source: trunk/python/scantable.py@ 1908

Last change on this file since 1908 was 1908, checked in by WataruKawasaki, 14 years ago

New Development: No

JIRA Issue: Yes CAS-1937, CAS-2373

Ready to Release: Yes

Interface Changes: No

What Interface Changed:

Test Programs:

Put in Release Notes: No

Module(s): sdbaseline

Description: Changing some function names


  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 92.2 KB
Line 
1"""This module defines the scantable class."""
2
3import os
4try:
5 from functools import wraps as wraps_dec
6except ImportError:
7 from asap.compatibility import wraps as wraps_dec
8
9from asap.env import is_casapy
10from asap._asap import Scantable
11from asap._asap import filler
12from asap.parameters import rcParams
13from asap.logging import asaplog, asaplog_post_dec
14from asap.selector import selector
15from asap.linecatalog import linecatalog
16from asap.coordinate import coordinate
17from asap.utils import _n_bools, mask_not, mask_and, mask_or, page
18from asap.asapfitter import fitter
19
20
21def preserve_selection(func):
22 @wraps_dec(func)
23 def wrap(obj, *args, **kw):
24 basesel = obj.get_selection()
25 try:
26 val = func(obj, *args, **kw)
27 finally:
28 obj.set_selection(basesel)
29 return val
30 return wrap
31
32def is_scantable(filename):
33 """Is the given file a scantable?
34
35 Parameters:
36
37 filename: the name of the file/directory to test
38
39 """
40 if ( os.path.isdir(filename)
41 and os.path.exists(filename+'/table.info')
42 and os.path.exists(filename+'/table.dat') ):
43 f=open(filename+'/table.info')
44 l=f.readline()
45 f.close()
46 #if ( l.find('Scantable') != -1 ):
47 if ( l.find('Measurement Set') == -1 ):
48 return True
49 else:
50 return False
51 else:
52 return False
53## return (os.path.isdir(filename)
54## and not os.path.exists(filename+'/table.f1')
55## and os.path.exists(filename+'/table.info'))
56
57def is_ms(filename):
58 """Is the given file a MeasurementSet?
59
60 Parameters:
61
62 filename: the name of the file/directory to test
63
64 """
65 if ( os.path.isdir(filename)
66 and os.path.exists(filename+'/table.info')
67 and os.path.exists(filename+'/table.dat') ):
68 f=open(filename+'/table.info')
69 l=f.readline()
70 f.close()
71 if ( l.find('Measurement Set') != -1 ):
72 return True
73 else:
74 return False
75 else:
76 return False
77
78class scantable(Scantable):
79 """\
80 The ASAP container for scans (single-dish data).
81 """
82
83 @asaplog_post_dec
84 def __init__(self, filename, average=None, unit=None, getpt=None,
85 antenna=None, parallactify=None):
86 """\
87 Create a scantable from a saved one or make a reference
88
89 Parameters:
90
91 filename: the name of an asap table on disk
92 or
93 the name of a rpfits/sdfits/ms file
94 (integrations within scans are auto averaged
95 and the whole file is read) or
96 [advanced] a reference to an existing scantable
97
98 average: average all integrations withinb a scan on read.
99 The default (True) is taken from .asaprc.
100
101 unit: brightness unit; must be consistent with K or Jy.
102 Over-rides the default selected by the filler
103 (input rpfits/sdfits/ms) or replaces the value
104 in existing scantables
105
106 getpt: for MeasurementSet input data only:
107 If True, all pointing data are filled.
108 The deafult is False, which makes time to load
109 the MS data faster in some cases.
110
111 antenna: Antenna selection. integer (id) or string (name or id).
112
113 parallactify: Indicate that the data had been parallatified. Default
114 is taken from rc file.
115
116 """
117 if average is None:
118 average = rcParams['scantable.autoaverage']
119 if getpt is None:
120 getpt = True
121 if antenna is not None:
122 asaplog.push("Antenna selection currently unsupported."
123 "Using ''")
124 asaplog.post('WARN')
125 if antenna is None:
126 antenna = ''
127 elif type(antenna) == int:
128 antenna = '%s' % antenna
129 elif type(antenna) == list:
130 tmpstr = ''
131 for i in range( len(antenna) ):
132 if type(antenna[i]) == int:
133 tmpstr = tmpstr + ('%s,'%(antenna[i]))
134 elif type(antenna[i]) == str:
135 tmpstr=tmpstr+antenna[i]+','
136 else:
137 raise TypeError('Bad antenna selection.')
138 antenna = tmpstr.rstrip(',')
139 parallactify = parallactify or rcParams['scantable.parallactify']
140 varlist = vars()
141 from asap._asap import stmath
142 self._math = stmath( rcParams['insitu'] )
143 if isinstance(filename, Scantable):
144 Scantable.__init__(self, filename)
145 else:
146 if isinstance(filename, str):
147 filename = os.path.expandvars(filename)
148 filename = os.path.expanduser(filename)
149 if not os.path.exists(filename):
150 s = "File '%s' not found." % (filename)
151 raise IOError(s)
152 if is_scantable(filename):
153 ondisk = rcParams['scantable.storage'] == 'disk'
154 Scantable.__init__(self, filename, ondisk)
155 if unit is not None:
156 self.set_fluxunit(unit)
157 # do not reset to the default freqframe
158 #self.set_freqframe(rcParams['scantable.freqframe'])
159 #elif os.path.isdir(filename) \
160 # and not os.path.exists(filename+'/table.f1'):
161 elif is_ms(filename):
162 self._fill([filename], unit, average, getpt, antenna)
163 elif os.path.isfile(filename):
164 self._fill([filename], unit, average, getpt, antenna)
165 else:
166 msg = "The given file '%s'is not a valid " \
167 "asap table." % (filename)
168 raise IOError(msg)
169 elif (isinstance(filename, list) or isinstance(filename, tuple)) \
170 and isinstance(filename[-1], str):
171 self._fill(filename, unit, average, getpt, antenna)
172 self.parallactify(parallactify)
173 self._add_history("scantable", varlist)
174
175 @asaplog_post_dec
176 def save(self, name=None, format=None, overwrite=False):
177 """\
178 Store the scantable on disk. This can be an asap (aips++) Table,
179 SDFITS or MS2 format.
180
181 Parameters:
182
183 name: the name of the outputfile. For format "ASCII"
184 this is the root file name (data in 'name'.txt
185 and header in 'name'_header.txt)
186
187 format: an optional file format. Default is ASAP.
188 Allowed are:
189
190 * 'ASAP' (save as ASAP [aips++] Table),
191 * 'SDFITS' (save as SDFITS file)
192 * 'ASCII' (saves as ascii text file)
193 * 'MS2' (saves as an casacore MeasurementSet V2)
194 * 'FITS' (save as image FITS - not readable by class)
195 * 'CLASS' (save as FITS readable by CLASS)
196
197 overwrite: If the file should be overwritten if it exists.
198 The default False is to return with warning
199 without writing the output. USE WITH CARE.
200
201 Example::
202
203 scan.save('myscan.asap')
204 scan.save('myscan.sdfits', 'SDFITS')
205
206 """
207 from os import path
208 format = format or rcParams['scantable.save']
209 suffix = '.'+format.lower()
210 if name is None or name == "":
211 name = 'scantable'+suffix
212 msg = "No filename given. Using default name %s..." % name
213 asaplog.push(msg)
214 name = path.expandvars(name)
215 if path.isfile(name) or path.isdir(name):
216 if not overwrite:
217 msg = "File %s exists." % name
218 raise IOError(msg)
219 format2 = format.upper()
220 if format2 == 'ASAP':
221 self._save(name)
222 else:
223 from asap._asap import stwriter as stw
224 writer = stw(format2)
225 writer.write(self, name)
226 return
227
228 def copy(self):
229 """Return a copy of this scantable.
230
231 *Note*:
232
233 This makes a full (deep) copy. scan2 = scan1 makes a reference.
234
235 Example::
236
237 copiedscan = scan.copy()
238
239 """
240 sd = scantable(Scantable._copy(self))
241 return sd
242
243 def drop_scan(self, scanid=None):
244 """\
245 Return a new scantable where the specified scan number(s) has(have)
246 been dropped.
247
248 Parameters:
249
250 scanid: a (list of) scan number(s)
251
252 """
253 from asap import _is_sequence_or_number as _is_valid
254 from asap import _to_list
255 from asap import unique
256 if not _is_valid(scanid):
257 raise RuntimeError( 'Please specify a scanno to drop from the scantable' )
258 scanid = _to_list(scanid)
259 allscans = unique([ self.getscan(i) for i in range(self.nrow())])
260 for sid in scanid: allscans.remove(sid)
261 if len(allscans) == 0:
262 raise ValueError("Can't remove all scans")
263 sel = selector(scans=allscans)
264 return self._select_copy(sel)
265
266 def _select_copy(self, selection):
267 orig = self.get_selection()
268 self.set_selection(orig+selection)
269 cp = self.copy()
270 self.set_selection(orig)
271 return cp
272
273 def get_scan(self, scanid=None):
274 """\
275 Return a specific scan (by scanno) or collection of scans (by
276 source name) in a new scantable.
277
278 *Note*:
279
280 See scantable.drop_scan() for the inverse operation.
281
282 Parameters:
283
284 scanid: a (list of) scanno or a source name, unix-style
285 patterns are accepted for source name matching, e.g.
286 '*_R' gets all 'ref scans
287
288 Example::
289
290 # get all scans containing the source '323p459'
291 newscan = scan.get_scan('323p459')
292 # get all 'off' scans
293 refscans = scan.get_scan('*_R')
294 # get a susbset of scans by scanno (as listed in scan.summary())
295 newscan = scan.get_scan([0, 2, 7, 10])
296
297 """
298 if scanid is None:
299 raise RuntimeError( 'Please specify a scan no or name to '
300 'retrieve from the scantable' )
301 try:
302 bsel = self.get_selection()
303 sel = selector()
304 if type(scanid) is str:
305 sel.set_name(scanid)
306 return self._select_copy(sel)
307 elif type(scanid) is int:
308 sel.set_scans([scanid])
309 return self._select_copy(sel)
310 elif type(scanid) is list:
311 sel.set_scans(scanid)
312 return self._select_copy(sel)
313 else:
314 msg = "Illegal scanid type, use 'int' or 'list' if ints."
315 raise TypeError(msg)
316 except RuntimeError:
317 raise
318
319 def __str__(self):
320 return Scantable._summary(self, True)
321
322 def summary(self, filename=None):
323 """\
324 Print a summary of the contents of this scantable.
325
326 Parameters:
327
328 filename: the name of a file to write the putput to
329 Default - no file output
330
331 """
332 info = Scantable._summary(self, True)
333 if filename is not None:
334 if filename is "":
335 filename = 'scantable_summary.txt'
336 from os.path import expandvars, isdir
337 filename = expandvars(filename)
338 if not isdir(filename):
339 data = open(filename, 'w')
340 data.write(info)
341 data.close()
342 else:
343 msg = "Illegal file name '%s'." % (filename)
344 raise IOError(msg)
345 return page(info)
346
347 def get_spectrum(self, rowno):
348 """Return the spectrum for the current row in the scantable as a list.
