509
510 stat: 'min', 'max', 'min_abc', 'max_abc', 'sumsq', 'sum',
511 'mean', 'var', 'stddev', 'avdev', 'rms', 'median'
512
513 mask: an optional mask specifying where the statistic
514 should be determined.
515
516 form: format string to print statistic values
517
518 row: row number of spectrum to process.
519 (default is None: for all rows)
520
521 Example:
522 scan.set_unit('channel')
523 msk = scan.create_mask([100, 200], [500, 600])
524 scan.stats(stat='mean', mask=m)
525
526 """
527 mask = mask or []
528 if not self._check_ifs():
529 raise ValueError("Cannot apply mask as the IFs have different "
530 "number of channels. Please use setselection() "
531 "to select individual IFs")
532 rtnabc = False
533 if stat.lower().endswith('_abc'): rtnabc = True
534 getchan = False
535 if stat.lower().startswith('min') or stat.lower().startswith('max'):
536 chan = self._math._minmaxchan(self, mask, stat)
537 getchan = True
538 statvals = []
539 if not rtnabc:
540 if row == None:
541 statvals = self._math._stats(self, mask, stat)
542 else:
543 statvals = self._math._statsrow(self, mask, stat, int(row))
544
545 #def cb(i):
546 # return statvals[i]
547
548 #return self._row_callback(cb, stat)
549
550 label=stat
551 #callback=cb
552 out = ""
553 #outvec = []
554 sep = '-'*50
555
556 if row == None:
557 rows = xrange(self.nrow())
558 elif isinstance(row, int):
559 rows = [ row ]
560
561 for i in rows:
562 refstr = ''
563 statunit= ''
564 if getchan:
565 qx, qy = self.chan2data(rowno=i, chan=chan[i])
566 if rtnabc:
567 statvals.append(qx['value'])
568 refstr = ('(value: %'+form) % (qy['value'])+' ['+qy['unit']+'])'
569 statunit= '['+qx['unit']+']'
570 else:
571 refstr = ('(@ %'+form) % (qx['value'])+' ['+qx['unit']+'])'
572
573 tm = self._gettime(i)
574 src = self._getsourcename(i)
575 out += 'Scan[%d] (%s) ' % (self.getscan(i), src)
576 out += 'Time[%s]:\n' % (tm)
577 if self.nbeam(-1) > 1: out += ' Beam[%d] ' % (self.getbeam(i))
578 if self.nif(-1) > 1: out += ' IF[%d] ' % (self.getif(i))
579 if self.npol(-1) > 1: out += ' Pol[%d] ' % (self.getpol(i))
580 #outvec.append(callback(i))
581 if len(rows) > 1:
582 # out += ('= %'+form) % (outvec[i]) +' '+refstr+'\n'
583 out += ('= %'+form) % (statvals[i]) +' '+refstr+'\n'
584 else:
585 # out += ('= %'+form) % (outvec[0]) +' '+refstr+'\n'
586 out += ('= %'+form) % (statvals[0]) +' '+refstr+'\n'
587 out += sep+"\n"
588
589 import os
590 if os.environ.has_key( 'USER' ):
591 usr = os.environ['USER']
592 else:
593 import commands
594 usr = commands.getoutput( 'whoami' )
595 tmpfile = '/tmp/tmp_'+usr+'_casapy_asap_scantable_stats'
596 f = open(tmpfile,'w')
597 print >> f, sep
598 print >> f, ' %s %s' % (label, statunit)
599 print >> f, sep
600 print >> f, out
601 f.close()
602 f = open(tmpfile,'r')
603 x = f.readlines()
604 f.close()
605 asaplog.push(''.join(x), False)
606
607 return statvals
608
609 def chan2data(self, rowno=0, chan=0):
610 """\
611 Returns channel/frequency/velocity and spectral value
612 at an arbitrary row and channel in the scantable.
613
614 Parameters:
615
616 rowno: a row number in the scantable. Default is the
617 first row, i.e. rowno=0
618
619 chan: a channel in the scantable. Default is the first
620 channel, i.e. pos=0
621
622 """
623 if isinstance(rowno, int) and isinstance(chan, int):
624 qx = {'unit': self.get_unit(),
625 'value': self._getabcissa(rowno)[chan]}
626 qy = {'unit': self.get_fluxunit(),
627 'value': self._getspectrum(rowno)[chan]}
628 return qx, qy
629
630 def stddev(self, mask=None):
631 """\
632 Determine the standard deviation of the current beam/if/pol
633 Takes a 'mask' as an optional parameter to specify which
634 channels should be excluded.
635
636 Parameters:
637
638 mask: an optional mask specifying where the standard
639 deviation should be determined.
640
641 Example::
642
643 scan.set_unit('channel')
644 msk = scan.create_mask([100, 200], [500, 600])
645 scan.stddev(mask=m)
646
647 """
648 return self.stats(stat='stddev', mask=mask);
649
650
651 def get_column_names(self):
652 """\
653 Return a list of column names, which can be used for selection.
654 """
655 return list(Scantable.get_column_names(self))
656
657 def get_tsys(self, row=-1):
658 """\
659 Return the System temperatures.
660
661 Parameters:
662
663 row: the rowno to get the information for. (default all rows)
664
665 Returns:
666
667 a list of Tsys values for the current selection
668
669 """
670 if row > -1:
671 return self._get_column(self._gettsys, row)
672 return self._row_callback(self._gettsys, "Tsys")
673
674
675 def get_weather(self, row=-1):
676 """\
677 Return the weather informations.
678
679 Parameters:
680
681 row: the rowno to get the information for. (default all rows)
682
683 Returns:
684
685 a dict or list of of dicts of values for the current selection
686
687 """
688
689 values = self._get_column(self._get_weather, row)
690 if row > -1:
691 return {'temperature': values[0],
692 'pressure': values[1], 'humidity' : values[2],
693 'windspeed' : values[3], 'windaz' : values[4]
694 }
695 else:
696 out = []
697 for r in values:
698
699 out.append({'temperature': r[0],
700 'pressure': r[1], 'humidity' : r[2],
701 'windspeed' : r[3], 'windaz' : r[4]
702 })
703 return out
704
705 def _row_callback(self, callback, label):
706 out = ""
707 outvec = []
708 sep = '-'*50
709 for i in range(self.nrow()):
710 tm = self._gettime(i)
711 src = self._getsourcename(i)
712 out += 'Scan[%d] (%s) ' % (self.getscan(i), src)
713 out += 'Time[%s]:\n' % (tm)
714 if self.nbeam(-1) > 1:
715 out += ' Beam[%d] ' % (self.getbeam(i))
716 if self.nif(-1) > 1: out += ' IF[%d] ' % (self.getif(i))
717 if self.npol(-1) > 1: out += ' Pol[%d] ' % (self.getpol(i))
718 outvec.append(callback(i))
719 out += '= %3.3f\n' % (outvec[i])
720 out += sep+'\n'
721
722 asaplog.push(sep)
723 asaplog.push(" %s" % (label))
724 asaplog.push(sep)
725 asaplog.push(out)
726 asaplog.post()
727 return outvec
728
729 def _get_column(self, callback, row=-1, *args):
730 """
731 """
732 if row == -1:
733 return [callback(i, *args) for i in range(self.nrow())]
734 else:
735 if 0 <= row < self.nrow():
736 return callback(row, *args)
737
738
739 def get_time(self, row=-1, asdatetime=False, prec=-1):
740 """\
741 Get a list of time stamps for the observations.
742 Return a datetime object or a string (default) for each
743 integration time stamp in the scantable.
744
745 Parameters:
746
747 row: row no of integration. Default -1 return all rows
748
749 asdatetime: return values as datetime objects rather than strings
750
751 prec: number of digits shown. Default -1 to automatic calculation.
752 Note this number is equals to the digits of MVTime,
753 i.e., 0<prec<3: dates with hh:: only,
754 <5: with hh:mm:, <7 or 0: with hh:mm:ss,
755 and 6> : with hh:mm:ss.tt... (prec-6 t's added)
756
757 """
758 from datetime import datetime
759 if prec < 0:
760 # automagically set necessary precision +1
761 prec = 7 - numpy.floor(numpy.log10(numpy.min(self.get_inttime(row))))
762 prec = max(6, int(prec))
763 else:
764 prec = max(0, prec)
765 if asdatetime:
766 #precision can be 1 millisecond at max
767 prec = min(12, prec)
768
769 times = self._get_column(self._gettime, row, prec)
770 if not asdatetime:
771 return times
772 format = "%Y/%m/%d/%H:%M:%S.%f"
773 if prec < 7:
774 nsub = 1 + (((6-prec)/2) % 3)
775 substr = [".%f","%S","%M"]
776 for i in range(nsub):
777 format = format.replace(substr[i],"")
778 if isinstance(times, list):
779 return [datetime.strptime(i, format) for i in times]
780 else:
781 return datetime.strptime(times, format)
782
783
784 def get_inttime(self, row=-1):
785 """\
786 Get a list of integration times for the observations.
787 Return a time in seconds for each integration in the scantable.
788
789 Parameters:
790
791 row: row no of integration. Default -1 return all rows.
792
793 """
794 return self._get_column(self._getinttime, row)
795
796
797 def get_sourcename(self, row=-1):
798 """\
799 Get a list source names for the observations.
800 Return a string for each integration in the scantable.
801 Parameters:
802
803 row: row no of integration. Default -1 return all rows.
