1 | from asap.asaplot import ASAPlot
|
---|
2 | from asap import rcParams
|
---|
3 |
|
---|
4 | class asapplotter:
|
---|
5 | """
|
---|
6 | The ASAP plotter.
|
---|
7 | By default the plotter is set up to plot polarisations
|
---|
8 | 'colour stacked' and scantables across panels.
|
---|
9 | Note:
|
---|
10 | Currenly it only plots 'spectra' not Tsys or
|
---|
11 | other variables.
|
---|
12 | """
|
---|
13 | def __init__(self):
|
---|
14 | self._plotter = ASAPlot()
|
---|
15 |
|
---|
16 | self._tdict = {'Time':'t','time':'t','t':'t','T':'t'}
|
---|
17 | self._bdict = {'Beam':'b','beam':'b','b':'b','B':'b'}
|
---|
18 | self._idict = {'IF':'i','if':'i','i':'i','I':'i'}
|
---|
19 | self._pdict = {'Pol':'p','pol':'p','p':'p'}
|
---|
20 | self._sdict = {'scan':'s','Scan':'s','s':'s','S':'s'}
|
---|
21 | self._cdict = {'t':'scan.nrow()',
|
---|
22 | 'b':'scan.nbeam()',
|
---|
23 | 'i':'scan.nif()',
|
---|
24 | 'p':'scan.npol()',
|
---|
25 | 's':'len(scans)'}
|
---|
26 | self._ldict = {'b':'Beam',
|
---|
27 | 'i':'IF',
|
---|
28 | 'p':'Pol',
|
---|
29 | 's':'Scan'}
|
---|
30 | self._dicts = [self._tdict,self._bdict,
|
---|
31 | self._idict,self._pdict,
|
---|
32 | self._sdict]
|
---|
33 | self._panels = 's'
|
---|
34 | self._stacking = rcParams['plotter.stacking']
|
---|
35 | self._rows = None
|
---|
36 | self._cols = None
|
---|
37 | self._autoplot = False
|
---|
38 | self._minmax = None
|
---|
39 | self._data = None
|
---|
40 | self._lmap = []
|
---|
41 | self._title = None
|
---|
42 | self._ordinate = None
|
---|
43 | self._abcissa = None
|
---|
44 |
|
---|
45 | def _translate(self, name):
|
---|
46 | for d in self._dicts:
|
---|
47 | if d.has_key(name):
|
---|
48 | return d[name]
|
---|
49 | return None
|
---|
50 |
|
---|
51 | def plot(self,*args):
|
---|
52 | """
|
---|
53 | Plot a (list of) scantables.
|
---|
54 | Parameters:
|
---|
55 | one or more comma separated scantables
|
---|
56 | Note:
|
---|
57 | If a (list) of scantables was specified in a previous call
|
---|
58 | to plot, no argument has to be given to 'replot'
|
---|
59 | NO checking is done that the abscissas of the scantables
|
---|
60 | are consistent e.g. all 'channel' or all 'velocity' etc.
|
---|
61 | """
|
---|
62 | if self._plotter.is_dead:
|
---|
63 | self._plotter = ASAPlot()
|
---|
64 | self._plotter.clear()
|
---|
65 | self._plotter.hold()
|
---|
66 | if len(args) > 0:
|
---|
67 | self._data = tuple(args)
|
---|
68 | if self._panels == 't':
|
---|
69 | if self._data[0].nrow() > 25:
|
---|
70 | print "Scan to be plotted contains more than 25 rows.\nCan't plot that many panels..."
