[2613] | 1 | from asap.scantable import scantable
|
---|
| 2 | from asap._asap import _edgemarker
|
---|
[2635] | 3 | import numpy
|
---|
| 4 | import math
|
---|
| 5 |
|
---|
[2613] | 6 | class edgemarker:
|
---|
| 7 | """
|
---|
| 8 | The edgemarker is a helper tool to calibrate OTF observation
|
---|
| 9 | without explicit OFF scans. According to a few user-specified
|
---|
| 10 | options, the class automatically detects an edge region of the
|
---|
| 11 | map and mark integrations within this region as OFF.
|
---|
| 12 |
|
---|
| 13 | The edgemarker supports raster pattern as well as other generic
|
---|
| 14 | ones (e.g. lissajous, double circle). The constructor takes
|
---|
| 15 | one boolean parameter to specify whether scan pattern is raster
|
---|
| 16 | or not. This is because that edge detection algorithms for raster
|
---|
| 17 | and others are different.
|
---|
| 18 |
|
---|
| 19 | Current limitation of this class is that it cannot handle some
|
---|
| 20 | complicated observed area. Typical case is that the area has
|
---|
| 21 | clear 'dent' (e.g. a composite area consisting of two diamond-
|
---|
[2616] | 22 | shaped areas that slightly overlap). In such case, the class
|
---|
[2613] | 23 | will fail to detect such feature.
|
---|
| 24 |
|
---|
| 25 | Note that the class takes a copy of input data so that input
|
---|
| 26 | data will not be overwritten. Result will be provided as a
|
---|
| 27 | separate data whose contents are essentially the same as input
|
---|
| 28 | except for that some integrations are marked as OFF.
|
---|
| 29 |
|
---|
| 30 | Here is typical usage:
|
---|
| 31 |
|
---|
| 32 | s = scantable( 'otf.asap', average=False )
|
---|
| 33 | marker = edgemarker( israster=False )
|
---|
| 34 | marker.setdata( s )
|
---|
| 35 | marker.setoption( fraction='15%', width=0.5 )
|
---|
| 36 | marker.mark()
|
---|
| 37 |
|
---|
| 38 | # get result as scantable instance
|
---|
| 39 | s2 = marker.getresult()
|
---|
| 40 |
|
---|
| 41 | # save result on disk
|
---|
| 42 | marker.save( 'otfwithoff.asap', overwrite=True )
|
---|
| 43 | """
|
---|
| 44 | def __init__( self, israster=False ):
|
---|
| 45 | """
|
---|
| 46 | Constructor.
|
---|
| 47 |
|
---|
| 48 | israster -- Whether scan pattern is raster or not. Set True
|
---|
| 49 | if scan pattern is raster. Default is False.
|
---|
| 50 | """
|
---|
| 51 | self.israster = israster
|
---|
| 52 | self.marker = _edgemarker( self.israster )
|
---|
| 53 | self.st = None
|
---|
| 54 |
|
---|
| 55 | def setdata( self, st ):
|
---|
| 56 | """
|
---|
| 57 | Set data to be processed.
|
---|
| 58 |
|
---|
| 59 | st -- Data as scantable instance.
|
---|
| 60 | """
|
---|
| 61 | self.st = st
|
---|
| 62 | self.marker._setdata( self.st, False )
|
---|
| 63 | self.marker._examine()
|
---|
| 64 |
|
---|
| 65 | def setoption( self, *args, **kwargs ):
|
---|
| 66 | """
|
---|
| 67 | Set options for edge detection. Valid options depend on
|
---|
[2616] | 68 | whether scan pattern is raster or not (i.e. constructor
|
---|
| 69 | is called with israster=True or False).
|
---|
[2613] | 70 |
|
---|
[2616] | 71 | === for raster (israster=True) ===
|
---|
[2613] | 72 | fraction -- Fraction of OFF integration in each raster
|
---|
| 73 | row. Either numerical value (<1.0) or string
|
---|
| 74 | is accepted. For string, its value should be
|
---|
| 75 | 'auto' or format 'xx%'. For example, '10%'
|
---|
| 76 | is same as 0.1. The 'auto' option estimates
|
---|
| 77 | number of OFFs based on t_OFF = sqrt(N) t_ON.
