| 1 | from asap import rcParams, print_log, selector, scantable
|
|---|
| 2 | import matplotlib.axes
|
|---|
| 3 | import re
|
|---|
| 4 |
|
|---|
| 5 | class asapplotter:
|
|---|
| 6 | """
|
|---|
| 7 | The ASAP plotter.
|
|---|
| 8 | By default the plotter is set up to plot polarisations
|
|---|
| 9 | 'colour stacked' and scantables across panels.
|
|---|
| 10 | Note:
|
|---|
| 11 | Currenly it only plots 'spectra' not Tsys or
|
|---|
| 12 | other variables.
|
|---|
| 13 | """
|
|---|
| 14 | def __init__(self, visible=None):
|
|---|
| 15 | self._visible = rcParams['plotter.gui']
|
|---|
| 16 | if visible is not None:
|
|---|
| 17 | self._visible = visible
|
|---|
| 18 | self._plotter = self._newplotter()
|
|---|
| 19 |
|
|---|
| 20 | self._panelling = None
|
|---|
| 21 | self._stacking = None
|
|---|
| 22 | self.set_panelling()
|
|---|
| 23 | self.set_stacking()
|
|---|
| 24 | self._rows = None
|
|---|
| 25 | self._cols = None
|
|---|
| 26 | self._autoplot = False
|
|---|
| 27 | self._minmaxx = None
|
|---|
| 28 | self._minmaxy = None
|
|---|
| 29 | self._datamask = None
|
|---|
| 30 | self._data = None
|
|---|
| 31 | self._lmap = None
|
|---|
| 32 | self._title = None
|
|---|
| 33 | self._ordinate = None
|
|---|
| 34 | self._abcissa = None
|
|---|
| 35 | self._abcunit = None
|
|---|
| 36 | self._usermask = []
|
|---|
| 37 | self._maskselection = None
|
|---|
| 38 | self._selection = selector()
|
|---|
| 39 | self._hist = rcParams['plotter.histogram']
|
|---|
| 40 |
|
|---|
| 41 | def _translate(self, instr):
|
|---|
| 42 | keys = "s b i p t".split()
|
|---|
| 43 | if isinstance(instr, str):
|
|---|
| 44 | for key in keys:
|
|---|
| 45 | if instr.lower().startswith(key):
|
|---|
| 46 | return key
|
|---|
| 47 | return None
|
|---|
| 48 |
|
|---|
| 49 | def _newplotter(self):
|
|---|
| 50 | if self._visible:
|
|---|
| 51 | from asap.asaplotgui import asaplotgui as asaplot
|
|---|
| 52 | else:
|
|---|
| 53 | from asap.asaplot import asaplot
|
|---|
| 54 | return asaplot()
|
|---|
| 55 |
|
|---|
| 56 |
|
|---|
| 57 | def plot(self, scan=None):
|
|---|
| 58 | """
|
|---|
| 59 | Plot a scantable.
|
|---|
| 60 | Parameters:
|
|---|
| 61 | scan: a scantable
|
|---|
| 62 | Note:
|
|---|
| 63 | If a scantable was specified in a previous call
|
|---|
| 64 | to plot, no argument has to be given to 'replot'
|
|---|
| 65 | NO checking is done that the abcissas of the scantable
|
|---|
| 66 | are consistent e.g. all 'channel' or all 'velocity' etc.