|
---|
71 | return
|
---|
72 | self._plot_time(self._data[0], self._stacking)
|
---|
73 | elif self._panels == 's':
|
---|
74 | self._plot_scans(self._data, self._stacking)
|
---|
75 | else:
|
---|
76 | self._plot_other(self._data, self._stacking)
|
---|
77 | if self._minmax is not None:
|
---|
78 | self._plotter.set_limits(xlim=self._minmax)
|
---|
79 | self._plotter.release()
|
---|
80 | return
|
---|
81 |
|
---|
82 | def _plot_time(self, scan, colmode):
|
---|
83 | if colmode == 't':
|
---|
84 | return
|
---|
85 | n = scan.nrow()
|
---|
86 | cdict = {'b':'scan.setbeam(j)',
|
---|
87 | 'i':'scan.setif(j)',
|
---|
88 | 'p':'scan.setpol(j)'}
|
---|
89 | if self._stacking is not None:
|
---|
90 | ncol = eval(self._cdict.get(colmode))
|
---|
91 | self._plotter.set_panels()
|
---|
92 | if n > 1:
|
---|
93 | if self._rows and self._cols:
|
---|
94 | n = min(n,self._rows*self._cols)
|
---|
95 | self._plotter.set_panels(rows=self._rows,cols=self._cols,
|
---|
96 | nplots=n)
|
---|
97 | else:
|
---|
98 | self._plotter.set_panels(rows=n,cols=0)
|
---|
99 | for i in range(n):
|
---|
100 | if n > 1:
|
---|
101 | self._plotter.palette(1)
|
---|
102 | self._plotter.subplot(i)
|
---|
103 | for j in range(ncol):
|
---|
104 | eval(cdict.get(colmode))
|
---|
105 | x = None
|
---|
106 | y = None
|
---|
107 | m = None
|
---|
108 | if not self._title:
|
---|
109 | tlab = scan._getsourcename(i)
|
---|
110 | else:
|
---|
111 | if len(self._title) == n:
|
---|
112 | tlab = self._title[i]
|
---|
113 | else:
|
---|
114 | tlab = scan._getsourcename(i)
|
---|
115 | x,xlab = scan.get_abcissa(i)
|
---|
116 | if self._abcissa: xlab = self._abcissa
|
---|
117 | y = scan._getspectrum(i)
|
---|
118 | if self._ordinate:
|
---|
119 | ylab = self._ordinate
|
---|
120 | else:
|
---|
121 | ylab = 'Flux ('+scan.get_fluxunit()+')'
|
---|
122 | m = scan._getmask(i)
|
---|
123 | if self._lmap and len(self._lmap) > 0:
|
---|
124 | llab = self._lmap[j]
|
---|
125 | else:
|
---|
126 | llab = self._ldict.get(colmode)+' '+str(j)
|
---|
127 | self._plotter.set_line(label=llab)
|
---|
128 | self._plotter.plot(x,y,m)
|
---|
129 | xlim=[min(x),max(x)]
|
---|
130 | self._plotter.axes.set_xlim(xlim)
|
---|
131 | self._plotter.set_axes('xlabel',xlab)
|
---|
132 | self._plotter.set_axes('ylabel',ylab)
|
---|
133 | self._plotter.set_axes('title',tlab)
|
---|
134 | return
|
---|
135 |
|
---|
136 | def _plot_scans(self, scans, colmode):
|
---|
137 | if colmode == 's':
|
---|
138 | return
|
---|
139 | cdict = {'b':'scan.setbeam(j)',
|
---|
140 | 'i':'scan.setif(j)',
|
---|
141 | 'p':'scan.setpol(j)'}
|
---|
142 | n = len(scans)
|
---|
143 | if self._stacking is not None:
|
---|
144 | scan = scans[0]
|
---|
145 | ncol = eval(self._cdict.get(colmode))
|
---|
146 | self._plotter.set_panels()
|
---|
147 | if n > 1:
|
---|
148 | if self._rows and self._cols:
|
---|
149 | n = min(n,self._rows*self._cols)
|
---|
150 | self._plotter.set_panels(rows=self._rows,cols=self._cols,
|
---|
151 | nplots=n)
|
---|
152 | else:
|
---|
153 | self._plotter.set_panels(rows=n,cols=0)
|
---|
154 | i = 0
|
---|
155 | for scan in scans:
|
---|
156 | if n > 1:
|
---|
157 | self._plotter.subplot(i)
|
---|
158 | self._plotter.palette(0)
|
---|
159 | for j in range(ncol):
|
---|
160 | eval(cdict.get(colmode))
|
---|
161 | x = None
|
---|
162 | y = None
|
---|
163 | m = None
|
---|
164 | tlab = self._title
|
---|
165 | if not self._title:
|
---|
166 | tlab = scan._getsourcename()
|
---|
167 | x,xlab = scan.get_abcissa()
|
---|
168 | if self._abcissa: xlab = self._abcissa
|
---|