349
350 Parameters:
351
352 rowno: the row number to retrieve the spectrum from
353
354 """
355 return self._getspectrum(rowno)
356
357 def get_mask(self, rowno):
358 """Return the mask for the current row in the scantable as a list.
359
360 Parameters:
361
362 rowno: the row number to retrieve the mask from
363
364 """
365 return self._getmask(rowno)
366
367 def set_spectrum(self, spec, rowno):
368 """Return the spectrum for the current row in the scantable as a list.
369
370 Parameters:
371
372 spec: the new spectrum
373
374 rowno: the row number to set the spectrum for
375
376 """
377 assert(len(spec) == self.nchan())
378 return self._setspectrum(spec, rowno)
379
380 def get_coordinate(self, rowno):
381 """Return the (spectral) coordinate for a a given 'rowno'.
382
383 *Note*:
384
385 * This coordinate is only valid until a scantable method modifies
386 the frequency axis.
387 * This coordinate does contain the original frequency set-up
388 NOT the new frame. The conversions however are done using the user
389 specified frame (e.g. LSRK/TOPO). To get the 'real' coordinate,
390 use scantable.freq_align first. Without it there is no closure,
391 i.e.::
392
393 c = myscan.get_coordinate(0)
394 c.to_frequency(c.get_reference_pixel()) != c.get_reference_value()
395
396 Parameters:
397
398 rowno: the row number for the spectral coordinate
399
400 """
401 return coordinate(Scantable.get_coordinate(self, rowno))
402
403 def get_selection(self):
404 """\
405 Get the selection object currently set on this scantable.
406
407 Example::
408
409 sel = scan.get_selection()
410 sel.set_ifs(0) # select IF 0
411 scan.set_selection(sel) # apply modified selection
412
413 """
414 return selector(self._getselection())
415
416 def set_selection(self, selection=None, **kw):
417 """\
418 Select a subset of the data. All following operations on this scantable
419 are only applied to thi selection.
420
421 Parameters:
422
423 selection: a selector object (default unset the selection), or
424 any combination of "pols", "ifs", "beams", "scans",
425 "cycles", "name", "query"
426
427 Examples::
428
429 sel = selector() # create a selection object
430 self.set_scans([0, 3]) # select SCANNO 0 and 3
431 scan.set_selection(sel) # set the selection
432 scan.summary() # will only print summary of scanno 0 an 3
433 scan.set_selection() # unset the selection
434 # or the equivalent
435 scan.set_selection(scans=[0,3])
436 scan.summary() # will only print summary of scanno 0 an 3
437 scan.set_selection() # unset the selection
438
439 """
440 if selection is None:
441 # reset
442 if len(kw) == 0:
443 selection = selector()
444 else:
445 # try keywords
446 for k in kw:
447 if k not in selector.fields:
448 raise KeyError("Invalid selection key '%s', valid keys are %s" % (k, selector.fields))
449 selection = selector(**kw)
450 self._setselection(selection)
451
452 def get_row(self, row=0, insitu=None):
453 """\
454 Select a row in the scantable.
455 Return a scantable with single row.
456
457 Parameters:
458
459 row: row no of integration, default is 0.
460 insitu: if False a new scantable is returned. Otherwise, the
461 scaling is done in-situ. The default is taken from .asaprc
462 (False)
463
464 """
465 if insitu is None: insitu = rcParams['insitu']
466 if not insitu:
467 workscan = self.copy()
468 else:
469 workscan = self
470 # Select a row
471 sel=selector()
472 sel.set_scans([workscan.getscan(row)])
473 sel.set_cycles([workscan.getcycle(row)])
474 sel.set_beams([workscan.getbeam(row)])
475 sel.set_ifs([workscan.getif(row)])
476 sel.set_polarisations([workscan.getpol(row)])
477 sel.set_name(workscan._getsourcename(row))
478 workscan.set_selection(sel)
479 if not workscan.nrow() == 1:
480 msg = "Cloud not identify single row. %d rows selected."%(workscan.nrow())
481 raise RuntimeError(msg)
482 del sel
483 if insitu:
484 self._assign(workscan)
485 else:
486 return workscan
487
488 @asaplog_post_dec
489 def stats(self, stat='stddev', mask=None, form='3.3f', row=None):
490 """\
491 Determine the specified statistic of the current beam/if/pol
492 Takes a 'mask' as an optional parameter to specify which
493 channels should be excluded.
494
495 Parameters:
496
497 stat: 'min', 'max', 'min_abc', 'max_abc', 'sumsq', 'sum',
498 'mean', 'var', 'stddev', 'avdev', 'rms', 'median'
499
500 mask: an optional mask specifying where the statistic
501 should be determined.
502
503 form: format string to print statistic values
504
505 row: row number of spectrum to process.
506 (default is None: for all rows)
507
508 Example:
509 scan.set_unit('channel')
510 msk = scan.create_mask([100, 200], [500, 600])
511 scan.stats(stat='mean', mask=m)
512
513 """
514 mask = mask or []
515 if not self._check_ifs():
516 raise ValueError("Cannot apply mask as the IFs have different "
517 "number of channels. Please use setselection() "
518 "to select individual IFs")
519 rtnabc = False
520 if stat.lower().endswith('_abc'): rtnabc = True
521 getchan = False
522 if stat.lower().startswith('min') or stat.lower().startswith('max'):
523 chan = self._math._minmaxchan(self, mask, stat)
524 getchan = True
525 statvals = []
526 if not rtnabc:
527 if row == None:
528 statvals = self._math._stats(self, mask, stat)
529 else:
530 statvals = self._math._statsrow(self, mask, stat, int(row))
531
532 #def cb(i):
533 # return statvals[i]
534
535 #return self._row_callback(cb, stat)
536
537 label=stat
538 #callback=cb
539 out = ""
540 #outvec = []
541 sep = '-'*50
542
543 if row == None:
544 rows = xrange(self.nrow())
545 elif isinstance(row, int):
546 rows = [ row ]
547
548 for i in rows:
549 refstr = ''
550 statunit= ''
551 if getchan:
552 qx, qy = self.chan2data(rowno=i, chan=chan[i])
553 if rtnabc:
554 statvals.append(qx['value'])
555 refstr = ('(value: %'+form) % (qy['value'])+' ['+qy['unit']+'])'
556 statunit= '['+qx['unit']+']'
557 else:
558 refstr = ('(@ %'+form) % (qx['value'])+' ['+qx['unit']+'])'
559
560 tm = self._gettime(i)
561 src = self._getsourcename(i)
562 out += 'Scan[%d] (%s) ' % (self.getscan(i), src)
563 out += 'Time[%s]:\n' % (tm)
564 if self.nbeam(-1) > 1: out += ' Beam[%d] ' % (self.getbeam(i))
565 if self.nif(-1) > 1: out += ' IF[%d] ' % (self.getif(i))
566 if self.npol(-1) > 1: out += ' Pol[%d] ' % (self.getpol(i))
567 #outvec.append(callback(i))
568 if len(rows) > 1:
569 # out += ('= %'+form) % (outvec[i]) +' '+refstr+'\n'
570 out += ('= %'+form) % (statvals[i]) +' '+refstr+'\n'
571 else:
572 # out += ('= %'+form) % (outvec[0]) +' '+refstr+'\n'
573 out += ('= %'+form) % (statvals[0]) +' '+refstr+'\n'
574 out += sep+"\n"
575
576 import os
577 if os.environ.has_key( 'USER' ):
578 usr = os.environ['USER']
579 else:
580 import commands
581 usr = commands.getoutput( 'whoami' )
582 tmpfile = '/tmp/tmp_'+usr+'_casapy_asap_scantable_stats'
583 f = open(tmpfile,'w')
584 print >> f, sep
585 print >> f, ' %s %s' % (label, statunit)
586 print >> f, sep
587 print >> f, out
588 f.close()
589 f = open(tmpfile,'r')
590 x = f.readlines()
591 f.close()
592 asaplog.push(''.join(x), False)
593
594 return statvals
595
596 def chan2data(self, rowno=0, chan=0):
597 """\
598 Returns channel/frequency/velocity and spectral value
599 at an arbitrary row and channel in the scantable.
600
601 Parameters:
602
603 rowno: a row number in the scantable. Default is the
604 first row, i.e. rowno=0
605
606 chan: a channel in the scantable. Default is the first
607 channel, i.e. pos=0
608
609 """
610 if isinstance(rowno, int) and isinstance(chan, int):
611 qx = {'unit': self.get_unit(),
612 'value': self._getabcissa(rowno)[chan]}
613 qy = {'unit': self.get_fluxunit(),
614 'value': self._getspectrum(rowno)[chan]}
615 return qx, qy
616
617 def stddev(self, mask=None):
618 """\
619 Determine the standard deviation of the current beam/if/pol
620 Takes a 'mask' as an optional parameter to specify which
621 channels should be excluded.
622
623 Parameters:
624
625 mask: an optional mask specifying where the standard
626 deviation should be determined.
627
628 Example::
629
630 scan.set_unit('channel')
631 msk = scan.create_mask([100, 200], [500, 600])
632 scan.stddev(mask=m)
633
634 """
635 return self.stats(stat='stddev', mask=mask);
636
637
638 def get_column_names(self):
639 """\
640 Return a list of column names, which can be used for selection.
641 """
642 return list(Scantable.get_column_names(self))
643
644 def get_tsys(self, row=-1):
645 """\
646 Return the System temperatures.
647
648 Parameters:
649
650 row: the rowno to get the information for. (default all rows)
651
652 Returns:
653
654 a list of Tsys values for the current selection
655
656 """
657 if row > -1:
658 return self._get_column(self._gettsys, row)
659 return self._row_callback(self._gettsys, "Tsys")
660
661
662 def get_weather(self, row=-1):
663 """\
664 Return the weather informations.
665
666 Parameters:
667
668 row: the rowno to get the information for. (default all rows)
669
670 Returns:
671
672 a dict or list of of dicts of values for the current selection
673
674 """
675
676 values = self._get_column(self._get_weather, row)
677 if row > -1:
678 return {'temperature': values[0],
679 'pressure': values[1], 'humidity' : values[2],
680 'windspeed' : values[3], 'windaz' : values[4]
681 }
682 else:
683 out = []
684 for r in values:
685
686 out.append({'temperature': r[0],
687 'pressure': r[1], 'humidity' : r[2],
688 'windspeed' : r[3], 'windaz' : r[4]
689 })
690 return out
691
692 def _row_callback(self, callback, label):
693 out = ""
694 outvec = []
695 sep = '-'*50
696 for i in range(self.nrow()):
697 tm = self._gettime(i)
698 src = self._getsourcename(i)
699 out += 'Scan[%d] (%s) ' % (self.getscan(i), src)
700 out += 'Time[%s]:\n' % (tm)
701 if self.nbeam(-1) > 1:
702 out += ' Beam[%d] ' % (self.getbeam(i))
703 if self.nif(-1) > 1: out += ' IF[%d] ' % (self.getif(i))
704 if self.npol(-1) > 1: out += ' Pol[%d] ' % (self.getpol(i))
705 outvec.append(callback(i))
706 out += '= %3.3f\n' % (outvec[i])
707 out += sep+'\n'
708
709 asaplog.push(sep)
710 asaplog.push(" %s" % (label))
711 asaplog.push(sep)
712 asaplog.push(out)
713 asaplog.post()
714 return outvec
715
716 def _get_column(self, callback, row=-1):
717 """
718 """
719 if row == -1:
720 return [callback(i) for i in range(self.nrow())]
721 else:
722 if 0 <= row < self.nrow():
723 return callback(row)
724
725
726 def get_time(self, row=-1, asdatetime=False):
727 """\
728 Get a list of time stamps for the observations.
729 Return a datetime object for each integration time stamp in the scantable.
730
731 Parameters:
732
733 row: row no of integration. Default -1 return all rows
734
735 asdatetime: return values as datetime objects rather than strings
736
737 """
738 from time import strptime
739 from datetime import datetime
740 times = self._get_column(self._gettime, row)
741 if not asdatetime:
742 return times
743 format = "%Y/%m/%d/%H:%M:%S"
744 if isinstance(times, list):
745 return [datetime(*strptime(i, format)[:6]) for i in times]
746 else:
747 return datetime(*strptime(times, format)[:6])
748
749
750 def get_inttime(self, row=-1):
751 """\
752 Get a list of integration times for the observations.
753 Return a time in seconds for each integration in the scantable.
754
755 Parameters:
756
757 row: row no of integration. Default -1 return all rows.