|
|---|
| 67 | """
|
|---|
| 68 | if self._plotter.is_dead:
|
|---|
| 69 | self._plotter = self._newplotter()
|
|---|
| 70 | self._plotter.hold()
|
|---|
| 71 | self._plotter.clear()
|
|---|
| 72 | from asap import scantable
|
|---|
| 73 | if not self._data and not scan:
|
|---|
| 74 | msg = "Input is not a scantable"
|
|---|
| 75 | if rcParams['verbose']:
|
|---|
| 76 | print msg
|
|---|
| 77 | return
|
|---|
| 78 | raise TypeError(msg)
|
|---|
| 79 | if isinstance(scan, scantable):
|
|---|
| 80 | if self._data is not None:
|
|---|
| 81 | if scan != self._data:
|
|---|
| 82 | self._data = scan
|
|---|
| 83 | # reset
|
|---|
| 84 | self._reset()
|
|---|
| 85 | else:
|
|---|
| 86 | self._data = scan
|
|---|
| 87 | self._reset()
|
|---|
| 88 | # ranges become invalid when unit changes
|
|---|
| 89 | if self._abcunit and self._abcunit != self._data.get_unit():
|
|---|
| 90 | self._minmaxx = None
|
|---|
| 91 | self._minmaxy = None
|
|---|
| 92 | self._abcunit = self._data.get_unit()
|
|---|
| 93 | self._datamask = None
|
|---|
| 94 | self._plot(self._data)
|
|---|
| 95 | if self._minmaxy is not None:
|
|---|
| 96 | self._plotter.set_limits(ylim=self._minmaxy)
|
|---|
| 97 | self._plotter.release()
|
|---|
| 98 | self._plotter.tidy()
|
|---|
| 99 | self._plotter.show(hardrefresh=False)
|
|---|
| 100 | print_log()
|
|---|
| 101 | return
|
|---|
| 102 |
|
|---|
| 103 | def refresh(self):
|
|---|
| 104 | self._plotter.figure.show()
|
|---|
| 105 |
|
|---|
| 106 | def create_mask(self, nwin=1, panel=0, color=None):
|
|---|
| 107 | if self._data is None:
|
|---|
| 108 | return []
|
|---|
| 109 | outmask = []
|
|---|
| 110 | self._plotter.subplot(panel)
|
|---|
| 111 | xmin, xmax = self._plotter.axes.get_xlim()
|
|---|
| 112 | marg = 0.05*(xmax-xmin)
|
|---|
| 113 | self._plotter.axes.set_xlim(xmin-marg, xmax+marg)
|
|---|
| 114 | self.refresh()
|
|---|
| 115 |
|
|---|
| 116 | def cleanup(lines=False, texts=False, refresh=False):
|
|---|
| 117 | if lines:
|
|---|
| 118 | del self._plotter.axes.lines[-1]
|
|---|
| 119 | if texts:
|
|---|
| 120 | del self._plotter.axes.texts[-1]
|
|---|
| 121 | if refresh:
|
|---|
| 122 | self.refresh()
|
|---|
| 123 |
|
|---|
| 124 | for w in xrange(nwin):
|
|---|
| 125 | wpos = []
|
|---|
| 126 | self.text(0.05,1.0, "Add start boundary",
|
|---|
| 127 | coords="relative", fontsize=10)
|
|---|
| 128 | point = self._plotter.get_point()
|
|---|
| 129 | cleanup(texts=True)
|
|---|
| 130 | if point is None:
|
|---|
| 131 | continue
|
|---|
| 132 | wpos.append(point[0])
|
|---|
| 133 | self.axvline(wpos[0], color=color)
|
|---|
| 134 | self.text(0.05,1.0, "Add end boundary", coords="relative", fontsize=10)
|
|---|
| 135 | point = self._plotter.get_point()
|
|---|
| 136 | cleanup(texts=True, lines=True)
|
|---|
| 137 | if point is None:
|
|---|
| 138 | self.refresh()
|
|---|
| 139 | continue
|
|---|
| 140 | wpos.append(point[0])
|
|---|
| 141 | self.axvspan(wpos[0], wpos[1], alpha=0.1,
|
|---|
| 142 | edgecolor=color, facecolor=color)
|
|---|
| 143 | ymin, ymax = self._plotter.axes.get_ylim()
|
|---|
| 144 | outmask.append(wpos)
|
|---|
| 145 |
|
|---|
| 146 | self._plotter.axes.set_xlim(xmin, xmax)
|
|---|
| 147 | self.refresh()
|
|---|
| 148 | if len(outmask) > 0:
|
|---|
| 149 | return self._data.create_mask(*outmask)
|
|---|
| 150 | return []
|
|---|
| 151 |
|
|---|
| 152 | # forwards to matplotlib axes
|
|---|
| 153 | def text(self, *args, **kwargs):
|
|---|
| 154 | if kwargs.has_key("interactive"):
|
|---|
| 155 | if kwargs.pop("interactive"):
|
|---|
| 156 | pos = self._plotter.get_point()
|
|---|
| 157 | args = tuple(pos)+args
|
|---|
| 158 | self._axes_callback("text", *args, **kwargs)
|
|---|
| 159 |
|
|---|
| 160 | text.__doc__ = matplotlib.axes.Axes.text.__doc__