169 | y = scan._getspectrum()
|
---|
170 | if self._ordinate:
|
---|
171 | ylab = self._ordinate
|
---|
172 | else:
|
---|
173 | ylab = 'Flux ('+scan.get_fluxunit()+')'
|
---|
174 | m = scan._getmask()
|
---|
175 | if self._lmap and len(self._lmap) > 0:
|
---|
176 | llab = self._lmap[j]
|
---|
177 | else:
|
---|
178 | llab = self._ldict.get(colmode)+' '+str(j)
|
---|
179 | self._plotter.set_line(label=llab)
|
---|
180 | self._plotter.plot(x,y,m)
|
---|
181 | xlim=[min(x),max(x)]
|
---|
182 | self._plotter.axes.set_xlim(xlim)
|
---|
183 |
|
---|
184 | self._plotter.set_axes('xlabel',xlab)
|
---|
185 | self._plotter.set_axes('ylabel',ylab)
|
---|
186 | self._plotter.set_axes('title',tlab)
|
---|
187 | i += 1
|
---|
188 | return
|
---|
189 |
|
---|
190 | def _plot_other(self,scans,colmode):
|
---|
191 | if colmode == self._panels:
|
---|
192 | return
|
---|
193 | cdict = {'b':'scan.setbeam(j)',
|
---|
194 | 'i':'scan.setif(j)',
|
---|
195 | 'p':'scan.setpol(j)',
|
---|
196 | 's':'scans[j]'}
|
---|
197 | scan = scans[0]
|
---|
198 | n = eval(self._cdict.get(self._panels))
|
---|
199 | if self._stacking is not None:
|
---|
200 | ncol = eval(self._cdict.get(colmode))
|
---|
201 | self._plotter.set_panels()
|
---|
202 | if n > 1:
|
---|
203 | if self._rows and self._cols:
|
---|
204 | n = min(n,self._rows*self._cols)
|
---|
205 | self._plotter.set_panels(rows=self._rows,cols=self._cols,
|
---|
206 | nplots=n)
|
---|
207 | else:
|
---|
208 | self._plotter.set_panels(rows=n,cols=0)
|
---|
209 | for i in range(n):
|
---|
210 | if n>1:
|
---|
211 | self._plotter.subplot(i)
|
---|
212 | self._plotter.palette(0)
|
---|
213 | k=0
|
---|
214 | j=i
|
---|
215 | eval(cdict.get(self._panels))
|
---|
216 | for j in range(ncol):
|
---|
217 | if colmode == 's':
|
---|
218 | scan = eval(cdict.get(colmode))
|
---|
219 | elif colmode == 't':
|
---|
220 | k = j
|
---|
221 | else:
|
---|
222 | eval(cdict.get(colmode))
|
---|
223 | x = None
|
---|
224 | y = None
|
---|
225 | m = None
|
---|
226 | x,xlab = scan.get_abcissa(k)
|
---|
227 | if self._abcissa: xlab = self._abcissa
|
---|
228 | y = scan._getspectrum(k)
|
---|
229 | if self._ordinate:
|
---|
230 | ylab = self._ordinate
|
---|
231 | else:
|
---|
232 | ylab = 'Flux ('+scan.get_fluxunit()+')'
|
---|
233 | m = scan._getmask(k)
|
---|
234 | if colmode == 's' or colmode == 't':
|
---|
235 | if not self._title:
|
---|
236 | tlab = self._ldict.get(self._panels)+' '+str(i)
|
---|
237 | else:
|
---|
238 | if len(self.title) == n:
|
---|
239 | tlab = self._title[i]
|
---|
240 | else:
|
---|
241 | tlab = self._ldict.get(self._panels)+' '+str(i)
|
---|
242 | llab = scan._getsourcename(k)
|
---|
243 | else:
|
---|
244 | if self._title and len(self._title) > 0:
|
---|
245 | tlab = self._title[i]
|
---|
246 | else:
|
---|
247 | tlab = self._ldict.get(self._panels)+' '+str(i)
|
---|
248 | if self._lmap and len(self._lmap) > 0:
|
---|
249 | llab = self._lmap[j]
|
---|
250 | else:
|
---|
251 | llab = self._ldict.get(colmode)+' '+str(j)
|
---|
252 | self._plotter.set_line(label=llab)
|
---|
253 | self._plotter.plot(x,y,m)
|
---|
254 | xlim=[min(x),max(x)]
|
---|
255 | self._plotter.axes.set_xlim(xlim)
|
---|
256 |
|
---|
257 | self._plotter.set_axes('xlabel',xlab)
|
---|
258 | self._plotter.set_axes('ylabel',ylab)
|
---|
259 | self._plotter.set_axes('title',tlab)
|
---|
260 |
|
---|
261 | return
|
---|
262 |
|
---|
263 |
|
---|
264 | def set_mode(self, stacking=None, panelling=None):
|
---|
265 | """
|
---|
266 | Set the plots look and feel, i.e. what you want to see on the plot.