804
805 """
806 return self._get_column(self._getsourcename, row)
807
808 def get_elevation(self, row=-1):
809 """\
810 Get a list of elevations for the observations.
811 Return a float for each integration in the scantable.
812
813 Parameters:
814
815 row: row no of integration. Default -1 return all rows.
816
817 """
818 return self._get_column(self._getelevation, row)
819
820 def get_azimuth(self, row=-1):
821 """\
822 Get a list of azimuths for the observations.
823 Return a float for each integration in the scantable.
824
825 Parameters:
826 row: row no of integration. Default -1 return all rows.
827
828 """
829 return self._get_column(self._getazimuth, row)
830
831 def get_parangle(self, row=-1):
832 """\
833 Get a list of parallactic angles for the observations.
834 Return a float for each integration in the scantable.
835
836 Parameters:
837
838 row: row no of integration. Default -1 return all rows.
839
840 """
841 return self._get_column(self._getparangle, row)
842
843 def get_direction(self, row=-1):
844 """
845 Get a list of Positions on the sky (direction) for the observations.
846 Return a string for each integration in the scantable.
847
848 Parameters:
849
850 row: row no of integration. Default -1 return all rows
851
852 """
853 return self._get_column(self._getdirection, row)
854
855 def get_directionval(self, row=-1):
856 """\
857 Get a list of Positions on the sky (direction) for the observations.
858 Return a float for each integration in the scantable.
859
860 Parameters:
861
862 row: row no of integration. Default -1 return all rows
863
864 """
865 return self._get_column(self._getdirectionvec, row)
866
867 @asaplog_post_dec
868 def set_unit(self, unit='channel'):
869 """\
870 Set the unit for all following operations on this scantable
871
872 Parameters:
873
874 unit: optional unit, default is 'channel'. Use one of '*Hz',
875 'km/s', 'channel' or equivalent ''
876
877 """
878 varlist = vars()
879 if unit in ['', 'pixel', 'channel']:
880 unit = ''
881 inf = list(self._getcoordinfo())
882 inf[0] = unit
883 self._setcoordinfo(inf)
884 self._add_history("set_unit", varlist)
885
886 @asaplog_post_dec
887 def set_instrument(self, instr):
888 """\
889 Set the instrument for subsequent processing.
890
891 Parameters:
892
893 instr: Select from 'ATPKSMB', 'ATPKSHOH', 'ATMOPRA',
894 'DSS-43' (Tid), 'CEDUNA', and 'HOBART'
895
896 """
897 self._setInstrument(instr)
898 self._add_history("set_instument", vars())
899
900 @asaplog_post_dec
901 def set_feedtype(self, feedtype):
902 """\
903 Overwrite the feed type, which might not be set correctly.
904
905 Parameters:
906
907 feedtype: 'linear' or 'circular'
908
909 """
910 self._setfeedtype(feedtype)
911 self._add_history("set_feedtype", vars())
912
913 @asaplog_post_dec
914 def set_doppler(self, doppler='RADIO'):
915 """\
916 Set the doppler for all following operations on this scantable.
917
918 Parameters:
919
920 doppler: One of 'RADIO', 'OPTICAL', 'Z', 'BETA', 'GAMMA'
921
922 """
923 varlist = vars()
924 inf = list(self._getcoordinfo())
925 inf[2] = doppler
926 self._setcoordinfo(inf)
927 self._add_history("set_doppler", vars())
928
929 @asaplog_post_dec
930 def set_freqframe(self, frame=None):
931 """\
932 Set the frame type of the Spectral Axis.
933
934 Parameters:
935
936 frame: an optional frame type, default 'LSRK'. Valid frames are:
937 'TOPO', 'LSRD', 'LSRK', 'BARY',
938 'GEO', 'GALACTO', 'LGROUP', 'CMB'
939
940 Example::
941
942 scan.set_freqframe('BARY')
943
944 """
945 frame = frame or rcParams['scantable.freqframe']
946 varlist = vars()
947 # "REST" is not implemented in casacore
948 #valid = ['REST', 'TOPO', 'LSRD', 'LSRK', 'BARY', \
949 # 'GEO', 'GALACTO', 'LGROUP', 'CMB']
950 valid = ['TOPO', 'LSRD', 'LSRK', 'BARY', \
951 'GEO', 'GALACTO', 'LGROUP', 'CMB']
952
953 if frame in valid:
954 inf = list(self._getcoordinfo())
955 inf[1] = frame
956 self._setcoordinfo(inf)
957 self._add_history("set_freqframe", varlist)
958 else:
959 msg = "Please specify a valid freq type. Valid types are:\n", valid
960 raise TypeError(msg)
961
962 @asaplog_post_dec
963 def set_dirframe(self, frame=""):
964 """\
965 Set the frame type of the Direction on the sky.
966
967 Parameters:
968
969 frame: an optional frame type, default ''. Valid frames are:
970 'J2000', 'B1950', 'GALACTIC'
971
972 Example:
973
974 scan.set_dirframe('GALACTIC')
975
976 """
977 varlist = vars()
978 Scantable.set_dirframe(self, frame)
979 self._add_history("set_dirframe", varlist)
980
981 def get_unit(self):
982 """\
983 Get the default unit set in this scantable
984
985 Returns:
986
987 A unit string
988
989 """
990 inf = self._getcoordinfo()
991 unit = inf[0]
992 if unit == '': unit = 'channel'
993 return unit
994
995 @asaplog_post_dec
996 def get_abcissa(self, rowno=0):
997 """\
998 Get the abcissa in the current coordinate setup for the currently
999 selected Beam/IF/Pol
1000
1001 Parameters:
1002
1003 rowno: an optional row number in the scantable. Default is the
1004 first row, i.e. rowno=0
1005
1006 Returns:
1007
1008 The abcissa values and the format string (as a dictionary)
1009
1010 """
1011 abc = self._getabcissa(rowno)
1012 lbl = self._getabcissalabel(rowno)
1013 return abc, lbl
1014
1015 @asaplog_post_dec
1016 def flag(self, mask=None, unflag=False):
1017 """\
1018 Flag the selected data using an optional channel mask.
1019
1020 Parameters:
1021
1022 mask: an optional channel mask, created with create_mask. Default
1023 (no mask) is all channels.
1024
1025 unflag: if True, unflag the data
1026
1027 """
1028 varlist = vars()
1029 mask = mask or []
1030 self._flag(mask, unflag)
1031 self._add_history("flag", varlist)
1032
1033 @asaplog_post_dec
1034 def flag_row(self, rows=[], unflag=False):
1035 """\
1036 Flag the selected data in row-based manner.
1037
1038 Parameters:
1039
1040 rows: list of row numbers to be flagged. Default is no row
1041 (must be explicitly specified to execute row-based flagging).
1042
1043 unflag: if True, unflag the data.
1044
1045 """
1046 varlist = vars()
1047 self._flag_row(rows, unflag)
1048 self._add_history("flag_row", varlist)
1049
1050 @asaplog_post_dec
1051 def clip(self, uthres=None, dthres=None, clipoutside=True, unflag=False):
1052 """\
1053 Flag the selected data outside a specified range (in channel-base)
1054
1055 Parameters:
1056
1057 uthres: upper threshold.
1058
1059 dthres: lower threshold
1060
1061 clipoutside: True for flagging data outside the range [dthres:uthres].
1062 False for flagging data inside the range.
1063
1064 unflag: if True, unflag the data.
1065
1066 """
1067 varlist = vars()
1068 self._clip(uthres, dthres, clipoutside, unflag)
1069 self._add_history("clip", varlist)
1070
1071 @asaplog_post_dec
1072 def lag_flag(self, start, end, unit="MHz", insitu=None):
1073 """\
1074 Flag the data in 'lag' space by providing a frequency to remove.
1075 Flagged data in the scantable gets interpolated over the region.
1076 No taper is applied.
1077
1078 Parameters:
1079
1080 start: the start frequency (really a period within the
1081 bandwidth) or period to remove
1082
1083 end: the end frequency or period to remove
1084
1085 unit: the frequency unit (default "MHz") or "" for
1086 explicit lag channels
1087
1088 *Notes*:
1089
1090 It is recommended to flag edges of the band or strong
1091 signals beforehand.
1092
1093 """
1094 if insitu is None: insitu = rcParams['insitu']
1095 self._math._setinsitu(insitu)
1096 varlist = vars()
1097 base = { "GHz": 1000000000., "MHz": 1000000., "kHz": 1000., "Hz": 1.}
1098 if not (unit == "" or base.has_key(unit)):
1099 raise ValueError("%s is not a valid unit." % unit)
1100 if unit == "":
1101 s = scantable(self._math._lag_flag(self, start, end, "lags"))
1102 else:
1103 s = scantable(self._math._lag_flag(self, start*base[unit],
1104 end*base[unit], "frequency"))
1105 s._add_history("lag_flag", varlist)
1106 if insitu:
1107 self._assign(s)
1108 else:
1109 return s
1110
1111 @asaplog_post_dec
1112 def create_mask(self, *args, **kwargs):
1113 """\
1114 Compute and return a mask based on [min, max] windows.
1115 The specified windows are to be INCLUDED, when the mask is
1116 applied.
1117
1118 Parameters:
1119
1120 [min, max], [min2, max2], ...