|
|---|
| 161 | def arrow(self, *args, **kwargs):
|
|---|
| 162 | if kwargs.has_key("interactive"):
|
|---|
| 163 | if kwargs.pop("interactive"):
|
|---|
| 164 | pos = self._plotter.get_region()
|
|---|
| 165 | dpos = (pos[0][0], pos[0][1],
|
|---|
| 166 | pos[1][0]-pos[0][0],
|
|---|
| 167 | pos[1][1] - pos[0][1])
|
|---|
| 168 | args = dpos + args
|
|---|
| 169 | self._axes_callback("arrow", *args, **kwargs)
|
|---|
| 170 |
|
|---|
| 171 | arrow.__doc__ = matplotlib.axes.Axes.arrow.__doc__
|
|---|
| 172 | def axvline(self, *args, **kwargs):
|
|---|
| 173 | if kwargs.has_key("interactive"):
|
|---|
| 174 | if kwargs.pop("interactive"):
|
|---|
| 175 | pos = self._plotter.get_point()
|
|---|
| 176 | args = (pos[0],)+args
|
|---|
| 177 | self._axes_callback("axvline", *args, **kwargs)
|
|---|
| 178 | axvline.__doc__ = matplotlib.axes.Axes.axvline.__doc__
|
|---|
| 179 |
|
|---|
| 180 | def axhline(self, *args, **kwargs):
|
|---|
| 181 | if kwargs.has_key("interactive"):
|
|---|
| 182 | if kwargs.pop("interactive"):
|
|---|
| 183 | pos = self._plotter.get_point()
|
|---|
| 184 | args = (pos[1],)+args
|
|---|
| 185 | self._axes_callback("axhline", *args, **kwargs)
|
|---|
| 186 | axhline.__doc__ = matplotlib.axes.Axes.axhline.__doc__
|
|---|
| 187 |
|
|---|
| 188 | def axvspan(self, *args, **kwargs):
|
|---|
| 189 | if kwargs.has_key("interactive"):
|
|---|
| 190 | if kwargs.pop("interactive"):
|
|---|
| 191 | pos = self._plotter.get_region()
|
|---|
| 192 | dpos = (pos[0][0], pos[1][0])
|
|---|
| 193 | args = dpos + args
|
|---|
| 194 | self._axes_callback("axvspan", *args, **kwargs)
|
|---|
| 195 | # hack to preventy mpl from redrawing the patch
|
|---|
| 196 | # it seem to convert the patch into lines on every draw.
|
|---|
| 197 | # This doesn't happen in a test script???
|
|---|
| 198 | #del self._plotter.axes.patches[-1]
|
|---|
| 199 |
|
|---|
| 200 | axvspan.__doc__ = matplotlib.axes.Axes.axvspan.__doc__
|
|---|
| 201 |
|
|---|
| 202 | def axhspan(self, *args, **kwargs):
|
|---|
| 203 | if kwargs.has_key("interactive"):
|
|---|
| 204 | if kwargs.pop("interactive"):
|
|---|
| 205 | pos = self._plotter.get_region()
|
|---|
| 206 | dpos = (pos[0][1], pos[1][1])
|
|---|
| 207 | args = dpos + args
|
|---|
| 208 |
|
|---|
| 209 | self._axes_callback("axhspan", *args, **kwargs)
|
|---|
| 210 | # hack to preventy mpl from redrawing the patch
|
|---|
| 211 | # it seem to convert the patch into lines on every draw.
|
|---|
| 212 | # This doesn't happen in a test script???
|
|---|
| 213 | #del self._plotter.axes.patches[-1]
|
|---|
| 214 | axhspan.__doc__ = matplotlib.axes.Axes.axhspan.__doc__
|
|---|
| 215 |
|
|---|
| 216 | def _axes_callback(self, axesfunc, *args, **kwargs):
|
|---|
| 217 | panel = 0
|
|---|
| 218 | if kwargs.has_key("panel"):
|
|---|
| 219 | panel = kwargs.pop("panel")
|
|---|
| 220 | coords = None
|
|---|
| 221 | if kwargs.has_key("coords"):
|
|---|
| 222 | coords = kwargs.pop("coords")
|
|---|
| 223 | if coords.lower() == 'world':
|
|---|
| 224 | kwargs["transform"] = self._plotter.axes.transData
|
|---|
| 225 | elif coords.lower() == 'relative':
|
|---|
| 226 | kwargs["transform"] = self._plotter.axes.transAxes
|
|---|
| 227 | self._plotter.subplot(panel)
|
|---|
| 228 | self._plotter.axes.set_autoscale_on(False)
|
|---|
| 229 | getattr(self._plotter.axes, axesfunc)(*args, **kwargs)
|
|---|
| 230 | self._plotter.show(False)
|
|---|
| 231 | self._plotter.axes.set_autoscale_on(True)
|
|---|
| 232 | # end matplotlib.axes fowarding functions
|
|---|
| 233 |
|
|---|
| 234 |
|
|---|
| 235 | def set_mode(self, stacking=None, panelling=None):
|
|---|
| 236 | """
|
|---|
| 237 | Set the plots look and feel, i.e. what you want to see on the plot.
