import os import math from asap import scantable from asap import merge from asap import fitter from asap import selector from asap import rcParams from asap._asap import atmosphere class model(object): def _to_pascals(self, val): if val > 2000: return val return val*100 def __init__(self, temperature=288, pressure=101325., humidity=0.5, elevation=700.): """ This class implements opacity/atmospheric brightness temperature model equivalent to the model available in MIRIAD. The actual math is a convertion of the Fortran code written by Bob Sault for MIRIAD. It implements a simple model of the atmosphere and Liebe's model (1985) of the complex refractive index of air. The model of the atmosphere is one with an exponential fall-off in the water vapour content (scale height of 1540 m) and a temperature lapse rate of 6.5 mK/m. Otherwise the atmosphere obeys the ideal gas equation and hydrostatic equilibrium. Note, the model includes atmospheric lines up to 800 GHz, but was not rigorously tested above 100 GHz and for instruments located at a significant elevation. For high-elevation sites it may be necessary to adjust scale height and lapse rate. Parameters: temperature: air temperature at the observatory (K) pressure: air pressure at the sea level if the observatory elevation is set to non-zero value (note, by default is set to 700m) or at the observatory ground level if the elevation is set to 0. (The value is in Pascals or hPa, default 101325 Pa humidity: air humidity at the observatory (fractional), default is 0.5 elevation: observatory elevation about sea level (in meters) """ self._atm = atmosphere(temp, self._to_pascals(pressure), humidity) self.set_observatory_elevation(elevation) def get_opacities(self, freq, elevation=None): """Get the opacity value(s) for the fiven frequency(ies). If no elevation is given the opacities for the zenith are returned. If an elevation is specified refraction is also taken into account. Parameters: freq: a frequency value in Hz, or a list of frequency values. One opacity value per frequency is returned as a scalar or list. elevation: the elevation at which to compute the opacity. If `None` is given (default) the zenith opacity is returned. """ func = None if isinstance(freq, (list, tuple)): if elevation is None: return self._atm.zenith_opacities(freq) else: elevation *= math.pi/180. return self._atm.opacities(freq, elevation) else: if elevation is None: return self._atm.zenith_opacity(freq) else: elevation *= math.pi/180. return self._atm.opacity(freq, elevation) def set_weather(self, temperature, pressure, humidity): """Update the model using the given environmental parameters. Parameters: temperature: air temperature at the observatory (K) pressure: air pressure at the sea level if the observatory elevation is set to non-zero value (note, by default is set to 700m) or at the observatory ground level if the elevation is set to 0. (The value is in Pascals or hPa, default 101325 Pa humidity: air humidity at the observatory (fractional), default is 0.5 """ pressure = self._to_pascals(pressure) self._atm.set_weather(temperature, pressure, humidity) def set_observatory_elevation(self, elevation): """Update the model using the given the observatory elevation Parameters: elevation: the elevation at which to compute the opacity. If `None` is given (default) the zenith opacity is returned. """ self._atm.set_observatory_elevation(el) def _import_data(data): if not isinstance(data, (list,tuple)): if isinstance(data, scantable): return data elif isinstance(data, str): return scantable(data) tables = [] for d in data: if isinstance(d, scantable): tables.append(d) elif isinstance(d, str): if os.path.exists(d): tables.append(scantable(d)) else: raise IOError("Data file doesn't exists") else: raise TypeError("data is not a scantable or valid file") return merge(tables) def skydip(data, averagepol=True, tsky=300., plot=False, temperature=288, pressure=101325., humidity=0.5): """Determine the opacity from a set of 'skydip' obervations. This can be any set of observations over a range of elevations, but will ususally be a dedicated (set of) scan(s). Return a list of 'n' opacities for 'n' IFs. In case of averagepol being 'False' a list of 'n*m' elements where 'm' is the number of polarisations, e.g. nIF = 3, nPol = 2 => [if0pol0, if0pol1, if1pol0, if1pol1, if2pol0, if2pol1] The opacity is determined by fitting a first order polynomial to: Tsys(airmass) = p0 + airmass*p1 where airmass = 1/sin(elevation) tau = p1/Tsky Parameters: data: a list of file names or scantables or a single file name or scantable. averagepol: Return the average of the opacities for the polarisations This might be useful to set to 'False' if one polarisation is corrupted (Mopra). If set to 'False', an opacity value per polarisation is returned. tksy: The sky temperature (default 300.0K). This might be read from the data in the future. plot: Plot each fit (airmass vs. Tsys). Default is 'False' """ rcsave = rcParams['verbose'] rcParams['verbose'] = False if plot: from matplotlib import pylab scan = _import_data(data) f = fitter() f.set_function(poly=1) sel = selector() basesel = scan.get_selection() inos = scan.getifnos() pnos = scan.getpolnos() opacities = [] om = opacitymodel(temperature, pressure, humidity) for ino in inos: sel.set_ifs(ino) opacity = [] fits = [] airms = [] tsyss = [] if plot: pylab.cla() pylab.ioff() pylab.clf() pylab.xlabel("Airmass") pylab.ylabel(r"$T_{sys}$") for pno in pnos: sel.set_polarisations(pno) scan.set_selection(basesel+sel) freq = scan.get_coordinate(0).get_reference_value()/1e9 freqstr = "%0.4f GHz" % freq tsys = scan.get_tsys() elev = scan.get_elevation() airmass = [ 1./math.sin(i) for i in elev ] airms.append(airmass) tsyss.append(tsys) f.set_data(airmass, tsys) f.fit() fits.append(f.get_fit()) params = f.get_parameters()["params"] opacity.append(params[1]/tsky) if averagepol: opacities.append(sum(opacity)/len(opacity)) else: opacities += opacity if plot: colors = ['b','g','k'] n = len(airms) for i in range(n): pylab.plot(airms[i], tsyss[i], 'o', color=colors[i]) pylab.plot(airms[i], fits[i], '-', color=colors[i]) pylab.figtext(0.7,0.3-(i/30.0), r"$\tau_{fit}=%0.2f$" % opacity[i], color=colors[i]) if averagepol: pylab.figtext(0.7,0.3-(n/30.0), r"$\tau_{avg}=%0.2f$" % opacities[-1], color='r') n +=1 pylab.figtext(0.7,0.3-(n/30.0), r"$\tau_{model}=%0.2f$" % om.get_opacities(freq*1e9), color='grey') pylab.title("IF%d : %s" % (ino, freqstr)) pylab.ion() pylab.draw() raw_input("Hit for next fit...") sel.reset() scan.set_selection(basesel) rcParams['verbose'] = rcsave if plot: pylab.close() return opacities