1121 Pairs of start/end points (inclusive)specifying the regions
1122 to be masked
1123
1124 invert: optional argument. If specified as True,
1125 return an inverted mask, i.e. the regions
1126 specified are EXCLUDED
1127
1128 row: create the mask using the specified row for
1129 unit conversions, default is row=0
1130 only necessary if frequency varies over rows.
1131
1132 Examples::
1133
1134 scan.set_unit('channel')
1135 # a)
1136 msk = scan.create_mask([400, 500], [800, 900])
1137 # masks everything outside 400 and 500
1138 # and 800 and 900 in the unit 'channel'
1139
1140 # b)
1141 msk = scan.create_mask([400, 500], [800, 900], invert=True)
1142 # masks the regions between 400 and 500
1143 # and 800 and 900 in the unit 'channel'
1144
1145 # c)
1146 #mask only channel 400
1147 msk = scan.create_mask([400])
1148
1149 """
1150 row = kwargs.get("row", 0)
1151 data = self._getabcissa(row)
1152 u = self._getcoordinfo()[0]
1153 if u == "":
1154 u = "channel"
1155 msg = "The current mask window unit is %s" % u
1156 i = self._check_ifs()
1157 if not i:
1158 msg += "\nThis mask is only valid for IF=%d" % (self.getif(i))
1159 asaplog.push(msg)
1160 n = self.nchan()
1161 msk = _n_bools(n, False)
1162 # test if args is a 'list' or a 'normal *args - UGLY!!!
1163
1164 ws = (isinstance(args[-1][-1], int) or isinstance(args[-1][-1], float)) \
1165 and args or args[0]
1166 for window in ws:
1167 if len(window) == 1:
1168 window = [window[0], window[0]]
1169 if len(window) == 0 or len(window) > 2:
1170 raise ValueError("A window needs to be defined as [start(, end)]")
1171 if window[0] > window[1]:
1172 tmp = window[0]
1173 window[0] = window[1]
1174 window[1] = tmp
1175 for i in range(n):
1176 if data[i] >= window[0] and data[i] <= window[1]:
1177 msk[i] = True
1178 if kwargs.has_key('invert'):
1179 if kwargs.get('invert'):
1180 msk = mask_not(msk)
1181 return msk
1182
1183 def get_masklist(self, mask=None, row=0, silent=False):
1184 """\
1185 Compute and return a list of mask windows, [min, max].
1186
1187 Parameters:
1188
1189 mask: channel mask, created with create_mask.
1190
1191 row: calcutate the masklist using the specified row
1192 for unit conversions, default is row=0
1193 only necessary if frequency varies over rows.
1194
1195 Returns:
1196
1197 [min, max], [min2, max2], ...
1198 Pairs of start/end points (inclusive)specifying
1199 the masked regions
1200
1201 """
1202 if not (isinstance(mask,list) or isinstance(mask, tuple)):
1203 raise TypeError("The mask should be list or tuple.")
1204 if len(mask) < 2:
1205 raise TypeError("The mask elements should be > 1")
1206 if self.nchan() != len(mask):
1207 msg = "Number of channels in scantable != number of mask elements"
1208 raise TypeError(msg)
1209 data = self._getabcissa(row)
1210 u = self._getcoordinfo()[0]
1211 if u == "":
1212 u = "channel"
1213 msg = "The current mask window unit is %s" % u
1214 i = self._check_ifs()
1215 if not i:
1216 msg += "\nThis mask is only valid for IF=%d" % (self.getif(i))
1217 if not silent:
1218 asaplog.push(msg)
1219 masklist=[]
1220 ist, ien = None, None
1221 ist, ien=self.get_mask_indices(mask)
1222 if ist is not None and ien is not None:
1223 for i in xrange(len(ist)):
1224 range=[data[ist[i]],data[ien[i]]]
1225 range.sort()
1226 masklist.append([range[0],range[1]])
1227 return masklist
1228
1229 def get_mask_indices(self, mask=None):
1230 """\
1231 Compute and Return lists of mask start indices and mask end indices.
1232
1233 Parameters:
1234
1235 mask: channel mask, created with create_mask.
1236
1237 Returns:
1238
1239 List of mask start indices and that of mask end indices,
1240 i.e., [istart1,istart2,....], [iend1,iend2,....].
1241
1242 """
1243 if not (isinstance(mask,list) or isinstance(mask, tuple)):
1244 raise TypeError("The mask should be list or tuple.")
1245 if len(mask) < 2:
1246 raise TypeError("The mask elements should be > 1")
1247 istart=[]
1248 iend=[]
1249 if mask[0]: istart.append(0)
1250 for i in range(len(mask)-1):
1251 if not mask[i] and mask[i+1]:
1252 istart.append(i+1)
1253 elif mask[i] and not mask[i+1]:
1254 iend.append(i)
1255 if mask[len(mask)-1]: iend.append(len(mask)-1)
1256 if len(istart) != len(iend):
1257 raise RuntimeError("Numbers of mask start != mask end.")
1258 for i in range(len(istart)):
1259 if istart[i] > iend[i]:
1260 raise RuntimeError("Mask start index > mask end index")
1261 break
1262 return istart,iend
1263
1264# def get_restfreqs(self):
1265# """
1266# Get the restfrequency(s) stored in this scantable.
1267# The return value(s) are always of unit 'Hz'
1268# Parameters:
1269# none
1270# Returns:
1271# a list of doubles
1272# """
1273# return list(self._getrestfreqs())
1274
1275 def get_restfreqs(self, ids=None):
1276 """\
1277 Get the restfrequency(s) stored in this scantable.
1278 The return value(s) are always of unit 'Hz'
1279
1280 Parameters:
1281
1282 ids: (optional) a list of MOLECULE_ID for that restfrequency(s) to
1283 be retrieved
1284
1285 Returns:
1286
1287 dictionary containing ids and a list of doubles for each id
1288
1289 """
1290 if ids is None:
1291 rfreqs={}
1292 idlist = self.getmolnos()
1293 for i in idlist:
1294 rfreqs[i]=list(self._getrestfreqs(i))
1295 return rfreqs
1296 else:
1297 if type(ids)==list or type(ids)==tuple:
1298 rfreqs={}
1299 for i in ids:
1300 rfreqs[i]=list(self._getrestfreqs(i))
1301 return rfreqs
1302 else:
1303 return list(self._getrestfreqs(ids))
1304 #return list(self._getrestfreqs(ids))
1305
1306 def set_restfreqs(self, freqs=None, unit='Hz'):
1307 """\
1308 Set or replace the restfrequency specified and
1309 if the 'freqs' argument holds a scalar,
1310 then that rest frequency will be applied to all the selected
1311 data. If the 'freqs' argument holds
1312 a vector, then it MUST be of equal or smaller length than
1313 the number of IFs (and the available restfrequencies will be
1314 replaced by this vector). In this case, *all* data have
1315 the restfrequency set per IF according
1316 to the corresponding value you give in the 'freqs' vector.
1317 E.g. 'freqs=[1e9, 2e9]' would mean IF 0 gets restfreq 1e9 and
1318 IF 1 gets restfreq 2e9.
1319
1320 You can also specify the frequencies via a linecatalog.
1321
1322 Parameters:
1323
1324 freqs: list of rest frequency values or string idenitfiers
1325
1326 unit: unit for rest frequency (default 'Hz')
1327
1328
1329 Example::
1330
1331 # set the given restfrequency for the all currently selected IFs
1332 scan.set_restfreqs(freqs=1.4e9)
1333 # set restfrequencies for the n IFs (n > 1) in the order of the
1334 # list, i.e
1335 # IF0 -> 1.4e9, IF1 -> 1.41e9, IF3 -> 1.42e9
1336 # len(list_of_restfreqs) == nIF
1337 # for nIF == 1 the following will set multiple restfrequency for
1338 # that IF
1339 scan.set_restfreqs(freqs=[1.4e9, 1.41e9, 1.42e9])
1340 # set multiple restfrequencies per IF. as a list of lists where
1341 # the outer list has nIF elements, the inner s arbitrary
1342 scan.set_restfreqs(freqs=[[1.4e9, 1.41e9], [1.67e9]])
1343
1344 *Note*:
1345
1346 To do more sophisticate Restfrequency setting, e.g. on a
1347 source and IF basis, use scantable.set_selection() before using
1348 this function::
1349
1350 # provided your scantable is called scan
1351 selection = selector()
1352 selection.set_name("ORION*")
1353 selection.set_ifs([1])
1354 scan.set_selection(selection)
1355 scan.set_restfreqs(freqs=86.6e9)
1356
1357 """
1358 varlist = vars()
1359 from asap import linecatalog
1360 # simple value
1361 if isinstance(freqs, int) or isinstance(freqs, float):
1362 self._setrestfreqs([freqs], [""], unit)
1363 # list of values
1364 elif isinstance(freqs, list) or isinstance(freqs, tuple):
1365 # list values are scalars
1366 if isinstance(freqs[-1], int) or isinstance(freqs[-1], float):
1367 if len(freqs) == 1:
1368 self._setrestfreqs(freqs, [""], unit)
1369 else:
1370 # allow the 'old' mode of setting mulitple IFs
1371 sel = selector()
1372 savesel = self._getselection()
1373 iflist = self.getifnos()
1374 if len(freqs)>len(iflist):
1375 raise ValueError("number of elements in list of list "
1376 "exeeds the current IF selections")
1377 iflist = self.getifnos()
1378 for i, fval in enumerate(freqs):
1379 sel.set_ifs(iflist[i])
1380 self._setselection(sel)
1381 self._setrestfreqs([fval], [""], unit)
1382 self._setselection(savesel)
1383
1384 # list values are dict, {'value'=, 'name'=)
1385 elif isinstance(freqs[-1], dict):
1386 values = []
1387 names = []
1388 for d in freqs:
1389 values.append(d["value"])
1390 names.append(d["name"])
1391 self._setrestfreqs(values, names, unit)
1392 elif isinstance(freqs[-1], list) or isinstance(freqs[-1], tuple):
1393 sel = selector()
1394 savesel = self._getselection()
1395 iflist = self.getifnos()
1396 if len(freqs)>len(iflist):
1397 raise ValueError("number of elements in list of list exeeds"
1398 " the current IF selections")
1399 for i, fval in enumerate(freqs):
1400 sel.set_ifs(iflist[i])
1401 self._setselection(sel)
1402 self._setrestfreqs(fval, [""], unit)
1403 self._setselection(savesel)
1404 # freqs are to be taken from a linecatalog
1405 elif isinstance(freqs, linecatalog):
1406 sel = selector()
1407 savesel = self._getselection()
1408 for i in xrange(freqs.nrow()):
1409 sel.set_ifs(iflist[i])
1410 self._setselection(sel)
1411 self._setrestfreqs([freqs.get_frequency(i)],
1412 [freqs.get_name(i)], "MHz")
1413 # ensure that we are not iterating past nIF
1414 if i == self.nif()-1: break
1415 self._setselection(savesel)
1416 else:
1417 return
1418 self._add_history("set_restfreqs", varlist)
1419
1420 def shift_refpix(self, delta):
1421 """\
1422 Shift the reference pixel of the Spectra Coordinate by an
1423 integer amount.