|
|---|
| 238 | Parameters:
|
|---|
| 239 | stacking: tell the plotter which variable to plot
|
|---|
| 240 | as line colour overlays (default 'pol')
|
|---|
| 241 | panelling: tell the plotter which variable to plot
|
|---|
| 242 | across multiple panels (default 'scan'
|
|---|
| 243 | Note:
|
|---|
| 244 | Valid modes are:
|
|---|
| 245 | 'beam' 'Beam' 'b': Beams
|
|---|
| 246 | 'if' 'IF' 'i': IFs
|
|---|
| 247 | 'pol' 'Pol' 'p': Polarisations
|
|---|
| 248 | 'scan' 'Scan' 's': Scans
|
|---|
| 249 | 'time' 'Time' 't': Times
|
|---|
| 250 | """
|
|---|
| 251 | msg = "Invalid mode"
|
|---|
| 252 | if not self.set_panelling(panelling) or \
|
|---|
| 253 | not self.set_stacking(stacking):
|
|---|
| 254 | if rcParams['verbose']:
|
|---|
| 255 | print msg
|
|---|
| 256 | return
|
|---|
| 257 | else:
|
|---|
| 258 | raise TypeError(msg)
|
|---|
| 259 | if self._data: self.plot(self._data)
|
|---|
| 260 | return
|
|---|
| 261 |
|
|---|
| 262 | def set_panelling(self, what=None):
|
|---|
| 263 | mode = what
|
|---|
| 264 | if mode is None:
|
|---|
| 265 | mode = rcParams['plotter.panelling']
|
|---|
| 266 | md = self._translate(mode)
|
|---|
| 267 | if md:
|
|---|
| 268 | self._panelling = md
|
|---|
| 269 | self._title = None
|
|---|
| 270 | return True
|
|---|
| 271 | return False
|
|---|
| 272 |
|
|---|
| 273 | def set_layout(self,rows=None,cols=None):
|
|---|
| 274 | """
|
|---|
| 275 | Set the multi-panel layout, i.e. how many rows and columns plots
|
|---|
| 276 | are visible.
|
|---|
| 277 | Parameters:
|
|---|
| 278 | rows: The number of rows of plots
|
|---|
| 279 | cols: The number of columns of plots
|
|---|
| 280 | Note:
|
|---|
| 281 | If no argument is given, the potter reverts to its auto-plot
|
|---|
| 282 | behaviour.
|
|---|
| 283 | """
|
|---|
| 284 | self._rows = rows
|
|---|
| 285 | self._cols = cols
|
|---|
| 286 | if self._data: self.plot(self._data)
|
|---|
| 287 | return
|
|---|
| 288 |
|
|---|
| 289 | def set_stacking(self, what=None):
|
|---|
| 290 | mode = what
|
|---|
| 291 | if mode is None:
|
|---|
| 292 | mode = rcParams['plotter.stacking']
|
|---|
| 293 | md = self._translate(mode)
|
|---|
| 294 | if md:
|
|---|
| 295 | self._stacking = md
|
|---|
| 296 | self._lmap = None
|
|---|
| 297 | return True
|
|---|
| 298 | return False
|
|---|
| 299 |
|
|---|
| 300 | def set_range(self,xstart=None,xend=None,ystart=None,yend=None):
|
|---|
| 301 | """
|
|---|
| 302 | Set the range of interest on the abcissa of the plot
|
|---|
| 303 | Parameters:
|
|---|
| 304 | [x,y]start,[x,y]end: The start and end points of the 'zoom' window
|
|---|
| 305 | Note:
|
|---|
| 306 | These become non-sensical when the unit changes.