758
759 """
760 return self._get_column(self._getinttime, row)
761
762
763 def get_sourcename(self, row=-1):
764 """\
765 Get a list source names for the observations.
766 Return a string for each integration in the scantable.
767 Parameters:
768
769 row: row no of integration. Default -1 return all rows.
770
771 """
772 return self._get_column(self._getsourcename, row)
773
774 def get_elevation(self, row=-1):
775 """\
776 Get a list of elevations for the observations.
777 Return a float for each integration in the scantable.
778
779 Parameters:
780
781 row: row no of integration. Default -1 return all rows.
782
783 """
784 return self._get_column(self._getelevation, row)
785
786 def get_azimuth(self, row=-1):
787 """\
788 Get a list of azimuths for the observations.
789 Return a float for each integration in the scantable.
790
791 Parameters:
792 row: row no of integration. Default -1 return all rows.
793
794 """
795 return self._get_column(self._getazimuth, row)
796
797 def get_parangle(self, row=-1):
798 """\
799 Get a list of parallactic angles for the observations.
800 Return a float for each integration in the scantable.
801
802 Parameters:
803
804 row: row no of integration. Default -1 return all rows.
805
806 """
807 return self._get_column(self._getparangle, row)
808
809 def get_direction(self, row=-1):
810 """
811 Get a list of Positions on the sky (direction) for the observations.
812 Return a string for each integration in the scantable.
813
814 Parameters:
815
816 row: row no of integration. Default -1 return all rows
817
818 """
819 return self._get_column(self._getdirection, row)
820
821 def get_directionval(self, row=-1):
822 """\
823 Get a list of Positions on the sky (direction) for the observations.
824 Return a float for each integration in the scantable.
825
826 Parameters:
827
828 row: row no of integration. Default -1 return all rows
829
830 """
831 return self._get_column(self._getdirectionvec, row)
832
833 @asaplog_post_dec
834 def set_unit(self, unit='channel'):
835 """\
836 Set the unit for all following operations on this scantable
837
838 Parameters:
839
840 unit: optional unit, default is 'channel'. Use one of '*Hz',
841 'km/s', 'channel' or equivalent ''
842
843 """
844 varlist = vars()
845 if unit in ['', 'pixel', 'channel']:
846 unit = ''
847 inf = list(self._getcoordinfo())
848 inf[0] = unit
849 self._setcoordinfo(inf)
850 self._add_history("set_unit", varlist)
851
852 @asaplog_post_dec
853 def set_instrument(self, instr):
854 """\
855 Set the instrument for subsequent processing.
856
857 Parameters:
858
859 instr: Select from 'ATPKSMB', 'ATPKSHOH', 'ATMOPRA',
860 'DSS-43' (Tid), 'CEDUNA', and 'HOBART'
861
862 """
863 self._setInstrument(instr)
864 self._add_history("set_instument", vars())
865
866 @asaplog_post_dec
867 def set_feedtype(self, feedtype):
868 """\
869 Overwrite the feed type, which might not be set correctly.
870
871 Parameters:
872
873 feedtype: 'linear' or 'circular'
874
875 """
876 self._setfeedtype(feedtype)
877 self._add_history("set_feedtype", vars())
878
879 @asaplog_post_dec
880 def set_doppler(self, doppler='RADIO'):
881 """\
882 Set the doppler for all following operations on this scantable.
883
884 Parameters:
885
886 doppler: One of 'RADIO', 'OPTICAL', 'Z', 'BETA', 'GAMMA'
887
888 """
889 varlist = vars()
890 inf = list(self._getcoordinfo())
891 inf[2] = doppler
892 self._setcoordinfo(inf)
893 self._add_history("set_doppler", vars())
894
895 @asaplog_post_dec
896 def set_freqframe(self, frame=None):
897 """\
898 Set the frame type of the Spectral Axis.
899
900 Parameters:
901
902 frame: an optional frame type, default 'LSRK'. Valid frames are:
903 'TOPO', 'LSRD', 'LSRK', 'BARY',
904 'GEO', 'GALACTO', 'LGROUP', 'CMB'
905
906 Example::
907
908 scan.set_freqframe('BARY')
909
910 """
911 frame = frame or rcParams['scantable.freqframe']
912 varlist = vars()
913 # "REST" is not implemented in casacore
914 #valid = ['REST', 'TOPO', 'LSRD', 'LSRK', 'BARY', \
915 # 'GEO', 'GALACTO', 'LGROUP', 'CMB']
916 valid = ['TOPO', 'LSRD', 'LSRK', 'BARY', \
917 'GEO', 'GALACTO', 'LGROUP', 'CMB']
918
919 if frame in valid:
920 inf = list(self._getcoordinfo())
921 inf[1] = frame
922 self._setcoordinfo(inf)
923 self._add_history("set_freqframe", varlist)
924 else:
925 msg = "Please specify a valid freq type. Valid types are:\n", valid
926 raise TypeError(msg)
927
928 @asaplog_post_dec
929 def set_dirframe(self, frame=""):
930 """\
931 Set the frame type of the Direction on the sky.
932
933 Parameters:
934
935 frame: an optional frame type, default ''. Valid frames are:
936 'J2000', 'B1950', 'GALACTIC'
937
938 Example:
939
940 scan.set_dirframe('GALACTIC')
941
942 """
943 varlist = vars()
944 Scantable.set_dirframe(self, frame)
945 self._add_history("set_dirframe", varlist)
946
947 def get_unit(self):
948 """\
949 Get the default unit set in this scantable
950
951 Returns:
952
953 A unit string
954
955 """
956 inf = self._getcoordinfo()
957 unit = inf[0]
958 if unit == '': unit = 'channel'
959 return unit
960
961 @asaplog_post_dec
962 def get_abcissa(self, rowno=0):
963 """\
964 Get the abcissa in the current coordinate setup for the currently
965 selected Beam/IF/Pol
966
967 Parameters:
968
969 rowno: an optional row number in the scantable. Default is the
970 first row, i.e. rowno=0
971
972 Returns:
973
974 The abcissa values and the format string (as a dictionary)
975
976 """
977 abc = self._getabcissa(rowno)
978 lbl = self._getabcissalabel(rowno)
979 return abc, lbl
980
981 @asaplog_post_dec
982 def flag(self, mask=None, unflag=False):
983 """\
984 Flag the selected data using an optional channel mask.
985
986 Parameters:
987
988 mask: an optional channel mask, created with create_mask. Default
989 (no mask) is all channels.
990
991 unflag: if True, unflag the data
992
993 """
994 varlist = vars()
995 mask = mask or []
996 self._flag(mask, unflag)
997 self._add_history("flag", varlist)
998
999 @asaplog_post_dec
1000 def flag_row(self, rows=[], unflag=False):
1001 """\
1002 Flag the selected data in row-based manner.
1003
1004 Parameters:
1005
1006 rows: list of row numbers to be flagged. Default is no row
1007 (must be explicitly specified to execute row-based flagging).
1008
1009 unflag: if True, unflag the data.
1010
1011 """
1012 varlist = vars()
1013 self._flag_row(rows, unflag)
1014 self._add_history("flag_row", varlist)
1015
1016 @asaplog_post_dec
1017 def clip(self, uthres=None, dthres=None, clipoutside=True, unflag=False):
1018 """\
1019 Flag the selected data outside a specified range (in channel-base)
1020
1021 Parameters:
1022
1023 uthres: upper threshold.
1024
1025 dthres: lower threshold
1026
1027 clipoutside: True for flagging data outside the range [dthres:uthres].
1028 False for glagging data inside the range.
1029
1030 unflag: if True, unflag the data.
1031
1032 """
1033 varlist = vars()
1034 self._clip(uthres, dthres, clipoutside, unflag)
1035 self._add_history("clip", varlist)
1036
1037 @asaplog_post_dec
1038 def lag_flag(self, start, end, unit="MHz", insitu=None):
1039 """\
1040 Flag the data in 'lag' space by providing a frequency to remove.
1041 Flagged data in the scantable gets interpolated over the region.
1042 No taper is applied.
1043
1044 Parameters:
1045
1046 start: the start frequency (really a period within the
1047 bandwidth) or period to remove
1048
1049 end: the end frequency or period to remove
1050
1051 unit: the frequency unit (default "MHz") or "" for
1052 explicit lag channels
1053
1054 *Notes*:
1055
1056 It is recommended to flag edges of the band or strong
1057 signals beforehand.
1058
1059 """
1060 if insitu is None: insitu = rcParams['insitu']
1061 self._math._setinsitu(insitu)
1062 varlist = vars()
1063 base = { "GHz": 1000000000., "MHz": 1000000., "kHz": 1000., "Hz": 1.}
1064 if not (unit == "" or base.has_key(unit)):
1065 raise ValueError("%s is not a valid unit." % unit)
1066 if unit == "":
1067 s = scantable(self._math._lag_flag(self, start, end, "lags"))
1068 else:
1069 s = scantable(self._math._lag_flag(self, start*base[unit],
1070 end*base[unit], "frequency"))
1071 s._add_history("lag_flag", varlist)
1072 if insitu:
1073 self._assign(s)
1074 else:
1075 return s
1076
1077 @asaplog_post_dec
1078 def create_mask(self, *args, **kwargs):
1079 """\
1080 Compute and return a mask based on [min, max] windows.
1081 The specified windows are to be INCLUDED, when the mask is
1082 applied.
1083
1084 Parameters:
1085
1086 [min, max], [min2, max2], ...
1087 Pairs of start/end points (inclusive)specifying the regions
1088 to be masked
1089
1090 invert: optional argument. If specified as True,
1091 return an inverted mask, i.e. the regions
1092 specified are EXCLUDED
1093
1094 row: create the mask using the specified row for
1095 unit conversions, default is row=0
1096 only necessary if frequency varies over rows.