1424
1425 Parameters:
1426
1427 delta: the amount to shift by
1428
1429 *Note*:
1430
1431 Be careful using this with broadband data.
1432
1433 """
1434 Scantable.shift_refpix(self, delta)
1435
1436 @asaplog_post_dec
1437 def history(self, filename=None):
1438 """\
1439 Print the history. Optionally to a file.
1440
1441 Parameters:
1442
1443 filename: The name of the file to save the history to.
1444
1445 """
1446 hist = list(self._gethistory())
1447 out = "-"*80
1448 for h in hist:
1449 if h.startswith("---"):
1450 out = "\n".join([out, h])
1451 else:
1452 items = h.split("##")
1453 date = items[0]
1454 func = items[1]
1455 items = items[2:]
1456 out += "\n"+date+"\n"
1457 out += "Function: %s\n Parameters:" % (func)
1458 for i in items:
1459 if i == '':
1460 continue
1461 s = i.split("=")
1462 out += "\n %s = %s" % (s[0], s[1])
1463 out = "\n".join([out, "-"*80])
1464 if filename is not None:
1465 if filename is "":
1466 filename = 'scantable_history.txt'
1467 import os
1468 filename = os.path.expandvars(os.path.expanduser(filename))
1469 if not os.path.isdir(filename):
1470 data = open(filename, 'w')
1471 data.write(out)
1472 data.close()
1473 else:
1474 msg = "Illegal file name '%s'." % (filename)
1475 raise IOError(msg)
1476 return page(out)
1477 #
1478 # Maths business
1479 #
1480 @asaplog_post_dec
1481 def average_time(self, mask=None, scanav=False, weight='tint', align=False):
1482 """\
1483 Return the (time) weighted average of a scan.
1484
1485 *Note*:
1486
1487 in channels only - align if necessary
1488
1489 Parameters:
1490
1491 mask: an optional mask (only used for 'var' and 'tsys'
1492 weighting)
1493
1494 scanav: True averages each scan separately
1495 False (default) averages all scans together,
1496
1497 weight: Weighting scheme.
1498 'none' (mean no weight)
1499 'var' (1/var(spec) weighted)
1500 'tsys' (1/Tsys**2 weighted)
1501 'tint' (integration time weighted)
1502 'tintsys' (Tint/Tsys**2)
1503 'median' ( median averaging)
1504 The default is 'tint'
1505
1506 align: align the spectra in velocity before averaging. It takes
1507 the time of the first spectrum as reference time.
1508
1509 Example::
1510
1511 # time average the scantable without using a mask
1512 newscan = scan.average_time()
1513
1514 """
1515 varlist = vars()
1516 weight = weight or 'TINT'
1517 mask = mask or ()
1518 scanav = (scanav and 'SCAN') or 'NONE'
1519 scan = (self, )
1520
1521 if align:
1522 scan = (self.freq_align(insitu=False), )
1523 s = None
1524 if weight.upper() == 'MEDIAN':
1525 s = scantable(self._math._averagechannel(scan[0], 'MEDIAN',
1526 scanav))
1527 else:
1528 s = scantable(self._math._average(scan, mask, weight.upper(),
1529 scanav))
1530 s._add_history("average_time", varlist)
1531 return s
1532
1533 @asaplog_post_dec
1534 def convert_flux(self, jyperk=None, eta=None, d=None, insitu=None):
1535 """\
1536 Return a scan where all spectra are converted to either
1537 Jansky or Kelvin depending upon the flux units of the scan table.
1538 By default the function tries to look the values up internally.
1539 If it can't find them (or if you want to over-ride), you must
1540 specify EITHER jyperk OR eta (and D which it will try to look up
1541 also if you don't set it). jyperk takes precedence if you set both.
1542
1543 Parameters:
1544
1545 jyperk: the Jy / K conversion factor
1546
1547 eta: the aperture efficiency
1548
1549 d: the geometric diameter (metres)
1550
1551 insitu: if False a new scantable is returned.
1552 Otherwise, the scaling is done in-situ
1553 The default is taken from .asaprc (False)
1554
1555 """
1556 if insitu is None: insitu = rcParams['insitu']
1557 self._math._setinsitu(insitu)
1558 varlist = vars()
1559 jyperk = jyperk or -1.0
1560 d = d or -1.0
1561 eta = eta or -1.0
1562 s = scantable(self._math._convertflux(self, d, eta, jyperk))
1563 s._add_history("convert_flux", varlist)
1564 if insitu: self._assign(s)
1565 else: return s
1566
1567 @asaplog_post_dec
1568 def gain_el(self, poly=None, filename="", method="linear", insitu=None):
1569 """\
1570 Return a scan after applying a gain-elevation correction.
1571 The correction can be made via either a polynomial or a
1572 table-based interpolation (and extrapolation if necessary).
1573 You specify polynomial coefficients, an ascii table or neither.
1574 If you specify neither, then a polynomial correction will be made
1575 with built in coefficients known for certain telescopes (an error
1576 will occur if the instrument is not known).
1577 The data and Tsys are *divided* by the scaling factors.
1578
1579 Parameters:
1580
1581 poly: Polynomial coefficients (default None) to compute a
1582 gain-elevation correction as a function of
1583 elevation (in degrees).
1584
1585 filename: The name of an ascii file holding correction factors.
1586 The first row of the ascii file must give the column
1587 names and these MUST include columns
1588 "ELEVATION" (degrees) and "FACTOR" (multiply data
1589 by this) somewhere.
1590 The second row must give the data type of the
1591 column. Use 'R' for Real and 'I' for Integer.
1592 An example file would be
1593 (actual factors are arbitrary) :
1594
1595 TIME ELEVATION FACTOR
1596 R R R
1597 0.1 0 0.8
1598 0.2 20 0.85
1599 0.3 40 0.9
1600 0.4 60 0.85
1601 0.5 80 0.8
1602 0.6 90 0.75
1603
1604 method: Interpolation method when correcting from a table.
1605 Values are "nearest", "linear" (default), "cubic"
1606 and "spline"
1607
1608 insitu: if False a new scantable is returned.
1609 Otherwise, the scaling is done in-situ
1610 The default is taken from .asaprc (False)
1611
1612 """
1613
1614 if insitu is None: insitu = rcParams['insitu']
1615 self._math._setinsitu(insitu)
1616 varlist = vars()
1617 poly = poly or ()
1618 from os.path import expandvars
1619 filename = expandvars(filename)
1620 s = scantable(self._math._gainel(self, poly, filename, method))
1621 s._add_history("gain_el", varlist)
1622 if insitu:
1623 self._assign(s)
1624 else:
1625 return s
1626
1627 @asaplog_post_dec
1628 def freq_align(self, reftime=None, method='cubic', insitu=None):
1629 """\
1630 Return a scan where all rows have been aligned in frequency/velocity.
1631 The alignment frequency frame (e.g. LSRK) is that set by function
1632 set_freqframe.
1633
1634 Parameters:
1635
1636 reftime: reference time to align at. By default, the time of
1637 the first row of data is used.
1638
1639 method: Interpolation method for regridding the spectra.
1640 Choose from "nearest", "linear", "cubic" (default)
1641 and "spline"
1642
1643 insitu: if False a new scantable is returned.
1644 Otherwise, the scaling is done in-situ
1645 The default is taken from .asaprc (False)
1646
1647 """
1648 if insitu is None: insitu = rcParams["insitu"]
1649 self._math._setinsitu(insitu)
1650 varlist = vars()
1651 reftime = reftime or ""
1652 s = scantable(self._math._freq_align(self, reftime, method))
1653 s._add_history("freq_align", varlist)
1654 if insitu: self._assign(s)
1655 else: return s
1656
1657 @asaplog_post_dec
1658 def opacity(self, tau=None, insitu=None):
1659 """\
1660 Apply an opacity correction. The data
1661 and Tsys are multiplied by the correction factor.