|
---|
| 78 | Default is 0.1.
|
---|
| 79 | npts -- Number of OFF integration in each raster row.
|
---|
| 80 | Default is -1 (use fraction).
|
---|
| 81 |
|
---|
| 82 | Note that number of integrations specified by the above
|
---|
| 83 | parameters will be marked as OFF from both ends. So, twice
|
---|
| 84 | of specified number/fraction will be marked as OFF. For
|
---|
| 85 | example, if you specify fraction='10%', resultant fraction
|
---|
| 86 | of OFF integrations will be 20%.
|
---|
| 87 |
|
---|
| 88 | Note also that, if both fraction and npts are specified,
|
---|
| 89 | specification by npts will come before.
|
---|
| 90 |
|
---|
[2616] | 91 | === for non-raster (israster=False) ===
|
---|
[2613] | 92 | fraction -- Fraction of edge area with respect to whole
|
---|
| 93 | observed area. Either numerical value (<1.0)
|
---|
| 94 | or string is accepted. For string, its value
|
---|
| 95 | should be in 'xx%' format. For example, '10%'
|
---|
| 96 | is same as 0.1. Default is 0.1.
|
---|
| 97 | width -- Pixel width for edge detection. It should be given
|
---|
[2616] | 98 | as a fraction of the median spatial separation
|
---|
| 99 | between neighboring integrations in time. Default
|
---|
| 100 | is 0.5. In the most case, default value will be fine.
|
---|
| 101 | Larger value will cause worse result. Smaller value
|
---|
| 102 | may improve result. However, if too small value is
|
---|
| 103 | set (e.g. 1.0e-5), the algorithm may not work.
|
---|
[2613] | 104 | elongated -- Set True only if observed area is extremely
|
---|
| 105 | elongated in one direction. Default is False.
|
---|
| 106 | In most cases, default value will be fine.
|
---|
| 107 | """
|
---|
| 108 | option = {}
|
---|
| 109 | if self.israster:
|
---|
| 110 | keys = [ 'fraction', 'npts' ]
|
---|
| 111 | else:
|
---|
| 112 | keys = [ 'fraction', 'width', 'elongated' ]
|
---|
| 113 | for key in keys:
|
---|
| 114 | if kwargs.has_key( key ):
|
---|
| 115 | option[key] = kwargs[key]
|
---|
| 116 |
|
---|
| 117 | if len(option) > 0:
|
---|
| 118 | self.marker._setoption( option )
|
---|
| 119 |
|
---|
| 120 | def mark( self ):
|
---|
| 121 | """
|
---|
| 122 | Process data. Edge region is detected according to detection
|
---|
| 123 | parameters given by setoption(). Then, integrations within
|
---|
| 124 | edge region will be marked as OFF.
|
---|
| 125 | """
|
---|
| 126 | self.marker._detect()
|
---|
| 127 | self.marker._mark()
|
---|
| 128 |
|
---|
| 129 | def getresult( self ):
|
---|
| 130 | """
|
---|
| 131 | Get result as scantable instance. Returned scantable is
|
---|
| 132 | copy of input scantable except for that some data are
|
---|
| 133 | marked as OFF as a result of edge detection and marking.
|
---|
| 134 | """
|
---|
| 135 | return scantable( self.marker._get() )
|
---|
| 136 |
|
---|
| 137 | def save( self, name, overwrite=False ):
|
---|
| 138 | """
|
---|
| 139 | Save result as scantable.
|
---|
| 140 |
|
---|
| 141 | name -- Name of the scantable.
|
---|
| 142 | overwrite -- Overwrite existing data if True. Default is
|
---|
| 143 | False.