1097
1098 Examples::
1099
1100 scan.set_unit('channel')
1101 # a)
1102 msk = scan.create_mask([400, 500], [800, 900])
1103 # masks everything outside 400 and 500
1104 # and 800 and 900 in the unit 'channel'
1105
1106 # b)
1107 msk = scan.create_mask([400, 500], [800, 900], invert=True)
1108 # masks the regions between 400 and 500
1109 # and 800 and 900 in the unit 'channel'
1110
1111 # c)
1112 #mask only channel 400
1113 msk = scan.create_mask([400])
1114
1115 """
1116 row = kwargs.get("row", 0)
1117 data = self._getabcissa(row)
1118 u = self._getcoordinfo()[0]
1119 if u == "":
1120 u = "channel"
1121 msg = "The current mask window unit is %s" % u
1122 i = self._check_ifs()
1123 if not i:
1124 msg += "\nThis mask is only valid for IF=%d" % (self.getif(i))
1125 asaplog.push(msg)
1126 n = self.nchan()
1127 msk = _n_bools(n, False)
1128 # test if args is a 'list' or a 'normal *args - UGLY!!!
1129
1130 ws = (isinstance(args[-1][-1], int) or isinstance(args[-1][-1], float)) \
1131 and args or args[0]
1132 for window in ws:
1133 if len(window) == 1:
1134 window = [window[0], window[0]]
1135 if len(window) == 0 or len(window) > 2:
1136 raise ValueError("A window needs to be defined as [start(, end)]")
1137 if window[0] > window[1]:
1138 tmp = window[0]
1139 window[0] = window[1]
1140 window[1] = tmp
1141 for i in range(n):
1142 if data[i] >= window[0] and data[i] <= window[1]:
1143 msk[i] = True
1144 if kwargs.has_key('invert'):
1145 if kwargs.get('invert'):
1146 msk = mask_not(msk)
1147 return msk
1148
1149 def get_masklist(self, mask=None, row=0):
1150 """\
1151 Compute and return a list of mask windows, [min, max].
1152
1153 Parameters:
1154
1155 mask: channel mask, created with create_mask.
1156
1157 row: calcutate the masklist using the specified row
1158 for unit conversions, default is row=0
1159 only necessary if frequency varies over rows.
1160
1161 Returns:
1162
1163 [min, max], [min2, max2], ...
1164 Pairs of start/end points (inclusive)specifying
1165 the masked regions
1166
1167 """
1168 if not (isinstance(mask,list) or isinstance(mask, tuple)):
1169 raise TypeError("The mask should be list or tuple.")
1170 if len(mask) < 2:
1171 raise TypeError("The mask elements should be > 1")
1172 if self.nchan() != len(mask):
1173 msg = "Number of channels in scantable != number of mask elements"
1174 raise TypeError(msg)
1175 data = self._getabcissa(row)
1176 u = self._getcoordinfo()[0]
1177 if u == "":
1178 u = "channel"
1179 msg = "The current mask window unit is %s" % u
1180 i = self._check_ifs()
1181 if not i:
1182 msg += "\nThis mask is only valid for IF=%d" % (self.getif(i))
1183 asaplog.push(msg)
1184 masklist=[]
1185 ist, ien = None, None
1186 ist, ien=self.get_mask_indices(mask)
1187 if ist is not None and ien is not None:
1188 for i in xrange(len(ist)):
1189 range=[data[ist[i]],data[ien[i]]]
1190 range.sort()
1191 masklist.append([range[0],range[1]])
1192 return masklist
1193
1194 def get_mask_indices(self, mask=None):
1195 """\
1196 Compute and Return lists of mask start indices and mask end indices.
1197
1198 Parameters:
1199
1200 mask: channel mask, created with create_mask.
1201
1202 Returns:
1203
1204 List of mask start indices and that of mask end indices,
1205 i.e., [istart1,istart2,....], [iend1,iend2,....].
1206
1207 """
1208 if not (isinstance(mask,list) or isinstance(mask, tuple)):
1209 raise TypeError("The mask should be list or tuple.")
1210 if len(mask) < 2:
1211 raise TypeError("The mask elements should be > 1")
1212 istart=[]
1213 iend=[]
1214 if mask[0]: istart.append(0)
1215 for i in range(len(mask)-1):
1216 if not mask[i] and mask[i+1]:
1217 istart.append(i+1)
1218 elif mask[i] and not mask[i+1]:
1219 iend.append(i)
1220 if mask[len(mask)-1]: iend.append(len(mask)-1)
1221 if len(istart) != len(iend):
1222 raise RuntimeError("Numbers of mask start != mask end.")
1223 for i in range(len(istart)):
1224 if istart[i] > iend[i]:
1225 raise RuntimeError("Mask start index > mask end index")
1226 break
1227 return istart,iend
1228
1229# def get_restfreqs(self):
1230# """
1231# Get the restfrequency(s) stored in this scantable.
1232# The return value(s) are always of unit 'Hz'
1233# Parameters:
1234# none
1235# Returns:
1236# a list of doubles
1237# """
1238# return list(self._getrestfreqs())
1239
1240 def get_restfreqs(self, ids=None):
1241 """\
1242 Get the restfrequency(s) stored in this scantable.
1243 The return value(s) are always of unit 'Hz'
1244
1245 Parameters:
1246
1247 ids: (optional) a list of MOLECULE_ID for that restfrequency(s) to
1248 be retrieved
1249
1250 Returns:
1251
1252 dictionary containing ids and a list of doubles for each id
1253
1254 """
1255 if ids is None:
1256 rfreqs={}
1257 idlist = self.getmolnos()
1258 for i in idlist:
1259 rfreqs[i]=list(self._getrestfreqs(i))
1260 return rfreqs
1261 else:
1262 if type(ids)==list or type(ids)==tuple:
1263 rfreqs={}
1264 for i in ids:
1265 rfreqs[i]=list(self._getrestfreqs(i))
1266 return rfreqs
1267 else:
1268 return list(self._getrestfreqs(ids))
1269 #return list(self._getrestfreqs(ids))
1270
1271 def set_restfreqs(self, freqs=None, unit='Hz'):
1272 """\
1273 Set or replace the restfrequency specified and
1274 If the 'freqs' argument holds a scalar,
1275 then that rest frequency will be applied to all the selected
1276 data. If the 'freqs' argument holds
1277 a vector, then it MUST be of equal or smaller length than
1278 the number of IFs (and the available restfrequencies will be
1279 replaced by this vector). In this case, *all* data have
1280 the restfrequency set per IF according
1281 to the corresponding value you give in the 'freqs' vector.
1282 E.g. 'freqs=[1e9, 2e9]' would mean IF 0 gets restfreq 1e9 and
1283 IF 1 gets restfreq 2e9.
1284
1285 You can also specify the frequencies via a linecatalog.
1286
1287 Parameters:
1288
1289 freqs: list of rest frequency values or string idenitfiers
1290
1291 unit: unit for rest frequency (default 'Hz')
1292
1293
1294 Example::
1295
1296 # set the given restfrequency for the all currently selected IFs
1297 scan.set_restfreqs(freqs=1.4e9)
1298 # set restfrequencies for the n IFs (n > 1) in the order of the
1299 # list, i.e
1300 # IF0 -> 1.4e9, IF1 -> 1.41e9, IF3 -> 1.42e9
1301 # len(list_of_restfreqs) == nIF
1302 # for nIF == 1 the following will set multiple restfrequency for
1303 # that IF
1304 scan.set_restfreqs(freqs=[1.4e9, 1.41e9, 1.42e9])
1305 # set multiple restfrequencies per IF. as a list of lists where
1306 # the outer list has nIF elements, the inner s arbitrary
1307 scan.set_restfreqs(freqs=[[1.4e9, 1.41e9], [1.67e9]])
1308
1309 *Note*:
1310
1311 To do more sophisticate Restfrequency setting, e.g. on a
1312 source and IF basis, use scantable.set_selection() before using
1313 this function::
1314
1315 # provided your scantable is called scan
1316 selection = selector()
1317 selection.set_name("ORION*")
1318 selection.set_ifs([1])
1319 scan.set_selection(selection)
1320 scan.set_restfreqs(freqs=86.6e9)
1321
1322 """
1323 varlist = vars()
1324 from asap import linecatalog
1325 # simple value
1326 if isinstance(freqs, int) or isinstance(freqs, float):
1327 self._setrestfreqs([freqs], [""], unit)
1328 # list of values
1329 elif isinstance(freqs, list) or isinstance(freqs, tuple):
1330 # list values are scalars
1331 if isinstance(freqs[-1], int) or isinstance(freqs[-1], float):
1332 if len(freqs) == 1:
1333 self._setrestfreqs(freqs, [""], unit)
1334 else:
1335 # allow the 'old' mode of setting mulitple IFs
1336 sel = selector()
1337 savesel = self._getselection()
1338 iflist = self.getifnos()
1339 if len(freqs)>len(iflist):
1340 raise ValueError("number of elements in list of list "
1341 "exeeds the current IF selections")
1342 iflist = self.getifnos()
1343 for i, fval in enumerate(freqs):
1344 sel.set_ifs(iflist[i])
1345 self._setselection(sel)
1346 self._setrestfreqs([fval], [""], unit)
1347 self._setselection(savesel)
1348
1349 # list values are dict, {'value'=, 'name'=)
1350 elif isinstance(freqs[-1], dict):
1351 values = []
1352 names = []
1353 for d in freqs:
1354 values.append(d["value"])
1355 names.append(d["name"])
1356 self._setrestfreqs(values, names, unit)
1357 elif isinstance(freqs[-1], list) or isinstance(freqs[-1], tuple):
1358 sel = selector()
1359 savesel = self._getselection()
1360 iflist = self.getifnos()
1361 if len(freqs)>len(iflist):
1362 raise ValueError("number of elements in list of list exeeds"
1363 " the current IF selections")
1364 for i, fval in enumerate(freqs):
1365 sel.set_ifs(iflist[i])
1366 self._setselection(sel)
1367 self._setrestfreqs(fval, [""], unit)
1368 self._setselection(savesel)
1369 # freqs are to be taken from a linecatalog
1370 elif isinstance(freqs, linecatalog):
1371 sel = selector()
1372 savesel = self._getselection()
1373 for i in xrange(freqs.nrow()):
1374 sel.set_ifs(iflist[i])
1375 self._setselection(sel)
1376 self._setrestfreqs([freqs.get_frequency(i)],
1377 [freqs.get_name(i)], "MHz")
1378 # ensure that we are not iterating past nIF
1379 if i == self.nif()-1: break
1380 self._setselection(savesel)
1381 else:
1382 return
1383 self._add_history("set_restfreqs", varlist)
1384
1385 def shift_refpix(self, delta):
1386 """\
1387 Shift the reference pixel of the Spectra Coordinate by an
1388 integer amount.
1389
1390 Parameters:
1391
1392 delta: the amount to shift by
1393
1394 *Note*:
1395
1396 Be careful using this with broadband data.
1397
1398 """
1399 Scantable.shift_refpix(self, delta)
1400
1401 @asaplog_post_dec
1402 def history(self, filename=None):
1403 """\
1404 Print the history. Optionally to a file.
1405
1406 Parameters:
1407
1408 filename: The name of the file to save the history to.