1662
1663 Parameters:
1664
1665 tau: (list of) opacity from which the correction factor is
1666 exp(tau*ZD)
1667 where ZD is the zenith-distance.
1668 If a list is provided, it has to be of length nIF,
1669 nIF*nPol or 1 and in order of IF/POL, e.g.
1670 [opif0pol0, opif0pol1, opif1pol0 ...]
1671 if tau is `None` the opacities are determined from a
1672 model.
1673
1674 insitu: if False a new scantable is returned.
1675 Otherwise, the scaling is done in-situ
1676 The default is taken from .asaprc (False)
1677
1678 """
1679 if insitu is None: insitu = rcParams['insitu']
1680 self._math._setinsitu(insitu)
1681 varlist = vars()
1682 if not hasattr(tau, "__len__"):
1683 tau = [tau]
1684 s = scantable(self._math._opacity(self, tau))
1685 s._add_history("opacity", varlist)
1686 if insitu: self._assign(s)
1687 else: return s
1688
1689 @asaplog_post_dec
1690 def bin(self, width=5, insitu=None):
1691 """\
1692 Return a scan where all spectra have been binned up.
1693
1694 Parameters:
1695
1696 width: The bin width (default=5) in pixels
1697
1698 insitu: if False a new scantable is returned.
1699 Otherwise, the scaling is done in-situ
1700 The default is taken from .asaprc (False)
1701
1702 """
1703 if insitu is None: insitu = rcParams['insitu']
1704 self._math._setinsitu(insitu)
1705 varlist = vars()
1706 s = scantable(self._math._bin(self, width))
1707 s._add_history("bin", varlist)
1708 if insitu:
1709 self._assign(s)
1710 else:
1711 return s
1712
1713 @asaplog_post_dec
1714 def resample(self, width=5, method='cubic', insitu=None):
1715 """\
1716 Return a scan where all spectra have been binned up.
1717
1718 Parameters:
1719
1720 width: The bin width (default=5) in pixels
1721
1722 method: Interpolation method when correcting from a table.
1723 Values are "nearest", "linear", "cubic" (default)
1724 and "spline"
1725
1726 insitu: if False a new scantable is returned.
1727 Otherwise, the scaling is done in-situ
1728 The default is taken from .asaprc (False)
1729
1730 """
1731 if insitu is None: insitu = rcParams['insitu']
1732 self._math._setinsitu(insitu)
1733 varlist = vars()
1734 s = scantable(self._math._resample(self, method, width))
1735 s._add_history("resample", varlist)
1736 if insitu: self._assign(s)
1737 else: return s
1738
1739 @asaplog_post_dec
1740 def average_pol(self, mask=None, weight='none'):
1741 """\
1742 Average the Polarisations together.
1743
1744 Parameters:
1745
1746 mask: An optional mask defining the region, where the
1747 averaging will be applied. The output will have all
1748 specified points masked.
1749
1750 weight: Weighting scheme. 'none' (default), 'var' (1/var(spec)
1751 weighted), or 'tsys' (1/Tsys**2 weighted)
1752
1753 """
1754 varlist = vars()
1755 mask = mask or ()
1756 s = scantable(self._math._averagepol(self, mask, weight.upper()))
1757 s._add_history("average_pol", varlist)
1758 return s
1759
1760 @asaplog_post_dec
1761 def average_beam(self, mask=None, weight='none'):
1762 """\
1763 Average the Beams together.
1764
1765 Parameters:
1766 mask: An optional mask defining the region, where the
1767 averaging will be applied. The output will have all
1768 specified points masked.
1769
1770 weight: Weighting scheme. 'none' (default), 'var' (1/var(spec)
1771 weighted), or 'tsys' (1/Tsys**2 weighted)
1772
1773 """
1774 varlist = vars()
1775 mask = mask or ()
1776 s = scantable(self._math._averagebeams(self, mask, weight.upper()))
1777 s._add_history("average_beam", varlist)
1778 return s
1779
1780 def parallactify(self, pflag):
1781 """\
1782 Set a flag to indicate whether this data should be treated as having
1783 been 'parallactified' (total phase == 0.0)
1784
1785 Parameters:
1786
1787 pflag: Bool indicating whether to turn this on (True) or
1788 off (False)
1789
1790 """
1791 varlist = vars()
1792 self._parallactify(pflag)
1793 self._add_history("parallactify", varlist)
1794
1795 @asaplog_post_dec
1796 def convert_pol(self, poltype=None):
1797 """\
1798 Convert the data to a different polarisation type.
1799 Note that you will need cross-polarisation terms for most conversions.
1800
1801 Parameters:
1802
1803 poltype: The new polarisation type. Valid types are:
1804 "linear", "circular", "stokes" and "linpol"
1805
1806 """
1807 varlist = vars()
1808 s = scantable(self._math._convertpol(self, poltype))
1809 s._add_history("convert_pol", varlist)
1810 return s
1811
1812 @asaplog_post_dec
1813 def smooth(self, kernel="hanning", width=5.0, order=2, plot=False, insitu=None):
1814 """\
1815 Smooth the spectrum by the specified kernel (conserving flux).
1816
1817 Parameters:
1818
1819 kernel: The type of smoothing kernel. Select from
1820 'hanning' (default), 'gaussian', 'boxcar', 'rmedian'
1821 or 'poly'
1822
1823 width: The width of the kernel in pixels. For hanning this is
1824 ignored otherwise it defauls to 5 pixels.
1825 For 'gaussian' it is the Full Width Half
1826 Maximum. For 'boxcar' it is the full width.
1827 For 'rmedian' and 'poly' it is the half width.
1828
1829 order: Optional parameter for 'poly' kernel (default is 2), to
1830 specify the order of the polnomial. Ignored by all other
1831 kernels.
1832
1833 plot: plot the original and the smoothed spectra.
1834 In this each indivual fit has to be approved, by
1835 typing 'y' or 'n'
1836
1837 insitu: if False a new scantable is returned.
1838 Otherwise, the scaling is done in-situ
1839 The default is taken from .asaprc (False)
1840
1841 """
1842 if insitu is None: insitu = rcParams['insitu']
1843 self._math._setinsitu(insitu)
1844 varlist = vars()
1845
1846 if plot: orgscan = self.copy()
1847
1848 s = scantable(self._math._smooth(self, kernel.lower(), width, order))
1849 s._add_history("smooth", varlist)
1850
1851 if plot:
1852 if rcParams['plotter.gui']:
1853 from asap.asaplotgui import asaplotgui as asaplot
1854 else:
1855 from asap.asaplot import asaplot
1856 self._p=asaplot()
1857 self._p.set_panels()
1858 ylab=s._get_ordinate_label()
1859 #self._p.palette(0,["#777777","red"])
1860 for r in xrange(s.nrow()):
1861 xsm=s._getabcissa(r)
1862 ysm=s._getspectrum(r)
1863 xorg=orgscan._getabcissa(r)
1864 yorg=orgscan._getspectrum(r)
1865 self._p.clear()
1866 self._p.hold()
1867 self._p.set_axes('ylabel',ylab)
1868 self._p.set_axes('xlabel',s._getabcissalabel(r))
1869 self._p.set_axes('title',s._getsourcename(r))
1870 self._p.set_line(label='Original',color="#777777")
1871 self._p.plot(xorg,yorg)
1872 self._p.set_line(label='Smoothed',color="red")
1873 self._p.plot(xsm,ysm)
1874 ### Ugly part for legend
1875 for i in [0,1]:
1876 self._p.subplots[0]['lines'].append([self._p.subplots[0]['axes'].lines[i]])
1877 self._p.release()
1878 ### Ugly part for legend
1879 self._p.subplots[0]['lines']=[]
1880 res = raw_input("Accept smoothing ([y]/n): ")
1881 if res.upper() == 'N':
1882 s._setspectrum(yorg, r)
1883 self._p.unmap()
1884 self._p = None
1885 del orgscan
1886
1887 if insitu: self._assign(s)
1888 else: return s
1889
1890 @asaplog_post_dec
1891 def old_poly_baseline(self, mask=None, order=0, plot=False, uselin=False, insitu=None, rows=None):
1892 """\
1893 Return a scan which has been baselined (all rows) by a polynomial.
1894
1895 Parameters:
1896
1897 mask: an optional mask
1898
1899 order: the order of the polynomial (default is 0)
1900
1901 plot: plot the fit and the residual. In this each
1902 indivual fit has to be approved, by typing 'y'
1903 or 'n'
1904
1905 uselin: use linear polynomial fit
1906
1907 insitu: if False a new scantable is returned.
1908 Otherwise, the scaling is done in-situ
1909 The default is taken from .asaprc (False)
1910
1911 rows: row numbers of spectra to be processed.