|
---|
267 | Parameters:
|
---|
268 | stacking: tell the plotter which variable to plot
|
---|
269 | as line colour overlays (default 'pol')
|
---|
270 | panelling: tell the plotter which variable to plot
|
---|
271 | across multiple panels (default 'scan'
|
---|
272 | Note:
|
---|
273 | Valid modes are:
|
---|
274 | 'beam' 'Beam' 'b': Beams
|
---|
275 | 'if' 'IF' 'i': IFs
|
---|
276 | 'pol' 'Pol' 'p': Polarisations
|
---|
277 | 'scan' 'Scan' 's': Scans
|
---|
278 | 'time' 'Time' 't': Times
|
---|
279 | """
|
---|
280 | if not self.set_panels(panelling):
|
---|
281 | print "Invalid mode"
|
---|
282 | return
|
---|
283 | if not self.set_stacking(stacking):
|
---|
284 | print "Invalid mode"
|
---|
285 | return
|
---|
286 | if self._data: self.plot()
|
---|
287 | return
|
---|
288 |
|
---|
289 | def set_panels(self, what=None):
|
---|
290 | """
|
---|
291 | """
|
---|
292 | if not what:
|
---|
293 | what = rcParams['plotter.panelling']
|
---|
294 | md = self._translate(what)
|
---|
295 | if md:
|
---|
296 | self._panels = md
|
---|
297 | self._title = None
|
---|
298 | return True
|
---|
299 | return False
|
---|
300 |
|
---|
301 | def set_layout(self,rows=None,cols=None):
|
---|
302 | """
|
---|
303 | Set the multi-panel layout, i.e. how many rows and columns plots
|
---|
304 | are visible.
|
---|
305 | Parameters:
|
---|
306 | rows: The number of rows of plots
|
---|
307 | cols: The number of columns of plots
|
---|
308 | Note:
|
---|
309 | If no argument is given, the potter reverts to its auto-plot
|
---|
310 | behaviour.
|
---|
311 | """
|
---|
312 | self._rows = rows
|
---|
313 | self._cols = cols
|
---|
314 | if self._data: self.plot()
|
---|
315 | return
|
---|
316 |
|
---|
317 | def set_stacking(self, what=None):
|
---|
318 | if not what:
|
---|
319 | what = rcParams['plotter.stacking']
|
---|
320 | md = self._translate(what)
|
---|
321 | if md:
|
---|
322 | self._stacking = md
|
---|
323 | self._lmap = None
|
---|
324 | return True
|
---|
325 | return False
|
---|
326 |
|
---|
327 | def set_range(self,start=None,end=None):
|
---|
328 | """
|
---|
329 | Set the range of interest on the abcissa of the plot
|
---|
330 | Parameters:
|
---|
331 | start,end: The start an end point of the 'zoom' window
|
---|
332 | Note:
|
---|
333 | These become non-sensical when the unit changes.
|
---|
334 | use plotter.set_range() without parameters to reset
|
---|
335 |
|
---|
336 | """
|
---|
337 | if start is None and end is None:
|
---|
338 | self._minmax = None
|
---|
339 | if self._data: self.plot()
|
---|
340 | else:
|
---|
341 | self._minmax = [start,end]
|
---|
342 | if self._data: self.plot()
|
---|
343 | return
|
---|
344 |
|
---|
345 | def set_legend(self, mp=None):
|
---|
346 | """
|
---|
347 | Specify a mapping for the legend instead of using the default
|
---|
348 | indices:
|
---|
349 | Parameters:
|
---|
350 | mp: a list of 'strings'. This should have the same length
|
---|
351 | as the number of elements on the legend and then maps
|
---|
352 | to the indeces in order
|
---|
353 |
|
---|
354 | Example:
|
---|
355 | If the data has to IFs/rest frequencies with index 0 and 1
|
---|
356 | for CO and SiO:
|
---|
357 | plotter.set_stacking('i')
|
---|
358 | plotter.set_legend_map(['CO','SiO'])
|
---|
359 | plotter.plot()
|
---|
360 | """
|
---|
361 | self._lmap = mp
|
---|
362 | if self._data: self.plot()
|
---|
363 | return
|
---|
364 |
|
---|
365 | def set_title(self, title=None):
|
---|
366 | self._title = title
|
---|
367 | if self._data: self.plot()
|
---|
368 | return
|
---|
369 |
|
---|
370 | def set_ordinate(self, ordinate=None):
|
---|
371 | self._ordinate = ordinate
|
---|
372 | if self._data: self.plot()
|
---|
373 | return
|
---|
374 |
|
---|
375 | def set_abcissa(self, abcissa=None):
|
---|
376 | self._abcissa = abcissa
|
---|
377 | if self._data: self.plot()
|
---|
378 | return
|
---|
379 |
|
---|
380 | def save(self, filename=None):
|
---|
381 | """
|
---|
382 | Save the plot to a file. The know formats are 'png', 'ps', 'eps'.
|
---|
383 | Parameters:
|
---|
384 | filename: The name of the output file. This is optional
|
---|
385 | and autodetects the image format from the file
|
---|
386 | suffix. If non filename is specified a file
|
---|
387 | called 'yyyymmdd_hhmmss.png' is created in the
|
---|
388 | current directory.
|
---|
389 | """
|
---|
390 | self._plotter.save(filename)
|
---|
391 | return
|
---|
392 |
|
---|
393 | if __name__ == '__main__':
|
---|
394 | plotter = asapplotter()
|
---|