|
---|
| 144 | """
|
---|
| 145 | s = self.getresult()
|
---|
| 146 | s.save( name, overwrite=overwrite )
|
---|
[2635] | 147 |
|
---|
| 148 | def plot( self ):
|
---|
| 149 | """
|
---|
| 150 | """
|
---|
| 151 | from matplotlib import pylab as pl
|
---|
| 152 | from asap import selector
|
---|
| 153 | from asap._asap import srctype as st
|
---|
| 154 | pl.clf()
|
---|
| 155 |
|
---|
| 156 | # result as a scantable
|
---|
| 157 | s = self.getresult()
|
---|
| 158 |
|
---|
| 159 | # ON scan
|
---|
| 160 | sel = selector()
|
---|
| 161 | sel.set_types( int(st.pson) )
|
---|
| 162 | s.set_selection( sel )
|
---|
| 163 | diron = numpy.array( s.get_directionval() ).transpose()
|
---|
| 164 | diron[0] = rotate( diron[0] )
|
---|
| 165 | s.set_selection()
|
---|
| 166 | sel.reset()
|
---|
| 167 |
|
---|
| 168 | # OFF scan
|
---|
| 169 | sel.set_types( int(st.psoff) )
|
---|
| 170 | s.set_selection( sel )
|
---|
| 171 | diroff = numpy.array( s.get_directionval() ).transpose()
|
---|
| 172 | diroff[0] = rotate( diroff[0] )
|
---|
| 173 | s.set_selection()
|
---|
| 174 | sel.reset()
|
---|
| 175 | del s
|
---|
| 176 | del sel
|
---|
| 177 |
|
---|
| 178 | # plot
|
---|
| 179 | pl.ioff()
|
---|
| 180 | ax=pl.axes()
|
---|
| 181 | ax.set_aspect(1.0)
|
---|
| 182 | pl.plot( diron[0], diron[1], '.', color='blue', label='ON' )
|
---|
| 183 | pl.plot( diroff[0], diroff[1], '.', color='green', label='OFF' )
|
---|
| 184 | [xmin,xmax,ymin,ymax] = pl.axis()
|
---|
| 185 | pl.axis([xmax,xmin,ymin,ymax])
|
---|
| 186 | pl.legend(loc='best',prop={'size':'small'},numpoints=1)
|
---|
| 187 | pl.xlabel( 'R.A. [rad]' )
|
---|
| 188 | pl.ylabel( 'Declination [rad]' )
|
---|
| 189 | pl.title( 'edgemarker result' )
|
---|
| 190 | pl.ion()
|
---|
| 191 | pl.draw()
|
---|
| 192 |
|
---|
| 193 | def _0to2pi( v ):
|
---|
| 194 | return v % (2.0*math.pi)
|
---|
| 195 |
|
---|
| 196 | def quadrant( v ):
|
---|
| 197 | vl = _0to2pi( v )
|
---|
| 198 | base = 0.5 * math.pi
|
---|
| 199 | return int( vl / base )
|
---|
| 200 |
|
---|
| 201 | def quadrantList( a ):
|
---|
| 202 | n = len(a)
|
---|
| 203 | nquad = numpy.zeros( 4, dtype=int )
|
---|
| 204 | for i in xrange(n):
|
---|
| 205 | v = quadrant( a[i] )
|
---|
| 206 | nquad[v] += 1
|
---|
| 207 | #print nquad
|
---|
| 208 | return nquad
|
---|
| 209 |
|
---|
| 210 | def rotate( v ):
|
---|
| 211 | a = numpy.zeros( len(v), dtype=float )
|
---|
| 212 | for i in xrange(len(v)):
|
---|
| 213 | a[i] = _0to2pi( v[i] )
|
---|
| 214 | nquad = quadrantList( a )
|
---|
| 215 | quadList = [[],[],[],[]]
|
---|
| 216 | rot = numpy.zeros( 4, dtype=bool )
|
---|
| 217 | if all( nquad==0 ):
|
---|
| 218 | print 'no data'
|
---|
| 219 | elif all( nquad>0 ):
|
---|
| 220 | #print 'extends in all quadrants'
|
---|
| 221 | pass
|
---|
| 222 | elif nquad[0]>0 and nquad[3]>0:
|
---|
| 223 | #print 'need rotation'
|
---|
| 224 | rot[3] = True
|
---|
| 225 | rot[2] = nquad[1]==0 and nquad[2]>0
|
---|
| 226 | #print rot
|
---|
| 227 |
|
---|
| 228 | for i in xrange(len(a)):
|
---|
| 229 | if rot[quadrant(a[i])]:
|
---|
| 230 | a[i] -= 2*math.pi
|
---|
| 231 | return a
|
---|