1912 (default is None: for all rows)
1913
1914 Example:
1915 # return a scan baselined by a third order polynomial,
1916 # not using a mask
1917 bscan = scan.poly_baseline(order=3)
1918
1919 """
1920 if insitu is None: insitu = rcParams['insitu']
1921 if not insitu:
1922 workscan = self.copy()
1923 else:
1924 workscan = self
1925 varlist = vars()
1926 if mask is None:
1927 mask = [True for i in xrange(self.nchan())]
1928
1929 try:
1930 f = fitter()
1931 if uselin:
1932 f.set_function(lpoly=order)
1933 else:
1934 f.set_function(poly=order)
1935
1936 if rows == None:
1937 rows = xrange(workscan.nrow())
1938 elif isinstance(rows, int):
1939 rows = [ rows ]
1940
1941 if len(rows) > 0:
1942 self.blpars = []
1943 self.masklists = []
1944 self.actualmask = []
1945
1946 for r in rows:
1947 f.x = workscan._getabcissa(r)
1948 f.y = workscan._getspectrum(r)
1949 f.mask = mask_and(mask, workscan._getmask(r)) # (CAS-1434)
1950 f.data = None
1951 f.fit()
1952 if plot:
1953 f.plot(residual=True)
1954 x = raw_input("Accept fit ( [y]/n ): ")
1955 if x.upper() == 'N':
1956 self.blpars.append(None)
1957 self.masklists.append(None)
1958 self.actualmask.append(None)
1959 continue
1960 workscan._setspectrum(f.fitter.getresidual(), r)
1961 self.blpars.append(f.get_parameters())
1962 self.masklists.append(workscan.get_masklist(f.mask, row=r, silent=True))
1963 self.actualmask.append(f.mask)
1964
1965 if plot:
1966 f._p.unmap()
1967 f._p = None
1968 workscan._add_history("poly_baseline", varlist)
1969 if insitu:
1970 self._assign(workscan)
1971 else:
1972 return workscan
1973 except RuntimeError:
1974 msg = "The fit failed, possibly because it didn't converge."
1975 raise RuntimeError(msg)
1976
1977 @asaplog_post_dec
1978 def poly_baseline(self, mask=None, order=0, plot=False, batch=False, insitu=None, rows=None):
1979 """\
1980 Return a scan which has been baselined (all rows) by a polynomial.
1981 Parameters:
1982 mask: an optional mask
1983 order: the order of the polynomial (default is 0)
1984 plot: plot the fit and the residual. In this each
1985 indivual fit has to be approved, by typing 'y'
1986 or 'n'. Ignored if batch = True.
1987 batch: if True a faster algorithm is used and logs
1988 including the fit results are not output
1989 (default is False)
1990 insitu: if False a new scantable is returned.
1991 Otherwise, the scaling is done in-situ
1992 The default is taken from .asaprc (False)
1993 rows: row numbers of spectra to be baselined.
1994 (default is None: for all rows)
1995 Example:
1996 # return a scan baselined by a third order polynomial,
1997 # not using a mask
1998 bscan = scan.poly_baseline(order=3)
1999 """
2000
2001 varlist = vars()
2002
2003 if insitu is None: insitu = rcParams["insitu"]
2004 if insitu:
2005 workscan = self
2006 else:
2007 workscan = self.copy()
2008
2009 nchan = workscan.nchan()
2010
2011 if mask is None:
2012 mask = [True for i in xrange(nchan)]
2013
2014 try:
2015 if rows == None:
2016 rows = xrange(workscan.nrow())
2017 elif isinstance(rows, int):
2018 rows = [ rows ]
2019
2020 if len(rows) > 0:
2021 workscan.blpars = []
2022 workscan.masklists = []
2023 workscan.actualmask = []
2024
2025 if batch:
2026 workscan._poly_baseline_batch(mask, order)
2027 elif plot:
2028 f = fitter()
2029 f.set_function(lpoly=order)
2030 for r in rows:
2031 f.x = workscan._getabcissa(r)
2032 f.y = workscan._getspectrum(r)
2033 f.mask = mask_and(mask, workscan._getmask(r)) # (CAS-1434)
2034 f.data = None
2035 f.fit()
2036
2037 f.plot(residual=True)
2038 accept_fit = raw_input("Accept fit ( [y]/n ): ")
2039 if accept_fit.upper() == "N":
2040 self.blpars.append(None)
2041 self.masklists.append(None)
2042 self.actualmask.append(None)
2043 continue
2044 workscan._setspectrum(f.fitter.getresidual(), r)
2045 workscan.blpars.append(f.get_parameters())
2046 workscan.masklists.append(workscan.get_masklist(f.mask, row=r))
2047 workscan.actualmask.append(f.mask)
2048
2049 f._p.unmap()
2050 f._p = None
2051 else:
2052 for r in rows:
2053 fitparams = workscan._poly_baseline(mask, order, r)
2054 params = fitparams.getparameters()
2055 fmtd = ", ".join(["p%d = %3.6f" % (i, v) for i, v in enumerate(params)])
2056 errors = fitparams.geterrors()
2057 fmask = mask_and(mask, workscan._getmask(r))
2058
2059 workscan.blpars.append({"params":params,
2060 "fixed": fitparams.getfixedparameters(),
2061 "formatted":fmtd, "errors":errors})
2062 workscan.masklists.append(workscan.get_masklist(fmask, r, silent=True))
2063 workscan.actualmask.append(fmask)
2064
2065 asaplog.push(fmtd)
2066
2067 workscan._add_history("poly_baseline", varlist)
2068
2069 if insitu:
2070 self._assign(workscan)
2071 else:
2072 return workscan
2073
2074 except RuntimeError, e:
2075 msg = "The fit failed, possibly because it didn't converge."
2076 if rcParams["verbose"]:
2077 asaplog.push(str(e))
2078 asaplog.push(str(msg))
2079 return
2080 else:
2081 raise RuntimeError(str(e)+'\n'+msg)
2082
2083
2084 def auto_poly_baseline(self, mask=None, edge=(0, 0), order=0,
2085 threshold=3, chan_avg_limit=1, plot=False,
2086 insitu=None, rows=None):
2087 """\
2088 Return a scan which has been baselined (all rows) by a polynomial.
2089 Spectral lines are detected first using linefinder and masked out
2090 to avoid them affecting the baseline solution.
2091
2092 Parameters:
2093
2094 mask: an optional mask retreived from scantable
2095
2096 edge: an optional number of channel to drop at the edge of
2097 spectrum. If only one value is
2098 specified, the same number will be dropped from
2099 both sides of the spectrum. Default is to keep
2100 all channels. Nested tuples represent individual
2101 edge selection for different IFs (a number of spectral
2102 channels can be different)
2103
2104 order: the order of the polynomial (default is 0)
2105
2106 threshold: the threshold used by line finder. It is better to
2107 keep it large as only strong lines affect the
2108 baseline solution.
2109
2110 chan_avg_limit:
2111 a maximum number of consequtive spectral channels to
2112 average during the search of weak and broad lines.
2113 The default is no averaging (and no search for weak
2114 lines). If such lines can affect the fitted baseline
2115 (e.g. a high order polynomial is fitted), increase this
2116 parameter (usually values up to 8 are reasonable). Most
2117 users of this method should find the default value
2118 sufficient.
2119
2120 plot: plot the fit and the residual. In this each
2121 indivual fit has to be approved, by typing 'y'
2122 or 'n'
2123
2124 insitu: if False a new scantable is returned.
2125 Otherwise, the scaling is done in-situ
2126 The default is taken from .asaprc (False)
2127 rows: row numbers of spectra to be processed.
2128 (default is None: for all rows)
2129
2130
2131 Example::
2132
2133 scan2 = scan.auto_poly_baseline(order=7, insitu=False)
2134
2135 """
2136 if insitu is None: insitu = rcParams['insitu']
2137 varlist = vars()
2138 from asap.asaplinefind import linefinder
2139 from asap import _is_sequence_or_number as _is_valid
2140
2141 # check whether edge is set up for each IF individually
2142 individualedge = False;
2143 if len(edge) > 1:
2144 if isinstance(edge[0], list) or isinstance(edge[0], tuple):
2145 individualedge = True;
2146
2147 if not _is_valid(edge, int) and not individualedge:
2148 raise ValueError, "Parameter 'edge' has to be an integer or a \
2149 pair of integers specified as a tuple. Nested tuples are allowed \
2150 to make individual selection for different IFs."
2151
2152 curedge = (0, 0)
2153 if individualedge:
2154 for edgepar in edge:
2155 if not _is_valid(edgepar, int):
2156 raise ValueError, "Each element of the 'edge' tuple has \
2157 to be a pair of integers or an integer."
2158 else:
2159 curedge = edge;
2160
2161 if not insitu:
2162 workscan = self.copy()
2163 else:
2164 workscan = self
2165
2166 # setup fitter
2167 f = fitter()
2168 f.set_function(lpoly=order)
2169
2170 # setup line finder
2171 fl = linefinder()
2172 fl.set_options(threshold=threshold,avg_limit=chan_avg_limit)
2173
2174 fl.set_scan(workscan)
2175
2176 if mask is None:
2177 mask = _n_bools(workscan.nchan(), True)
2178
2179 if rows is None:
2180 rows = xrange(workscan.nrow())
2181 elif isinstance(rows, int):
2182 rows = [ rows ]
2183
2184 # Save parameters of baseline fits & masklists as a class attribute.
2185 # NOTICE: It does not reflect changes in scantable!