|
|---|
| 307 | use plotter.set_range() without parameters to reset
|
|---|
| 308 |
|
|---|
| 309 | """
|
|---|
| 310 | if xstart is None and xend is None:
|
|---|
| 311 | self._minmaxx = None
|
|---|
| 312 | else:
|
|---|
| 313 | self._minmaxx = [xstart,xend]
|
|---|
| 314 | if ystart is None and yend is None:
|
|---|
| 315 | self._minmaxy = None
|
|---|
| 316 | else:
|
|---|
| 317 | self._minmaxy = [ystart,yend]
|
|---|
| 318 | if self._data: self.plot(self._data)
|
|---|
| 319 | return
|
|---|
| 320 |
|
|---|
| 321 | def set_legend(self, mp=None, fontsize = None, mode = 0):
|
|---|
| 322 | """
|
|---|
| 323 | Specify a mapping for the legend instead of using the default
|
|---|
| 324 | indices:
|
|---|
| 325 | Parameters:
|
|---|
| 326 | mp: a list of 'strings'. This should have the same length
|
|---|
| 327 | as the number of elements on the legend and then maps
|
|---|
| 328 | to the indeces in order. It is possible to uses latex
|
|---|
| 329 | math expression. These have to be enclosed in r'',
|
|---|
| 330 | e.g. r'$x^{2}$'
|
|---|
| 331 | fontsize: The font size of the label (default None)
|
|---|
| 332 | mode: where to display the legend
|
|---|
| 333 | Any other value for loc else disables the legend:
|
|---|
| 334 | 0: auto
|
|---|
| 335 | 1: upper right
|
|---|
| 336 | 2: upper left
|
|---|
| 337 | 3: lower left
|
|---|
| 338 | 4: lower right
|
|---|
| 339 | 5: right
|
|---|
| 340 | 6: center left
|
|---|
| 341 | 7: center right
|
|---|
| 342 | 8: lower center
|
|---|
| 343 | 9: upper center
|
|---|
| 344 | 10: center
|
|---|
| 345 |
|
|---|
| 346 | Example:
|
|---|
| 347 | If the data has two IFs/rest frequencies with index 0 and 1
|
|---|
| 348 | for CO and SiO:
|
|---|
| 349 | plotter.set_stacking('i')
|
|---|
| 350 | plotter.set_legend(['CO','SiO'])
|
|---|
| 351 | plotter.plot()
|
|---|
| 352 | plotter.set_legend([r'$^{12}CO$', r'SiO'])
|
|---|
| 353 | """
|
|---|
| 354 | self._lmap = mp
|
|---|
| 355 | self._plotter.legend(mode)
|
|---|
| 356 | if isinstance(fontsize, int):
|
|---|
| 357 | from matplotlib import rc as rcp
|
|---|
| 358 | rcp('legend', fontsize=fontsize)
|
|---|
| 359 | if self._data:
|
|---|
| 360 | self.plot(self._data)
|
|---|
| 361 | return
|
|---|
| 362 |
|
|---|
| 363 | def set_title(self, title=None, fontsize=None):
|
|---|
| 364 | """
|
|---|
| 365 | Set the title of the plot. If multiple panels are plotted,
|
|---|
| 366 | multiple titles have to be specified.
|
|---|
| 367 | Example:
|
|---|
| 368 | # two panels are visible on the plotter
|
|---|
| 369 | plotter.set_title(["First Panel","Second Panel"])
|
|---|
| 370 | """
|
|---|
| 371 | self._title = title
|
|---|
| 372 | if isinstance(fontsize, int):
|
|---|
| 373 | from matplotlib import rc as rcp
|
|---|
| 374 | rcp('axes', titlesize=fontsize)
|
|---|
| 375 | if self._data: self.plot(self._data)
|
|---|
| 376 | return
|
|---|
| 377 |
|
|---|
| 378 | def set_ordinate(self, ordinate=None, fontsize=None):
|
|---|
| 379 | """
|
|---|
| 380 | Set the y-axis label of the plot. If multiple panels are plotted,
|
|---|
| 381 | multiple labels have to be specified.
|
|---|
| 382 | Parameters:
|
|---|
| 383 | ordinate: a list of ordinate labels. None (default) let
|
|---|
| 384 | data determine the labels
|
|---|
| 385 | Example:
|
|---|
| 386 | # two panels are visible on the plotter
|
|---|
| 387 | plotter.set_ordinate(["First Y-Axis","Second Y-Axis"])
|
|---|
| 388 | """
|
|---|
| 389 | self._ordinate = ordinate
|
|---|
| 390 | if isinstance(fontsize, int):
|
|---|
| 391 | from matplotlib import rc as rcp
|
|---|
| 392 | rcp('axes', labelsize=fontsize)
|
|---|
| 393 | rcp('ytick', labelsize=fontsize)
|
|---|
| 394 | if self._data: self.plot(self._data)
|
|---|
| 395 | return
|
|---|
| 396 |
|
|---|
| 397 | def set_abcissa(self, abcissa=None, fontsize=None):
|
|---|
| 398 | """
|
|---|
| 399 | Set the x-axis label of the plot. If multiple panels are plotted,
|
|---|
| 400 | multiple labels have to be specified.