1409
1410 """
1411 hist = list(self._gethistory())
1412 out = "-"*80
1413 for h in hist:
1414 if h.startswith("---"):
1415 out = "\n".join([out, h])
1416 else:
1417 items = h.split("##")
1418 date = items[0]
1419 func = items[1]
1420 items = items[2:]
1421 out += "\n"+date+"\n"
1422 out += "Function: %s\n Parameters:" % (func)
1423 for i in items:
1424 s = i.split("=")
1425 out += "\n %s = %s" % (s[0], s[1])
1426 out = "\n".join([out, "-"*80])
1427 if filename is not None:
1428 if filename is "":
1429 filename = 'scantable_history.txt'
1430 import os
1431 filename = os.path.expandvars(os.path.expanduser(filename))
1432 if not os.path.isdir(filename):
1433 data = open(filename, 'w')
1434 data.write(out)
1435 data.close()
1436 else:
1437 msg = "Illegal file name '%s'." % (filename)
1438 raise IOError(msg)
1439 return page(out)
1440 #
1441 # Maths business
1442 #
1443 @asaplog_post_dec
1444 def average_time(self, mask=None, scanav=False, weight='tint', align=False):
1445 """\
1446 Return the (time) weighted average of a scan.
1447
1448 *Note*:
1449
1450 in channels only - align if necessary
1451
1452 Parameters:
1453
1454 mask: an optional mask (only used for 'var' and 'tsys'
1455 weighting)
1456
1457 scanav: True averages each scan separately
1458 False (default) averages all scans together,
1459
1460 weight: Weighting scheme.
1461 'none' (mean no weight)
1462 'var' (1/var(spec) weighted)
1463 'tsys' (1/Tsys**2 weighted)
1464 'tint' (integration time weighted)
1465 'tintsys' (Tint/Tsys**2)
1466 'median' ( median averaging)
1467 The default is 'tint'
1468
1469 align: align the spectra in velocity before averaging. It takes
1470 the time of the first spectrum as reference time.
1471
1472 Example::
1473
1474 # time average the scantable without using a mask
1475 newscan = scan.average_time()
1476
1477 """
1478 varlist = vars()
1479 weight = weight or 'TINT'
1480 mask = mask or ()
1481 scanav = (scanav and 'SCAN') or 'NONE'
1482 scan = (self, )
1483
1484 if align:
1485 scan = (self.freq_align(insitu=False), )
1486 s = None
1487 if weight.upper() == 'MEDIAN':
1488 s = scantable(self._math._averagechannel(scan[0], 'MEDIAN',
1489 scanav))
1490 else:
1491 s = scantable(self._math._average(scan, mask, weight.upper(),
1492 scanav))
1493 s._add_history("average_time", varlist)
1494 return s
1495
1496 @asaplog_post_dec
1497 def convert_flux(self, jyperk=None, eta=None, d=None, insitu=None):
1498 """\
1499 Return a scan where all spectra are converted to either
1500 Jansky or Kelvin depending upon the flux units of the scan table.
1501 By default the function tries to look the values up internally.
1502 If it can't find them (or if you want to over-ride), you must
1503 specify EITHER jyperk OR eta (and D which it will try to look up
1504 also if you don't set it). jyperk takes precedence if you set both.
1505
1506 Parameters:
1507
1508 jyperk: the Jy / K conversion factor
1509
1510 eta: the aperture efficiency
1511
1512 d: the geomtric diameter (metres)
1513
1514 insitu: if False a new scantable is returned.
1515 Otherwise, the scaling is done in-situ
1516 The default is taken from .asaprc (False)
1517
1518 """
1519 if insitu is None: insitu = rcParams['insitu']
1520 self._math._setinsitu(insitu)
1521 varlist = vars()
1522 jyperk = jyperk or -1.0
1523 d = d or -1.0
1524 eta = eta or -1.0
1525 s = scantable(self._math._convertflux(self, d, eta, jyperk))
1526 s._add_history("convert_flux", varlist)
1527 if insitu: self._assign(s)
1528 else: return s
1529
1530 @asaplog_post_dec
1531 def gain_el(self, poly=None, filename="", method="linear", insitu=None):
1532 """\
1533 Return a scan after applying a gain-elevation correction.
1534 The correction can be made via either a polynomial or a
1535 table-based interpolation (and extrapolation if necessary).
1536 You specify polynomial coefficients, an ascii table or neither.
1537 If you specify neither, then a polynomial correction will be made
1538 with built in coefficients known for certain telescopes (an error
1539 will occur if the instrument is not known).
1540 The data and Tsys are *divided* by the scaling factors.
1541
1542 Parameters:
1543
1544 poly: Polynomial coefficients (default None) to compute a
1545 gain-elevation correction as a function of
1546 elevation (in degrees).
1547
1548 filename: The name of an ascii file holding correction factors.
1549 The first row of the ascii file must give the column
1550 names and these MUST include columns
1551 "ELEVATION" (degrees) and "FACTOR" (multiply data
1552 by this) somewhere.
1553 The second row must give the data type of the
1554 column. Use 'R' for Real and 'I' for Integer.
1555 An example file would be
1556 (actual factors are arbitrary) :
1557
1558 TIME ELEVATION FACTOR
1559 R R R
1560 0.1 0 0.8
1561 0.2 20 0.85
1562 0.3 40 0.9
1563 0.4 60 0.85
1564 0.5 80 0.8
1565 0.6 90 0.75
1566
1567 method: Interpolation method when correcting from a table.
1568 Values are "nearest", "linear" (default), "cubic"
1569 and "spline"
1570
1571 insitu: if False a new scantable is returned.
1572 Otherwise, the scaling is done in-situ
1573 The default is taken from .asaprc (False)
1574
1575 """
1576
1577 if insitu is None: insitu = rcParams['insitu']
1578 self._math._setinsitu(insitu)
1579 varlist = vars()
1580 poly = poly or ()
1581 from os.path import expandvars
1582 filename = expandvars(filename)
1583 s = scantable(self._math._gainel(self, poly, filename, method))
1584 s._add_history("gain_el", varlist)
1585 if insitu:
1586 self._assign(s)
1587 else:
1588 return s
1589
1590 @asaplog_post_dec
1591 def freq_align(self, reftime=None, method='cubic', insitu=None):
1592 """\
1593 Return a scan where all rows have been aligned in frequency/velocity.
1594 The alignment frequency frame (e.g. LSRK) is that set by function
1595 set_freqframe.
1596
1597 Parameters:
1598
1599 reftime: reference time to align at. By default, the time of
1600 the first row of data is used.
1601
1602 method: Interpolation method for regridding the spectra.
1603 Choose from "nearest", "linear", "cubic" (default)
1604 and "spline"
1605
1606 insitu: if False a new scantable is returned.
1607 Otherwise, the scaling is done in-situ
1608 The default is taken from .asaprc (False)
1609
1610 """
1611 if insitu is None: insitu = rcParams["insitu"]
1612 self._math._setinsitu(insitu)
1613 varlist = vars()
1614 reftime = reftime or ""
1615 s = scantable(self._math._freq_align(self, reftime, method))
1616 s._add_history("freq_align", varlist)
1617 if insitu: self._assign(s)
1618 else: return s
1619
1620 @asaplog_post_dec
1621 def opacity(self, tau=None, insitu=None):
1622 """\
1623 Apply an opacity correction. The data
1624 and Tsys are multiplied by the correction factor.
1625
1626 Parameters:
1627
1628 tau: (list of) opacity from which the correction factor is
1629 exp(tau*ZD)
1630 where ZD is the zenith-distance.
1631 If a list is provided, it has to be of length nIF,
1632 nIF*nPol or 1 and in order of IF/POL, e.g.
1633 [opif0pol0, opif0pol1, opif1pol0 ...]
1634 if tau is `None` the opacities are determined from a
1635 model.
1636
1637 insitu: if False a new scantable is returned.
1638 Otherwise, the scaling is done in-situ
1639 The default is taken from .asaprc (False)
1640
1641 """
1642 if insitu is None: insitu = rcParams['insitu']
1643 self._math._setinsitu(insitu)
1644 varlist = vars()
1645 if not hasattr(tau, "__len__"):
1646 tau = [tau]
1647 s = scantable(self._math._opacity(self, tau))
1648 s._add_history("opacity", varlist)
1649 if insitu: self._assign(s)
1650 else: return s
1651
1652 @asaplog_post_dec
1653 def bin(self, width=5, insitu=None):
1654 """\
1655 Return a scan where all spectra have been binned up.
1656
1657 Parameters:
1658
1659 width: The bin width (default=5) in pixels
1660
1661 insitu: if False a new scantable is returned.
1662 Otherwise, the scaling is done in-situ
1663 The default is taken from .asaprc (False)
1664
1665 """
1666 if insitu is None: insitu = rcParams['insitu']
1667 self._math._setinsitu(insitu)
1668 varlist = vars()
1669 s = scantable(self._math._bin(self, width))
1670 s._add_history("bin", varlist)
1671 if insitu:
1672 self._assign(s)
1673 else:
1674 return s
1675
1676 @asaplog_post_dec
1677 def resample(self, width=5, method='cubic', insitu=None):
1678 """\
1679 Return a scan where all spectra have been binned up.
1680
1681 Parameters:
1682
1683 width: The bin width (default=5) in pixels
1684
1685 method: Interpolation method when correcting from a table.
1686 Values are "nearest", "linear", "cubic" (default)
1687 and "spline"
1688
1689 insitu: if False a new scantable is returned.
1690 Otherwise, the scaling is done in-situ
1691 The default is taken from .asaprc (False)
1692
1693 """
1694 if insitu is None: insitu = rcParams['insitu']
1695 self._math._setinsitu(insitu)
1696 varlist = vars()
1697 s = scantable(self._math._resample(self, method, width))
1698 s._add_history("resample", varlist)
1699 if insitu: self._assign(s)
1700 else: return s
1701
1702 @asaplog_post_dec
1703 def average_pol(self, mask=None, weight='none'):
1704 """\
1705 Average the Polarisations together.
1706
1707 Parameters:
1708
1709 mask: An optional mask defining the region, where the
1710 averaging will be applied. The output will have all
1711 specified points masked.
1712
1713 weight: Weighting scheme. 'none' (default), 'var' (1/var(spec)
1714 weighted), or 'tsys' (1/Tsys**2 weighted)
1715
1716 """
1717 varlist = vars()
1718 mask = mask or ()
1719 s = scantable(self._math._averagepol(self, mask, weight.upper()))
1720 s._add_history("average_pol", varlist)
1721 return s
1722
1723 @asaplog_post_dec
1724 def average_beam(self, mask=None, weight='none'):
1725 """\
1726 Average the Beams together.
1727
1728 Parameters:
1729 mask: An optional mask defining the region, where the
1730 averaging will be applied. The output will have all
1731 specified points masked.