2186 if len(rows) > 0:
2187 self.blpars=[]
2188 self.masklists=[]
2189 self.actualmask=[]
2190 asaplog.push("Processing:")
2191 for r in rows:
2192 msg = " Scan[%d] Beam[%d] IF[%d] Pol[%d] Cycle[%d]" % \
2193 (workscan.getscan(r), workscan.getbeam(r), workscan.getif(r), \
2194 workscan.getpol(r), workscan.getcycle(r))
2195 asaplog.push(msg, False)
2196
2197 # figure out edge parameter
2198 if individualedge:
2199 if len(edge) >= workscan.getif(r):
2200 raise RuntimeError, "Number of edge elements appear to " \
2201 "be less than the number of IFs"
2202 curedge = edge[workscan.getif(r)]
2203
2204 actualmask = mask_and(mask, workscan._getmask(r)) # (CAS-1434)
2205
2206 # setup line finder
2207 fl.find_lines(r, actualmask, curedge)
2208
2209 f.x = workscan._getabcissa(r)
2210 f.y = workscan._getspectrum(r)
2211 f.mask = fl.get_mask()
2212 f.data = None
2213 f.fit()
2214
2215 # Show mask list
2216 masklist=workscan.get_masklist(f.mask, row=r, silent=True)
2217 msg = "mask range: "+str(masklist)
2218 asaplog.push(msg, False)
2219
2220 if plot:
2221 f.plot(residual=True)
2222 x = raw_input("Accept fit ( [y]/n ): ")
2223 if x.upper() == 'N':
2224 self.blpars.append(None)
2225 self.masklists.append(None)
2226 self.actualmask.append(None)
2227 continue
2228
2229 workscan._setspectrum(f.fitter.getresidual(), r)
2230 self.blpars.append(f.get_parameters())
2231 self.masklists.append(masklist)
2232 self.actualmask.append(f.mask)
2233 if plot:
2234 f._p.unmap()
2235 f._p = None
2236 workscan._add_history("auto_poly_baseline", varlist)
2237 if insitu:
2238 self._assign(workscan)
2239 else:
2240 return workscan
2241
2242 @asaplog_post_dec
2243 def rotate_linpolphase(self, angle):
2244 """\
2245 Rotate the phase of the complex polarization O=Q+iU correlation.
2246 This is always done in situ in the raw data. So if you call this
2247 function more than once then each call rotates the phase further.
2248
2249 Parameters:
2250
2251 angle: The angle (degrees) to rotate (add) by.
2252
2253 Example::
2254
2255 scan.rotate_linpolphase(2.3)
2256
2257 """
2258 varlist = vars()
2259 self._math._rotate_linpolphase(self, angle)
2260 self._add_history("rotate_linpolphase", varlist)
2261 return
2262
2263 @asaplog_post_dec
2264 def rotate_xyphase(self, angle):
2265 """\
2266 Rotate the phase of the XY correlation. This is always done in situ
2267 in the data. So if you call this function more than once
2268 then each call rotates the phase further.
2269
2270 Parameters:
2271
2272 angle: The angle (degrees) to rotate (add) by.
2273
2274 Example::
2275
2276 scan.rotate_xyphase(2.3)
2277
2278 """
2279 varlist = vars()
2280 self._math._rotate_xyphase(self, angle)
2281 self._add_history("rotate_xyphase", varlist)
2282 return
2283
2284 @asaplog_post_dec
2285 def swap_linears(self):
2286 """\
2287 Swap the linear polarisations XX and YY, or better the first two
2288 polarisations as this also works for ciculars.
2289 """
2290 varlist = vars()
2291 self._math._swap_linears(self)
2292 self._add_history("swap_linears", varlist)
2293 return
2294
2295 @asaplog_post_dec
2296 def invert_phase(self):
2297 """\
2298 Invert the phase of the complex polarisation
2299 """
2300 varlist = vars()
2301 self._math._invert_phase(self)
2302 self._add_history("invert_phase", varlist)
2303 return
2304
2305 @asaplog_post_dec
2306 def add(self, offset, insitu=None):
2307 """\
2308 Return a scan where all spectra have the offset added
2309
2310 Parameters:
2311
2312 offset: the offset
2313
2314 insitu: if False a new scantable is returned.
2315 Otherwise, the scaling is done in-situ
2316 The default is taken from .asaprc (False)
2317
2318 """
2319 if insitu is None: insitu = rcParams['insitu']
2320 self._math._setinsitu(insitu)
2321 varlist = vars()
2322 s = scantable(self._math._unaryop(self, offset, "ADD", False))
2323 s._add_history("add", varlist)
2324 if insitu:
2325 self._assign(s)
2326 else:
2327 return s
2328
2329 @asaplog_post_dec
2330 def scale(self, factor, tsys=True, insitu=None):
2331 """\
2332
2333 Return a scan where all spectra are scaled by the given 'factor'
2334
2335 Parameters:
2336
2337 factor: the scaling factor (float or 1D float list)
2338
2339 insitu: if False a new scantable is returned.
2340 Otherwise, the scaling is done in-situ
2341 The default is taken from .asaprc (False)
2342
2343 tsys: if True (default) then apply the operation to Tsys
2344 as well as the data
2345
2346 """
2347 if insitu is None: insitu = rcParams['insitu']
2348 self._math._setinsitu(insitu)
2349 varlist = vars()
2350 s = None
2351 import numpy
2352 if isinstance(factor, list) or isinstance(factor, numpy.ndarray):
2353 if isinstance(factor[0], list) or isinstance(factor[0], numpy.ndarray):
2354 from asapmath import _array2dOp
2355 s = _array2dOp( self.copy(), factor, "MUL", tsys )
2356 else:
2357 s = scantable( self._math._arrayop( self.copy(), factor, "MUL", tsys ) )
2358 else:
2359 s = scantable(self._math._unaryop(self.copy(), factor, "MUL", tsys))
2360 s._add_history("scale", varlist)
2361 if insitu:
2362 self._assign(s)
2363 else:
2364 return s
2365
2366 def set_sourcetype(self, match, matchtype="pattern",
2367 sourcetype="reference"):
2368 """\
2369 Set the type of the source to be an source or reference scan
2370 using the provided pattern.
2371
2372 Parameters:
2373
2374 match: a Unix style pattern, regular expression or selector
2375
2376 matchtype: 'pattern' (default) UNIX style pattern or
2377 'regex' regular expression
2378
2379 sourcetype: the type of the source to use (source/reference)
2380
2381 """
2382 varlist = vars()
2383 basesel = self.get_selection()
2384 stype = -1
2385 if sourcetype.lower().startswith("r"):
2386 stype = 1
2387 elif sourcetype.lower().startswith("s"):
2388 stype = 0
2389 else:
2390 raise ValueError("Illegal sourcetype use s(ource) or r(eference)")
2391 if matchtype.lower().startswith("p"):
2392 matchtype = "pattern"
2393 elif matchtype.lower().startswith("r"):
2394 matchtype = "regex"
2395 else:
2396 raise ValueError("Illegal matchtype, use p(attern) or r(egex)")
2397 sel = selector()
2398 if isinstance(match, selector):
2399 sel = match
2400 else:
2401 sel.set_query("SRCNAME == %s('%s')" % (matchtype, match))
2402 self.set_selection(basesel+sel)
2403 self._setsourcetype(stype)
2404 self.set_selection(basesel)
2405 self._add_history("set_sourcetype", varlist)
2406
2407 @asaplog_post_dec
2408 @preserve_selection
2409 def auto_quotient(self, preserve=True, mode='paired', verify=False):
2410 """\
2411 This function allows to build quotients automatically.
2412 It assumes the observation to have the same number of
2413 "ons" and "offs"
2414
2415 Parameters:
2416
2417 preserve: you can preserve (default) the continuum or
2418 remove it. The equations used are
2419
2420 preserve: Output = Toff * (on/off) - Toff
2421
2422 remove: Output = Toff * (on/off) - Ton
2423
2424 mode: the on/off detection mode
2425 'paired' (default)
2426 identifies 'off' scans by the
2427 trailing '_R' (Mopra/Parkes) or
2428 '_e'/'_w' (Tid) and matches
2429 on/off pairs from the observing pattern
2430 'time'
2431 finds the closest off in time
2432
2433 .. todo:: verify argument is not implemented
2434
2435 """
2436 varlist = vars()
2437 modes = ["time", "paired"]
2438 if not mode in modes:
2439 msg = "please provide valid mode. Valid modes are %s" % (modes)
2440 raise ValueError(msg)
2441 s = None
2442 if mode.lower() == "paired":
2443 sel = self.get_selection()
2444 sel.set_query("SRCTYPE==psoff")
2445 self.set_selection(sel)
2446 offs = self.copy()
2447 sel.set_query("SRCTYPE==pson")
2448 self.set_selection(sel)
2449 ons = self.copy()
2450 s = scantable(self._math._quotient(ons, offs, preserve))
2451 elif mode.lower() == "time":
2452 s = scantable(self._math._auto_quotient(self, mode, preserve))
2453 s._add_history("auto_quotient", varlist)
2454 return s
2455
2456 @asaplog_post_dec
2457 def mx_quotient(self, mask = None, weight='median', preserve=True):
2458 """\
2459 Form a quotient using "off" beams when observing in "MX" mode.
2460
2461 Parameters:
2462
2463 mask: an optional mask to be used when weight == 'stddev'
2464
2465 weight: How to average the off beams. Default is 'median'.
2466
2467 preserve: you can preserve (default) the continuum or
2468 remove it. The equations used are:
2469
2470 preserve: Output = Toff * (on/off) - Toff
2471
2472 remove: Output = Toff * (on/off) - Ton
2473
2474 """
2475 mask = mask or ()
2476 varlist = vars()
2477 on = scantable(self._math._mx_extract(self, 'on'))
2478 preoff = scantable(self._math._mx_extract(self, 'off'))
2479 off = preoff.average_time(mask=mask, weight=weight, scanav=False)
2480 from asapmath import quotient
2481 q = quotient(on, off, preserve)
2482 q._add_history("mx_quotient", varlist)
2483 return q
2484
2485 @asaplog_post_dec
2486 def freq_switch(self, insitu=None):
2487 """\
2488 Apply frequency switching to the data.
2489
2490 Parameters:
2491
2492 insitu: if False a new scantable is returned.