|
|---|
| 401 | Parameters:
|
|---|
| 402 | abcissa: a list of abcissa labels. None (default) let
|
|---|
| 403 | data determine the labels
|
|---|
| 404 | Example:
|
|---|
| 405 | # two panels are visible on the plotter
|
|---|
| 406 | plotter.set_ordinate(["First X-Axis","Second X-Axis"])
|
|---|
| 407 | """
|
|---|
| 408 | self._abcissa = abcissa
|
|---|
| 409 | if isinstance(fontsize, int):
|
|---|
| 410 | from matplotlib import rc as rcp
|
|---|
| 411 | rcp('axes', labelsize=fontsize)
|
|---|
| 412 | rcp('xtick', labelsize=fontsize)
|
|---|
| 413 | if self._data: self.plot(self._data)
|
|---|
| 414 | return
|
|---|
| 415 |
|
|---|
| 416 | def set_colors(self, colmap):
|
|---|
| 417 | """
|
|---|
| 418 | Set the colours to be used. The plotter will cycle through
|
|---|
| 419 | these colours when lines are overlaid (stacking mode).
|
|---|
| 420 | Parameters:
|
|---|
| 421 | colmap: a list of colour names
|
|---|
| 422 | Example:
|
|---|
| 423 | plotter.set_colors("red green blue")
|
|---|
| 424 | # If for example four lines are overlaid e.g I Q U V
|
|---|
| 425 | # 'I' will be 'red', 'Q' will be 'green', U will be 'blue'
|
|---|
| 426 | # and 'V' will be 'red' again.
|
|---|
| 427 | """
|
|---|
| 428 | if isinstance(colmap,str):
|
|---|
| 429 | colmap = colmap.split()
|
|---|
| 430 | self._plotter.palette(0, colormap=colmap)
|
|---|
| 431 | if self._data: self.plot(self._data)
|
|---|
| 432 |
|
|---|
| 433 | # alias for english speakers
|
|---|
| 434 | set_colours = set_colors
|
|---|
| 435 |
|
|---|
| 436 | def set_histogram(self, hist=True, linewidth=None):
|
|---|
| 437 | """
|
|---|
| 438 | Enable/Disable histogram-like plotting.
|
|---|
| 439 | Parameters:
|
|---|
| 440 | hist: True (default) or False. The fisrt default
|
|---|
| 441 | is taken from the .asaprc setting
|
|---|
| 442 | plotter.histogram
|
|---|
| 443 | """
|
|---|
| 444 | self._hist = hist
|
|---|
| 445 | if isinstance(linewidth, float) or isinstance(linewidth, int):
|
|---|
| 446 | from matplotlib import rc as rcp
|
|---|
| 447 | rcp('lines', linewidth=linewidth)
|
|---|
| 448 | if self._data: self.plot(self._data)
|
|---|
| 449 |
|
|---|
| 450 | def set_linestyles(self, linestyles=None, linewidth=None):
|
|---|
| 451 | """
|
|---|
| 452 | Set the linestyles to be used. The plotter will cycle through
|
|---|
| 453 | these linestyles when lines are overlaid (stacking mode) AND
|
|---|
| 454 | only one color has been set.
|
|---|
| 455 | Parameters:
|
|---|
| 456 | linestyles: a list of linestyles to use.
|
|---|
| 457 | 'line', 'dashed', 'dotted', 'dashdot',
|
|---|
| 458 | 'dashdotdot' and 'dashdashdot' are
|
|---|
| 459 | possible
|
|---|
| 460 |
|
|---|
| 461 | Example:
|
|---|
| 462 | plotter.set_colors("black")
|
|---|
| 463 | plotter.set_linestyles("line dashed dotted dashdot")
|
|---|
| 464 | # If for example four lines are overlaid e.g I Q U V
|
|---|
| 465 | # 'I' will be 'solid', 'Q' will be 'dashed',
|
|---|
| 466 | # U will be 'dotted' and 'V' will be 'dashdot'.
|
|---|
| 467 | """
|
|---|
| 468 | if isinstance(linestyles,str):
|
|---|
| 469 | linestyles = linestyles.split()
|
|---|
| 470 | self._plotter.palette(color=0,linestyle=0,linestyles=linestyles)
|
|---|
| 471 | if isinstance(linewidth, float) or isinstance(linewidth, int):
|
|---|
| 472 | from matplotlib import rc as rcp
|
|---|
| 473 | rcp('lines', linewidth=linewidth)
|
|---|
| 474 | if self._data: self.plot(self._data)
|
|---|
| 475 |
|
|---|
| 476 | def set_font(self, **kwargs):
|
|---|
| 477 | """
|
|---|
| 478 | Set font properties.