1732
1733 weight: Weighting scheme. 'none' (default), 'var' (1/var(spec)
1734 weighted), or 'tsys' (1/Tsys**2 weighted)
1735
1736 """
1737 varlist = vars()
1738 mask = mask or ()
1739 s = scantable(self._math._averagebeams(self, mask, weight.upper()))
1740 s._add_history("average_beam", varlist)
1741 return s
1742
1743 def parallactify(self, pflag):
1744 """\
1745 Set a flag to indicate whether this data should be treated as having
1746 been 'parallactified' (total phase == 0.0)
1747
1748 Parameters:
1749
1750 pflag: Bool indicating whether to turn this on (True) or
1751 off (False)
1752
1753 """
1754 varlist = vars()
1755 self._parallactify(pflag)
1756 self._add_history("parallactify", varlist)
1757
1758 @asaplog_post_dec
1759 def convert_pol(self, poltype=None):
1760 """\
1761 Convert the data to a different polarisation type.
1762 Note that you will need cross-polarisation terms for most conversions.
1763
1764 Parameters:
1765
1766 poltype: The new polarisation type. Valid types are:
1767 "linear", "circular", "stokes" and "linpol"
1768
1769 """
1770 varlist = vars()
1771 s = scantable(self._math._convertpol(self, poltype))
1772 s._add_history("convert_pol", varlist)
1773 return s
1774
1775 @asaplog_post_dec
1776 def smooth(self, kernel="hanning", width=5.0, order=2, plot=False, insitu=None):
1777 """\
1778 Smooth the spectrum by the specified kernel (conserving flux).
1779
1780 Parameters:
1781
1782 kernel: The type of smoothing kernel. Select from
1783 'hanning' (default), 'gaussian', 'boxcar', 'rmedian'
1784 or 'poly'
1785
1786 width: The width of the kernel in pixels. For hanning this is
1787 ignored otherwise it defauls to 5 pixels.
1788 For 'gaussian' it is the Full Width Half
1789 Maximum. For 'boxcar' it is the full width.
1790 For 'rmedian' and 'poly' it is the half width.
1791
1792 order: Optional parameter for 'poly' kernel (default is 2), to
1793 specify the order of the polnomial. Ignored by all other
1794 kernels.
1795
1796 plot: plot the original and the smoothed spectra.
1797 In this each indivual fit has to be approved, by
1798 typing 'y' or 'n'
1799
1800 insitu: if False a new scantable is returned.
1801 Otherwise, the scaling is done in-situ
1802 The default is taken from .asaprc (False)
1803
1804 """
1805 if insitu is None: insitu = rcParams['insitu']
1806 self._math._setinsitu(insitu)
1807 varlist = vars()
1808
1809 if plot: orgscan = self.copy()
1810
1811 s = scantable(self._math._smooth(self, kernel.lower(), width, order))
1812 s._add_history("smooth", varlist)
1813
1814 if plot:
1815 if rcParams['plotter.gui']:
1816 from asap.asaplotgui import asaplotgui as asaplot
1817 else:
1818 from asap.asaplot import asaplot
1819 self._p=asaplot()
1820 self._p.set_panels()
1821 ylab=s._get_ordinate_label()
1822 #self._p.palette(0,["#777777","red"])
1823 for r in xrange(s.nrow()):
1824 xsm=s._getabcissa(r)
1825 ysm=s._getspectrum(r)
1826 xorg=orgscan._getabcissa(r)
1827 yorg=orgscan._getspectrum(r)
1828 self._p.clear()
1829 self._p.hold()
1830 self._p.set_axes('ylabel',ylab)
1831 self._p.set_axes('xlabel',s._getabcissalabel(r))
1832 self._p.set_axes('title',s._getsourcename(r))
1833 self._p.set_line(label='Original',color="#777777")
1834 self._p.plot(xorg,yorg)
1835 self._p.set_line(label='Smoothed',color="red")
1836 self._p.plot(xsm,ysm)
1837 ### Ugly part for legend
1838 for i in [0,1]:
1839 self._p.subplots[0]['lines'].append([self._p.subplots[0]['axes'].lines[i]])
1840 self._p.release()
1841 ### Ugly part for legend
1842 self._p.subplots[0]['lines']=[]
1843 res = raw_input("Accept smoothing ([y]/n): ")
1844 if res.upper() == 'N':
1845 s._setspectrum(yorg, r)
1846 self._p.unmap()
1847 self._p = None
1848 del orgscan
1849
1850 if insitu: self._assign(s)
1851 else: return s
1852
1853 @asaplog_post_dec
1854 def old_poly_baseline(self, mask=None, order=0, plot=False, uselin=False, insitu=None, rows=None):
1855 """\
1856 Return a scan which has been baselined (all rows) by a polynomial.
1857
1858 Parameters:
1859
1860 mask: an optional mask
1861
1862 order: the order of the polynomial (default is 0)
1863
1864 plot: plot the fit and the residual. In this each
1865 indivual fit has to be approved, by typing 'y'
1866 or 'n'
1867
1868 uselin: use linear polynomial fit
1869
1870 insitu: if False a new scantable is returned.
1871 Otherwise, the scaling is done in-situ
1872 The default is taken from .asaprc (False)
1873
1874 rows: row numbers of spectra to be processed.
1875 (default is None: for all rows)
1876
1877 Example:
1878 # return a scan baselined by a third order polynomial,
1879 # not using a mask
1880 bscan = scan.poly_baseline(order=3)
1881
1882 """
1883 if insitu is None: insitu = rcParams['insitu']
1884 if not insitu:
1885 workscan = self.copy()
1886 else:
1887 workscan = self
1888 varlist = vars()
1889 if mask is None:
1890 mask = [True for i in xrange(self.nchan())]
1891
1892 try:
1893 f = fitter()
1894 if uselin:
1895 f.set_function(lpoly=order)
1896 else:
1897 f.set_function(poly=order)
1898
1899 if rows == None:
1900 rows = xrange(workscan.nrow())
1901 elif isinstance(rows, int):
1902 rows = [ rows ]
1903
1904 if len(rows) > 0:
1905 self.blpars = []
1906 self.masklists = []
1907 self.actualmask = []
1908
1909 for r in rows:
1910 f.x = workscan._getabcissa(r)
1911 f.y = workscan._getspectrum(r)
1912 f.mask = mask_and(mask, workscan._getmask(r)) # (CAS-1434)
1913 f.data = None
1914 f.fit()
1915 if plot:
1916 f.plot(residual=True)
1917 x = raw_input("Accept fit ( [y]/n ): ")
1918 if x.upper() == 'N':
1919 self.blpars.append(None)
1920 self.masklists.append(None)
1921 self.actualmask.append(None)
1922 continue
1923 workscan._setspectrum(f.fitter.getresidual(), r)
1924 self.blpars.append(f.get_parameters())
1925 self.masklists.append(workscan.get_masklist(f.mask, row=r))
1926 self.actualmask.append(f.mask)
1927
1928 if plot:
1929 f._p.unmap()
1930 f._p = None
1931 workscan._add_history("poly_baseline", varlist)
1932 if insitu:
1933 self._assign(workscan)
1934 else:
1935 return workscan
1936 except RuntimeError:
1937 msg = "The fit failed, possibly because it didn't converge."
1938 raise RuntimeError(msg)
1939
1940
1941 def poly_baseline(self, mask=None, order=0, plot=False, batch=False, insitu=None, rows=None):
1942 """\
1943 Return a scan which has been baselined (all rows) by a polynomial.
1944 Parameters:
1945 mask: an optional mask
1946 order: the order of the polynomial (default is 0)
1947 plot: plot the fit and the residual. In this each
1948 indivual fit has to be approved, by typing 'y'
1949 or 'n'. Ignored if batch = True.
1950 batch: if True a faster algorithm is used and logs
1951 including the fit results are not output
1952 (default is False)
1953 insitu: if False a new scantable is returned.
1954 Otherwise, the scaling is done in-situ
1955 The default is taken from .asaprc (False)
1956 rows: row numbers of spectra to be processed.
1957 (default is None: for all rows)
1958 Example:
1959 # return a scan baselined by a third order polynomial,
1960 # not using a mask
1961 bscan = scan.poly_baseline(order=3)
1962 """
1963 if insitu is None: insitu = rcParams["insitu"]
1964 if insitu:
1965 workscan = self
1966 else:
1967 workscan = self.copy()
1968
1969 varlist = vars()
1970 nchan = workscan.nchan()
1971
1972 if mask is None:
1973 mask = [True for i in xrange(nchan)]
1974
1975 try:
1976 if rows == None:
1977 rows = xrange(workscan.nrow())
1978 elif isinstance(rows, int):
1979 rows = [ rows ]
1980
1981 if len(rows) > 0:
1982 self.blpars = []
1983 self.masklists = []
1984 self.actualmask = []
1985
1986 if batch:
1987 for r in rows:
1988 workscan._poly_baseline_batch(mask, order, r)
1989 elif plot:
1990 f = fitter()
1991 f.set_function(lpoly=order)
1992 for r in rows:
1993 f.x = workscan._getabcissa(r)
1994 f.y = workscan._getspectrum(r)
1995 f.mask = mask_and(mask, workscan._getmask(r)) # (CAS-1434)
1996 f.data = None
1997 f.fit()
1998
1999 f.plot(residual=True)
2000 accept_fit = raw_input("Accept fit ( [y]/n ): ")
2001 if accept_fit.upper() == "N":
2002 self.blpars.append(None)
2003 self.masklists.append(None)
2004 self.actualmask.append(None)
2005 continue
2006 workscan._setspectrum(f.fitter.getresidual(), r)
2007 self.blpars.append(f.get_parameters())
2008 self.masklists.append(workscan.get_masklist(f.mask, row=r))
2009 self.actualmask.append(f.mask)
2010
2011 f._p.unmap()
2012 f._p = None
2013 else:
2014 import array
2015 for r in rows:
2016 pars = array.array("f", [0.0 for i in range(order+1)])
2017 pars_adr = pars.buffer_info()[0]
2018 pars_len = pars.buffer_info()[1]
2019
2020 errs = array.array("f", [0.0 for i in range(order+1)])
2021 errs_adr = errs.buffer_info()[0]
2022 errs_len = errs.buffer_info()[1]
2023
2024 fmsk = array.array("i", [1 for i in range(nchan)])
2025 fmsk_adr = fmsk.buffer_info()[0]
2026 fmsk_len = fmsk.buffer_info()[1]
2027
2028 workscan._poly_baseline(mask, order, r, pars_adr, pars_len, errs_adr, errs_len, fmsk_adr, fmsk_len)
2029
2030 params = pars.tolist()
2031 fmtd = ""
2032 for i in xrange(len(params)): fmtd += " p%d= %3.6f," % (i, params[i])
2033 fmtd = fmtd[:-1] # remove trailing ","
2034 errors = errs.tolist()
2035 fmask = fmsk.tolist()
2036 for i in xrange(len(fmask)): fmask[i] = (fmask[i] > 0) # transform (1/0) -> (True/False)
2037
2038 self.blpars.append({"params":params, "fixed":[], "formatted":fmtd, "errors":errors})
2039 self.masklists.append(workscan.get_masklist(fmask, r))
2040 self.actualmask.append(fmask)
2041
2042 asaplog.push(str(fmtd))
2043
2044 workscan._add_history("poly_baseline", varlist)
2045 print_log()
2046
2047 if insitu:
2048 self._assign(workscan)
2049 else:
2050 return workscan
2051
2052 except RuntimeError:
2053 msg = "The fit failed, possibly because it didn't converge."
2054 if rcParams["verbose"]:
2055 print_log()
2056 asaplog.push(str(msg))
2057 print_log("ERROR")
2058 return
2059 else:
2060 raise RuntimeError(msg)
2061
2062
2063 def auto_poly_baseline(self, mask=None, edge=(0, 0), order=0,
2064 threshold=3, chan_avg_limit=1, plot=False,
2065 insitu=None, rows=None):
2066 """\
2067 Return a scan which has been baselined (all rows) by a polynomial.
2068 Spectral lines are detected first using linefinder and masked out
2069 to avoid them affecting the baseline solution.