2493 Otherwise, the swictching is done in-situ
2494 The default is taken from .asaprc (False)
2495
2496 """
2497 if insitu is None: insitu = rcParams['insitu']
2498 self._math._setinsitu(insitu)
2499 varlist = vars()
2500 s = scantable(self._math._freqswitch(self))
2501 s._add_history("freq_switch", varlist)
2502 if insitu:
2503 self._assign(s)
2504 else:
2505 return s
2506
2507 @asaplog_post_dec
2508 def recalc_azel(self):
2509 """Recalculate the azimuth and elevation for each position."""
2510 varlist = vars()
2511 self._recalcazel()
2512 self._add_history("recalc_azel", varlist)
2513 return
2514
2515 @asaplog_post_dec
2516 def __add__(self, other):
2517 varlist = vars()
2518 s = None
2519 if isinstance(other, scantable):
2520 s = scantable(self._math._binaryop(self, other, "ADD"))
2521 elif isinstance(other, float):
2522 s = scantable(self._math._unaryop(self, other, "ADD", False))
2523 else:
2524 raise TypeError("Other input is not a scantable or float value")
2525 s._add_history("operator +", varlist)
2526 return s
2527
2528 @asaplog_post_dec
2529 def __sub__(self, other):
2530 """
2531 implicit on all axes and on Tsys
2532 """
2533 varlist = vars()
2534 s = None
2535 if isinstance(other, scantable):
2536 s = scantable(self._math._binaryop(self, other, "SUB"))
2537 elif isinstance(other, float):
2538 s = scantable(self._math._unaryop(self, other, "SUB", False))
2539 else:
2540 raise TypeError("Other input is not a scantable or float value")
2541 s._add_history("operator -", varlist)
2542 return s
2543
2544 @asaplog_post_dec
2545 def __mul__(self, other):
2546 """
2547 implicit on all axes and on Tsys
2548 """
2549 varlist = vars()
2550 s = None
2551 if isinstance(other, scantable):
2552 s = scantable(self._math._binaryop(self, other, "MUL"))
2553 elif isinstance(other, float):
2554 s = scantable(self._math._unaryop(self, other, "MUL", False))
2555 else:
2556 raise TypeError("Other input is not a scantable or float value")
2557 s._add_history("operator *", varlist)
2558 return s
2559
2560
2561 @asaplog_post_dec
2562 def __div__(self, other):
2563 """
2564 implicit on all axes and on Tsys
2565 """
2566 varlist = vars()
2567 s = None
2568 if isinstance(other, scantable):
2569 s = scantable(self._math._binaryop(self, other, "DIV"))
2570 elif isinstance(other, float):
2571 if other == 0.0:
2572 raise ZeroDivisionError("Dividing by zero is not recommended")
2573 s = scantable(self._math._unaryop(self, other, "DIV", False))
2574 else:
2575 raise TypeError("Other input is not a scantable or float value")
2576 s._add_history("operator /", varlist)
2577 return s
2578
2579 @asaplog_post_dec
2580 def get_fit(self, row=0):
2581 """\
2582 Print or return the stored fits for a row in the scantable
2583
2584 Parameters:
2585
2586 row: the row which the fit has been applied to.
2587
2588 """
2589 if row > self.nrow():
2590 return
2591 from asap.asapfit import asapfit
2592 fit = asapfit(self._getfit(row))
2593 asaplog.push( '%s' %(fit) )
2594 return fit.as_dict()
2595
2596 def flag_nans(self):
2597 """\
2598 Utility function to flag NaN values in the scantable.
2599 """
2600 import numpy
2601 basesel = self.get_selection()
2602 for i in range(self.nrow()):
2603 sel = self.get_row_selector(i)
2604 self.set_selection(basesel+sel)
2605 nans = numpy.isnan(self._getspectrum(0))
2606 if numpy.any(nans):
2607 bnans = [ bool(v) for v in nans]
2608 self.flag(bnans)
2609 self.set_selection(basesel)
2610
2611 def get_row_selector(self, rowno):
2612 #return selector(beams=self.getbeam(rowno),
2613 # ifs=self.getif(rowno),
2614 # pols=self.getpol(rowno),
2615 # scans=self.getscan(rowno),
2616 # cycles=self.getcycle(rowno))
2617 return selector(rows=[rowno])
2618
2619 def _add_history(self, funcname, parameters):
2620 if not rcParams['scantable.history']:
2621 return
2622 # create date
2623 sep = "##"
2624 from datetime import datetime
2625 dstr = datetime.now().strftime('%Y/%m/%d %H:%M:%S')
2626 hist = dstr+sep
2627 hist += funcname+sep#cdate+sep
2628 if parameters.has_key('self'): del parameters['self']
2629 for k, v in parameters.iteritems():
2630 if type(v) is dict:
2631 for k2, v2 in v.iteritems():
2632 hist += k2
2633 hist += "="
2634 if isinstance(v2, scantable):
2635 hist += 'scantable'
2636 elif k2 == 'mask':
2637 if isinstance(v2, list) or isinstance(v2, tuple):
2638 hist += str(self._zip_mask(v2))
2639 else:
2640 hist += str(v2)
2641 else:
2642 hist += str(v2)
2643 else:
2644 hist += k
2645 hist += "="
2646 if isinstance(v, scantable):
2647 hist += 'scantable'
2648 elif k == 'mask':
2649 if isinstance(v, list) or isinstance(v, tuple):
2650 hist += str(self._zip_mask(v))
2651 else:
2652 hist += str(v)
2653 else:
2654 hist += str(v)
2655 hist += sep
2656 hist = hist[:-2] # remove trailing '##'
2657 self._addhistory(hist)
2658
2659
2660 def _zip_mask(self, mask):
2661 mask = list(mask)
2662 i = 0
2663 segments = []
2664 while mask[i:].count(1):
2665 i += mask[i:].index(1)
2666 if mask[i:].count(0):
2667 j = i + mask[i:].index(0)
2668 else:
2669 j = len(mask)
2670 segments.append([i, j])
2671 i = j
2672 return segments
2673
2674 def _get_ordinate_label(self):
2675 fu = "("+self.get_fluxunit()+")"
2676 import re
2677 lbl = "Intensity"
2678 if re.match(".K.", fu):
2679 lbl = "Brightness Temperature "+ fu
2680 elif re.match(".Jy.", fu):
2681 lbl = "Flux density "+ fu
2682 return lbl
2683
2684 def _check_ifs(self):
2685 #nchans = [self.nchan(i) for i in range(self.nif(-1))]
2686 #nchans = filter(lambda t: t > 0, nchans)
2687 nchans = [self.nchan(i) for i in self.getifnos()]
2688 return (sum(nchans)/len(nchans) == nchans[0])
2689
2690 @asaplog_post_dec
2691 #def _fill(self, names, unit, average, getpt, antenna):
2692 def _fill(self, names, unit, average, opts={}):
2693 first = True
2694 fullnames = []
2695 for name in names:
2696 name = os.path.expandvars(name)
2697 name = os.path.expanduser(name)
2698 if not os.path.exists(name):
2699 msg = "File '%s' does not exists" % (name)
2700 raise IOError(msg)
2701 fullnames.append(name)
2702 if average:
2703 asaplog.push('Auto averaging integrations')
2704 stype = int(rcParams['scantable.storage'].lower() == 'disk')
2705 for name in fullnames:
2706 tbl = Scantable(stype)
2707 r = filler(tbl)
2708 rx = rcParams['scantable.reference']
2709 r.setreferenceexpr(rx)
2710 msg = "Importing %s..." % (name)
2711 asaplog.push(msg, False)
2712 #opts = {'ms': {'antenna' : antenna, 'getpt': getpt} }
2713 r.open(name, opts)# antenna, -1, -1, getpt)
2714 r.fill()
2715 if average:
2716 tbl = self._math._average((tbl, ), (), 'NONE', 'SCAN')
2717 if not first:
2718 tbl = self._math._merge([self, tbl])
2719 Scantable.__init__(self, tbl)
2720 r.close()
2721 del r, tbl
2722 first = False
2723 #flush log
2724 asaplog.post()
2725 if unit is not None:
2726 self.set_fluxunit(unit)
2727 if not is_casapy():
2728 self.set_freqframe(rcParams['scantable.freqframe'])
2729
2730 def __getitem__(self, key):
2731 if key < 0:
2732 key += self.nrow()
2733 if key >= self.nrow():
2734 raise IndexError("Row index out of range.")
2735 return self._getspectrum(key)
2736
2737 def __setitem__(self, key, value):
2738 if key < 0:
2739 key += self.nrow()
2740 if key >= self.nrow():
2741 raise IndexError("Row index out of range.")
2742 if not hasattr(value, "__len__") or \
2743 len(value) > self.nchan(self.getif(key)):
2744 raise ValueError("Spectrum length doesn't match.")
2745 return self._setspectrum(value, key)
2746
2747 def __len__(self):
2748 return self.nrow()
2749
2750 def __iter__(self):
2751 for i in range(len(self)):
2752 yield self[i]
Note: See TracBrowser for help on using the repository browser.