|
|---|
| 479 | Parameters:
|
|---|
| 480 | family: one of 'sans-serif', 'serif', 'cursive', 'fantasy', 'monospace'
|
|---|
| 481 | style: one of 'normal' (or 'roman'), 'italic' or 'oblique'
|
|---|
| 482 | weight: one of 'normal or 'bold'
|
|---|
| 483 | size: the 'general' font size, individual elements can be adjusted
|
|---|
| 484 | seperately
|
|---|
| 485 | """
|
|---|
| 486 | from matplotlib import rc as rcp
|
|---|
| 487 | fdict = {}
|
|---|
| 488 | for k,v in kwargs.iteritems():
|
|---|
| 489 | if v:
|
|---|
| 490 | fdict[k] = v
|
|---|
| 491 | rcp('font', **fdict)
|
|---|
| 492 | if self._data:
|
|---|
| 493 | self.plot(self._data)
|
|---|
| 494 |
|
|---|
| 495 | def plot_lines(self, linecat=None, doppler=0.0, deltachan=10, rotate=90.0,
|
|---|
| 496 | location=None):
|
|---|
| 497 | """
|
|---|
| 498 | Plot a line catalog.
|
|---|
| 499 | Parameters:
|
|---|
| 500 | linecat: the linecatalog to plot
|
|---|
| 501 | doppler: the velocity shift to apply to the frequencies
|
|---|
| 502 | deltachan: the number of channels to include each side of the
|
|---|
| 503 | line to determine a local maximum/minimum
|
|---|
| 504 | rotate: the rotation (in degrees) )for the text label (default 90.0)
|
|---|
| 505 | location: the location of the line annotation from the 'top',
|
|---|
| 506 | 'bottom' or alternate (None - the default)
|
|---|
| 507 | Notes:
|
|---|
| 508 | If the spectrum is flagged no line will be drawn in that location.
|
|---|
| 509 | """
|
|---|
| 510 | if not self._data:
|
|---|
| 511 | raise RuntimeError("No scantable has been plotted yet.")
|
|---|
| 512 | from asap._asap import linecatalog
|
|---|
| 513 | if not isinstance(linecat, linecatalog):
|
|---|
| 514 | raise ValueError("'linecat' isn't of type linecatalog.")
|
|---|
| 515 | if not self._data.get_unit().endswith("Hz"):
|
|---|
| 516 | raise RuntimeError("Can only overlay linecatalogs when data is in frequency.")
|
|---|
| 517 | from matplotlib.numerix import ma
|
|---|
| 518 | for j in range(len(self._plotter.subplots)):
|
|---|
| 519 | self._plotter.subplot(j)
|
|---|
| 520 | lims = self._plotter.axes.get_xlim()
|
|---|
| 521 | for row in range(linecat.nrow()):
|
|---|
| 522 | # get_frequency returns MHz
|
|---|
| 523 | base = { "GHz": 1000.0, "MHz": 1.0, "Hz": 1.0e-6 }
|
|---|
| 524 | restf = linecat.get_frequency(row)/base[self._data.get_unit()]
|
|---|
| 525 | c = 299792.458
|
|---|
| 526 | freq = restf*(1.0-doppler/c)
|
|---|
| 527 | if lims[0] < freq < lims[1]:
|
|---|
| 528 | if location is None:
|
|---|
| 529 | loc = 'bottom'
|
|---|
| 530 | if row%2: loc='top'
|
|---|
| 531 | else: loc = location
|
|---|
| 532 | maxys = []
|
|---|
| 533 | for line in self._plotter.axes.lines:
|
|---|
| 534 | v = line._x
|
|---|
| 535 | asc = v[0] < v[-1]
|
|---|
| 536 |
|
|---|
| 537 | idx = None
|
|---|
| 538 | if not asc:
|
|---|
| 539 | if v[len(v)-1] <= freq <= v[0]:
|
|---|
| 540 | i = len(v)-1
|
|---|
| 541 | while i>=0 and v[i] < freq:
|
|---|
| 542 | idx = i
|
|---|
| 543 | i-=1
|
|---|
| 544 | else:
|
|---|
| 545 | if v[0] <= freq <= v[len(v)-1]:
|
|---|
| 546 | i = 0
|
|---|
| 547 | while i<len(v) and v[i] < freq:
|
|---|
| 548 | idx = i
|
|---|
| 549 | i+=1
|
|---|
| 550 | if idx is not None:
|
|---|
| 551 | lower = idx - deltachan
|
|---|
| 552 | upper = idx + deltachan
|
|---|
| 553 | if lower < 0: lower = 0
|
|---|
| 554 | if upper > len(v): upper = len(v)
|
|---|
| 555 | s = slice(lower, upper)
|
|---|
| 556 | y = line._y[s]
|
|---|
| 557 | maxy = ma.maximum(y)
|
|---|
| 558 | if isinstance( maxy, float):
|
|---|
| 559 | maxys.append(maxy)
|
|---|
| 560 | if len(maxys):
|
|---|
| 561 | peak = max(maxys)
|
|---|
| 562 | if peak > self._plotter.axes.get_ylim()[1]:
|
|---|
| 563 | loc = 'bottom'
|
|---|
| 564 | else:
|
|---|
| 565 | continue
|
|---|
| 566 | self._plotter.vline_with_label(freq, peak,
|
|---|
| 567 | linecat.get_name(row),
|
|---|
| 568 | location=loc, rotate=rotate)
|
|---|
| 569 | self._plotter.show(hardrefresh=False)
|
|---|
| 570 |
|
|---|
| 571 |
|
|---|
| 572 | def save(self, filename=None, orientation=None, dpi=None):
|
|---|
| 573 | """
|
|---|
| 574 | Save the plot to a file. The know formats are 'png', 'ps', 'eps'.