2070
2071 Parameters:
2072
2073 mask: an optional mask retreived from scantable
2074
2075 edge: an optional number of channel to drop at the edge of
2076 spectrum. If only one value is
2077 specified, the same number will be dropped from
2078 both sides of the spectrum. Default is to keep
2079 all channels. Nested tuples represent individual
2080 edge selection for different IFs (a number of spectral
2081 channels can be different)
2082
2083 order: the order of the polynomial (default is 0)
2084
2085 threshold: the threshold used by line finder. It is better to
2086 keep it large as only strong lines affect the
2087 baseline solution.
2088
2089 chan_avg_limit:
2090 a maximum number of consequtive spectral channels to
2091 average during the search of weak and broad lines.
2092 The default is no averaging (and no search for weak
2093 lines). If such lines can affect the fitted baseline
2094 (e.g. a high order polynomial is fitted), increase this
2095 parameter (usually values up to 8 are reasonable). Most
2096 users of this method should find the default value
2097 sufficient.
2098
2099 plot: plot the fit and the residual. In this each
2100 indivual fit has to be approved, by typing 'y'
2101 or 'n'
2102
2103 insitu: if False a new scantable is returned.
2104 Otherwise, the scaling is done in-situ
2105 The default is taken from .asaprc (False)
2106 rows: row numbers of spectra to be processed.
2107 (default is None: for all rows)
2108
2109
2110 Example::
2111
2112 scan2 = scan.auto_poly_baseline(order=7, insitu=False)
2113
2114 """
2115 if insitu is None: insitu = rcParams['insitu']
2116 varlist = vars()
2117 from asap.asaplinefind import linefinder
2118 from asap import _is_sequence_or_number as _is_valid
2119
2120 # check whether edge is set up for each IF individually
2121 individualedge = False;
2122 if len(edge) > 1:
2123 if isinstance(edge[0], list) or isinstance(edge[0], tuple):
2124 individualedge = True;
2125
2126 if not _is_valid(edge, int) and not individualedge:
2127 raise ValueError, "Parameter 'edge' has to be an integer or a \
2128 pair of integers specified as a tuple. Nested tuples are allowed \
2129 to make individual selection for different IFs."
2130
2131 curedge = (0, 0)
2132 if individualedge:
2133 for edgepar in edge:
2134 if not _is_valid(edgepar, int):
2135 raise ValueError, "Each element of the 'edge' tuple has \
2136 to be a pair of integers or an integer."
2137 else:
2138 curedge = edge;
2139
2140 if not insitu:
2141 workscan = self.copy()
2142 else:
2143 workscan = self
2144
2145 # setup fitter
2146 f = fitter()
2147 f.set_function(lpoly=order)
2148
2149 # setup line finder
2150 fl = linefinder()
2151 fl.set_options(threshold=threshold,avg_limit=chan_avg_limit)
2152
2153 fl.set_scan(workscan)
2154
2155 if mask is None:
2156 mask = _n_bools(workscan.nchan(), True)
2157
2158 if rows is None:
2159 rows = xrange(workscan.nrow())
2160 elif isinstance(rows, int):
2161 rows = [ rows ]
2162
2163 # Save parameters of baseline fits & masklists as a class attribute.
2164 # NOTICE: It does not reflect changes in scantable!
2165 if len(rows) > 0:
2166 self.blpars=[]
2167 self.masklists=[]
2168 self.actualmask=[]
2169 asaplog.push("Processing:")
2170 for r in rows:
2171 msg = " Scan[%d] Beam[%d] IF[%d] Pol[%d] Cycle[%d]" % \
2172 (workscan.getscan(r), workscan.getbeam(r), workscan.getif(r), \
2173 workscan.getpol(r), workscan.getcycle(r))
2174 asaplog.push(msg, False)
2175
2176 # figure out edge parameter
2177 if individualedge:
2178 if len(edge) >= workscan.getif(r):
2179 raise RuntimeError, "Number of edge elements appear to " \
2180 "be less than the number of IFs"
2181 curedge = edge[workscan.getif(r)]
2182
2183 actualmask = mask_and(mask, workscan._getmask(r)) # (CAS-1434)
2184
2185 # setup line finder
2186 fl.find_lines(r, actualmask, curedge)
2187
2188 f.x = workscan._getabcissa(r)
2189 f.y = workscan._getspectrum(r)
2190 f.mask = fl.get_mask()
2191 f.data = None
2192 f.fit()
2193
2194 # Show mask list
2195 masklist=workscan.get_masklist(f.mask, row=r)
2196 msg = "mask range: "+str(masklist)
2197 asaplog.push(msg, False)
2198
2199 if plot:
2200 f.plot(residual=True)
2201 x = raw_input("Accept fit ( [y]/n ): ")
2202 if x.upper() == 'N':
2203 self.blpars.append(None)
2204 self.masklists.append(None)
2205 self.actualmask.append(None)
2206 continue
2207
2208 workscan._setspectrum(f.fitter.getresidual(), r)
2209 self.blpars.append(f.get_parameters())
2210 self.masklists.append(masklist)
2211 self.actualmask.append(f.mask)
2212 if plot:
2213 f._p.unmap()
2214 f._p = None
2215 workscan._add_history("auto_poly_baseline", varlist)
2216 if insitu:
2217 self._assign(workscan)
2218 else:
2219 return workscan
2220
2221 @asaplog_post_dec
2222 def rotate_linpolphase(self, angle):
2223 """\
2224 Rotate the phase of the complex polarization O=Q+iU correlation.
2225 This is always done in situ in the raw data. So if you call this
2226 function more than once then each call rotates the phase further.
2227
2228 Parameters:
2229
2230 angle: The angle (degrees) to rotate (add) by.
2231
2232 Example::
2233
2234 scan.rotate_linpolphase(2.3)
2235
2236 """
2237 varlist = vars()
2238 self._math._rotate_linpolphase(self, angle)
2239 self._add_history("rotate_linpolphase", varlist)
2240 return
2241
2242 @asaplog_post_dec
2243 def rotate_xyphase(self, angle):
2244 """\
2245 Rotate the phase of the XY correlation. This is always done in situ
2246 in the data. So if you call this function more than once
2247 then each call rotates the phase further.
2248
2249 Parameters:
2250
2251 angle: The angle (degrees) to rotate (add) by.
2252
2253 Example::
2254
2255 scan.rotate_xyphase(2.3)
2256
2257 """
2258 varlist = vars()
2259 self._math._rotate_xyphase(self, angle)
2260 self._add_history("rotate_xyphase", varlist)
2261 return
2262
2263 @asaplog_post_dec
2264 def swap_linears(self):
2265 """\
2266 Swap the linear polarisations XX and YY, or better the first two
2267 polarisations as this also works for ciculars.
2268 """
2269 varlist = vars()
2270 self._math._swap_linears(self)
2271 self._add_history("swap_linears", varlist)
2272 return
2273
2274 @asaplog_post_dec
2275 def invert_phase(self):
2276 """\
2277 Invert the phase of the complex polarisation
2278 """
2279 varlist = vars()
2280 self._math._invert_phase(self)
2281 self._add_history("invert_phase", varlist)
2282 return
2283
2284 @asaplog_post_dec
2285 def add(self, offset, insitu=None):
2286 """\
2287 Return a scan where all spectra have the offset added
2288
2289 Parameters:
2290
2291 offset: the offset
2292
2293 insitu: if False a new scantable is returned.
2294 Otherwise, the scaling is done in-situ
2295 The default is taken from .asaprc (False)
2296
2297 """
2298 if insitu is None: insitu = rcParams['insitu']
2299 self._math._setinsitu(insitu)
2300 varlist = vars()
2301 s = scantable(self._math._unaryop(self, offset, "ADD", False))
2302 s._add_history("add", varlist)
2303 if insitu:
2304 self._assign(s)
2305 else:
2306 return s
2307
2308 @asaplog_post_dec
2309 def scale(self, factor, tsys=True, insitu=None):
2310 """\
2311
2312 Return a scan where all spectra are scaled by the give 'factor'
2313
2314 Parameters:
2315
2316 factor: the scaling factor (float or 1D float list)
2317
2318 insitu: if False a new scantable is returned.
2319 Otherwise, the scaling is done in-situ
2320 The default is taken from .asaprc (False)
2321
2322 tsys: if True (default) then apply the operation to Tsys
2323 as well as the data
2324
2325 """
2326 if insitu is None: insitu = rcParams['insitu']
2327 self._math._setinsitu(insitu)
2328 varlist = vars()
2329 s = None
2330 import numpy
2331 if isinstance(factor, list) or isinstance(factor, numpy.ndarray):
2332 if isinstance(factor[0], list) or isinstance(factor[0], numpy.ndarray):
2333 from asapmath import _array2dOp
2334 s = _array2dOp( self.copy(), factor, "MUL", tsys )
2335 else:
2336 s = scantable( self._math._arrayop( self.copy(), factor, "MUL", tsys ) )
2337 else:
2338 s = scantable(self._math._unaryop(self.copy(), factor, "MUL", tsys))
2339 s._add_history("scale", varlist)
2340 if insitu:
2341 self._assign(s)
2342 else:
2343 return s
2344
2345 def set_sourcetype(self, match, matchtype="pattern",
2346 sourcetype="reference"):
2347 """\
2348 Set the type of the source to be an source or reference scan
2349 using the provided pattern.
2350
2351 Parameters:
2352
2353 match: a Unix style pattern, regular expression or selector
2354
2355 matchtype: 'pattern' (default) UNIX style pattern or
2356 'regex' regular expression
2357
2358 sourcetype: the type of the source to use (source/reference)
2359
2360 """
2361 varlist = vars()
2362 basesel = self.get_selection()
2363 stype = -1
2364 if sourcetype.lower().startswith("r"):
2365 stype = 1
2366 elif sourcetype.lower().startswith("s"):
2367 stype = 0
2368 else:
2369 raise ValueError("Illegal sourcetype use s(ource) or r(eference)")
2370 if matchtype.lower().startswith("p"):
2371 matchtype = "pattern"
2372 elif matchtype.lower().startswith("r"):
2373 matchtype = "regex"
2374 else:
2375 raise ValueError("Illegal matchtype, use p(attern) or r(egex)")
2376 sel = selector()
2377 if isinstance(match, selector):
2378 sel = match
2379 else:
2380 sel.set_query("SRCNAME == %s('%s')" % (matchtype, match))
2381 self.set_selection(basesel+sel)
2382 self._setsourcetype(stype)
2383 self.set_selection(basesel)
2384 self._add_history("set_sourcetype", varlist)
2385
2386 @asaplog_post_dec
2387 @preserve_selection
2388 def auto_quotient(self, preserve=True, mode='paired', verify=False):
2389 """\
2390 This function allows to build quotients automatically.
2391 It assumes the observation to have the same number of
2392 "ons" and "offs"
2393
2394 Parameters:
2395
2396 preserve: you can preserve (default) the continuum or
2397 remove it. The equations used are
2398
2399 preserve: Output = Toff * (on/off) - Toff
2400
2401 remove: Output = Toff * (on/off) - Ton
2402
2403 mode: the on/off detection mode
2404 'paired' (default)
2405 identifies 'off' scans by the
2406 trailing '_R' (Mopra/Parkes) or
2407 '_e'/'_w' (Tid) and matches
2408 on/off pairs from the observing pattern
2409 'time'
2410 finds the closest off in time
2411
2412 .. todo:: verify argument is not implemented
2413
2414 """
2415 varlist = vars()
2416 modes = ["time", "paired"]
2417 if not mode in modes:
2418 msg = "please provide valid mode. Valid modes are %s" % (modes)
2419 raise ValueError(msg)
2420 s = None
2421 if mode.lower() == "paired":
2422 sel = self.get_selection()
2423 sel.set_query("SRCTYPE==psoff")
2424 self.set_selection(sel)
2425 offs = self.copy()
2426 sel.set_query("SRCTYPE==pson")
2427 self.set_selection(sel)
2428 ons = self.copy()
2429 s = scantable(self._math._quotient(ons, offs, preserve))
2430 elif mode.lower() == "time":
2431 s = scantable(self._math._auto_quotient(self, mode, preserve))
2432 s._add_history("auto_quotient", varlist)
2433 return s
2434
2435 @asaplog_post_dec
2436 def mx_quotient(self, mask = None, weight='median', preserve=True):
2437 """\
2438 Form a quotient using "off" beams when observing in "MX" mode.
2439
2440 Parameters:
2441
2442 mask: an optional mask to be used when weight == 'stddev'
2443
2444 weight: How to average the off beams. Default is 'median'.
2445
2446 preserve: you can preserve (default) the continuum or
2447 remove it. The equations used are:
2448
2449 preserve: Output = Toff * (on/off) - Toff
2450
2451 remove: Output = Toff * (on/off) - Ton
2452
2453 """
2454 mask = mask or ()
2455 varlist = vars()
2456 on = scantable(self._math._mx_extract(self, 'on'))
2457 preoff = scantable(self._math._mx_extract(self, 'off'))
2458 off = preoff.average_time(mask=mask, weight=weight, scanav=False)
2459 from asapmath import quotient
2460 q = quotient(on, off, preserve)
2461 q._add_history("mx_quotient", varlist)
2462 return q
2463
2464 @asaplog_post_dec
2465 def freq_switch(self, insitu=None):
2466 """\
2467 Apply frequency switching to the data.
2468
2469 Parameters:
2470
2471 insitu: if False a new scantable is returned.
2472 Otherwise, the swictching is done in-situ
2473 The default is taken from .asaprc (False)
2474
2475 """
2476 if insitu is None: insitu = rcParams['insitu']
2477 self._math._setinsitu(insitu)
2478 varlist = vars()
2479 s = scantable(self._math._freqswitch(self))
2480 s._add_history("freq_switch", varlist)
2481 if insitu:
2482 self._assign(s)
2483 else:
2484 return s
2485
2486 @asaplog_post_dec
2487 def recalc_azel(self):
2488 """Recalculate the azimuth and elevation for each position."""
2489 varlist = vars()
2490 self._recalcazel()
2491 self._add_history("recalc_azel", varlist)
2492 return
2493
2494 @asaplog_post_dec
2495 def __add__(self, other):
2496 varlist = vars()
2497 s = None
2498 if isinstance(other, scantable):
2499 s = scantable(self._math._binaryop(self, other, "ADD"))
2500 elif isinstance(other, float):
2501 s = scantable(self._math._unaryop(self, other, "ADD", False))
2502 else:
2503 raise TypeError("Other input is not a scantable or float value")
2504 s._add_history("operator +", varlist)
2505 return s
2506
2507 @asaplog_post_dec
2508 def __sub__(self, other):
2509 """
2510 implicit on all axes and on Tsys
2511 """
2512 varlist = vars()
2513 s = None
2514 if isinstance(other, scantable):
2515 s = scantable(self._math._binaryop(self, other, "SUB"))
2516 elif isinstance(other, float):
2517 s = scantable(self._math._unaryop(self, other, "SUB", False))
2518 else:
2519 raise TypeError("Other input is not a scantable or float value")
2520 s._add_history("operator -", varlist)
2521 return s
2522
2523 @asaplog_post_dec
2524 def __mul__(self, other):
2525 """
2526 implicit on all axes and on Tsys
2527 """
2528 varlist = vars()
2529 s = None
2530 if isinstance(other, scantable):
2531 s = scantable(self._math._binaryop(self, other, "MUL"))
2532 elif isinstance(other, float):
2533 s = scantable(self._math._unaryop(self, other, "MUL", False))
2534 else:
2535 raise TypeError("Other input is not a scantable or float value")
2536 s._add_history("operator *", varlist)
2537 return s
2538
2539
2540 @asaplog_post_dec
2541 def __div__(self, other):
2542 """
2543 implicit on all axes and on Tsys
2544 """
2545 varlist = vars()
2546 s = None
2547 if isinstance(other, scantable):
2548 s = scantable(self._math._binaryop(self, other, "DIV"))
2549 elif isinstance(other, float):
2550 if other == 0.0:
2551 raise ZeroDivisionError("Dividing by zero is not recommended")
2552 s = scantable(self._math._unaryop(self, other, "DIV", False))
2553 else:
2554 raise TypeError("Other input is not a scantable or float value")
2555 s._add_history("operator /", varlist)
2556 return s
2557
2558 @asaplog_post_dec
2559 def get_fit(self, row=0):
2560 """\
2561 Print or return the stored fits for a row in the scantable
2562
2563 Parameters:
2564
2565 row: the row which the fit has been applied to.
2566
2567 """
2568 if row > self.nrow():
2569 return
2570 from asap.asapfit import asapfit
2571 fit = asapfit(self._getfit(row))
2572 asaplog.push( '%s' %(fit) )
2573 return fit.as_dict()
2574
2575 def flag_nans(self):
2576 """\
2577 Utility function to flag NaN values in the scantable.
2578 """
2579 import numpy
2580 basesel = self.get_selection()
2581 for i in range(self.nrow()):
2582 sel = self.get_row_selector(i)
2583 self.set_selection(basesel+sel)
2584 nans = numpy.isnan(self._getspectrum(0))
2585 if numpy.any(nans):
2586 bnans = [ bool(v) for v in nans]
2587 self.flag(bnans)
2588 self.set_selection(basesel)
2589
2590 def get_row_selector(self, rowno):
2591 return selector(beams=self.getbeam(rowno),
2592 ifs=self.getif(rowno),
2593 pols=self.getpol(rowno),
2594 scans=self.getscan(rowno),
2595 cycles=self.getcycle(rowno))
2596
2597 def _add_history(self, funcname, parameters):
2598 if not rcParams['scantable.history']:
2599 return
2600 # create date
2601 sep = "##"
2602 from datetime import datetime
2603 dstr = datetime.now().strftime('%Y/%m/%d %H:%M:%S')
2604 hist = dstr+sep
2605 hist += funcname+sep#cdate+sep
2606 if parameters.has_key('self'): del parameters['self']
2607 for k, v in parameters.iteritems():
2608 if type(v) is dict:
2609 for k2, v2 in v.iteritems():
2610 hist += k2
2611 hist += "="
2612 if isinstance(v2, scantable):
2613 hist += 'scantable'
2614 elif k2 == 'mask':
2615 if isinstance(v2, list) or isinstance(v2, tuple):
2616 hist += str(self._zip_mask(v2))
2617 else:
2618 hist += str(v2)
2619 else:
2620 hist += str(v2)
2621 else:
2622 hist += k
2623 hist += "="
2624 if isinstance(v, scantable):
2625 hist += 'scantable'
2626 elif k == 'mask':
2627 if isinstance(v, list) or isinstance(v, tuple):
2628 hist += str(self._zip_mask(v))
2629 else:
2630 hist += str(v)
2631 else:
2632 hist += str(v)
2633 hist += sep
2634 hist = hist[:-2] # remove trailing '##'
2635 self._addhistory(hist)
2636
2637
2638 def _zip_mask(self, mask):
2639 mask = list(mask)
2640 i = 0
2641 segments = []
2642 while mask[i:].count(1):
2643 i += mask[i:].index(1)
2644 if mask[i:].count(0):
2645 j = i + mask[i:].index(0)
2646 else:
2647 j = len(mask)
2648 segments.append([i, j])
2649 i = j
2650 return segments
2651
2652 def _get_ordinate_label(self):
2653 fu = "("+self.get_fluxunit()+")"
2654 import re
2655 lbl = "Intensity"
2656 if re.match(".K.", fu):
2657 lbl = "Brightness Temperature "+ fu
2658 elif re.match(".Jy.", fu):
2659 lbl = "Flux density "+ fu
2660 return lbl
2661
2662 def _check_ifs(self):
2663 nchans = [self.nchan(i) for i in range(self.nif(-1))]
2664 nchans = filter(lambda t: t > 0, nchans)
2665 return (sum(nchans)/len(nchans) == nchans[0])
2666
2667 @asaplog_post_dec
2668 def _fill(self, names, unit, average, getpt, antenna):
2669 first = True
2670 fullnames = []
2671 for name in names:
2672 name = os.path.expandvars(name)
2673 name = os.path.expanduser(name)
2674 if not os.path.exists(name):
2675 msg = "File '%s' does not exists" % (name)
2676 raise IOError(msg)
2677 fullnames.append(name)
2678 if average:
2679 asaplog.push('Auto averaging integrations')
2680 stype = int(rcParams['scantable.storage'].lower() == 'disk')
2681 for name in fullnames:
2682 tbl = Scantable(stype)
2683 r = filler(tbl)
2684 rx = rcParams['scantable.reference']
2685 r.setreferenceexpr(rx)
2686 msg = "Importing %s..." % (name)
2687 asaplog.push(msg, False)
2688 opts = {'ms': {'antenna' : antenna, 'getpt': getpt} }
2689 r.open(name, opts)# antenna, -1, -1, getpt)
2690 r.fill()
2691 if average:
2692 tbl = self._math._average((tbl, ), (), 'NONE', 'SCAN')
2693 if not first:
2694 tbl = self._math._merge([self, tbl])
2695 Scantable.__init__(self, tbl)
2696 r.close()
2697 del r, tbl
2698 first = False
2699 #flush log
2700 asaplog.post()
2701 if unit is not None:
2702 self.set_fluxunit(unit)
2703 if not is_casapy():
2704 self.set_freqframe(rcParams['scantable.freqframe'])
2705
2706 def __getitem__(self, key):
2707 if key < 0:
2708 key += self.nrow()
2709 if key >= self.nrow():
2710 raise IndexError("Row index out of range.")
2711 return self._getspectrum(key)
2712
2713 def __setitem__(self, key, value):
2714 if key < 0:
2715 key += self.nrow()
2716 if key >= self.nrow():
2717 raise IndexError("Row index out of range.")
2718 if not hasattr(value, "__len__") or \
2719 len(value) > self.nchan(self.getif(key)):
2720 raise ValueError("Spectrum length doesn't match.")
2721 return self._setspectrum(value, key)
2722
2723 def __len__(self):
2724 return self.nrow()
2725
2726 def __iter__(self):
2727 for i in range(len(self)):
2728 yield self[i]
Note: See TracBrowser for help on using the repository browser.