|
|---|
| 575 | Parameters:
|
|---|
| 576 | filename: The name of the output file. This is optional
|
|---|
| 577 | and autodetects the image format from the file
|
|---|
| 578 | suffix. If non filename is specified a file
|
|---|
| 579 | called 'yyyymmdd_hhmmss.png' is created in the
|
|---|
| 580 | current directory.
|
|---|
| 581 | orientation: optional parameter for postscript only (not eps).
|
|---|
| 582 | 'landscape', 'portrait' or None (default) are valid.
|
|---|
| 583 | If None is choosen for 'ps' output, the plot is
|
|---|
| 584 | automatically oriented to fill the page.
|
|---|
| 585 | dpi: The dpi of the output non-ps plot
|
|---|
| 586 | """
|
|---|
| 587 | self._plotter.save(filename,orientation,dpi)
|
|---|
| 588 | return
|
|---|
| 589 |
|
|---|
| 590 |
|
|---|
| 591 | def set_mask(self, mask=None, selection=None):
|
|---|
| 592 | """
|
|---|
| 593 | Set a plotting mask for a specific polarization.
|
|---|
| 594 | This is useful for masking out "noise" Pangle outside a source.
|
|---|
| 595 | Parameters:
|
|---|
| 596 | mask: a mask from scantable.create_mask
|
|---|
| 597 | selection: the spectra to apply the mask to.
|
|---|
| 598 | Example:
|
|---|
| 599 | select = selector()
|
|---|
| 600 | select.setpolstrings("Pangle")
|
|---|
| 601 | plotter.set_mask(mymask, select)
|
|---|
| 602 | """
|
|---|
| 603 | if not self._data:
|
|---|
| 604 | msg = "Can only set mask after a first call to plot()"
|
|---|
| 605 | if rcParams['verbose']:
|
|---|
| 606 | print msg
|
|---|
| 607 | return
|
|---|
| 608 | else:
|
|---|
| 609 | raise RuntimeError(msg)
|
|---|
| 610 | if len(mask):
|
|---|
| 611 | if isinstance(mask, list) or isinstance(mask, tuple):
|
|---|
| 612 | self._usermask = array(mask)
|
|---|
| 613 | else:
|
|---|
| 614 | self._usermask = mask
|
|---|
| 615 | if mask is None and selection is None:
|
|---|
| 616 | self._usermask = []
|
|---|
| 617 | self._maskselection = None
|
|---|
| 618 | if isinstance(selection, selector):
|
|---|
| 619 | self._maskselection = {'b': selection.get_beams(),
|
|---|
| 620 | 's': selection.get_scans(),
|
|---|
| 621 | 'i': selection.get_ifs(),
|
|---|
| 622 | 'p': selection.get_pols(),
|
|---|
| 623 | 't': [] }
|
|---|
| 624 | else:
|
|---|
| 625 | self._maskselection = None
|
|---|
| 626 | self.plot(self._data)
|
|---|
| 627 |
|
|---|
| 628 | def _slice_indeces(self, data):
|
|---|
| 629 | mn = self._minmaxx[0]
|
|---|
| 630 | mx = self._minmaxx[1]
|
|---|
| 631 | asc = data[0] < data[-1]
|
|---|
| 632 | start=0
|
|---|
| 633 | end = len(data)-1
|
|---|
| 634 | inc = 1
|
|---|
| 635 | if not asc:
|
|---|
| 636 | start = len(data)-1
|
|---|
| 637 | end = 0
|
|---|
| 638 | inc = -1
|
|---|
| 639 | # find min index
|
|---|
| 640 | while start > 0 and data[start] < mn:
|
|---|
| 641 | start+= inc
|
|---|
| 642 | # find max index
|
|---|
| 643 | while end > 0 and data[end] > mx:
|
|---|
| 644 | end-=inc
|
|---|
| 645 | if end > 0: end +=1
|
|---|
| 646 | if start > end:
|
|---|
| 647 | return end,start
|
|---|
| 648 | return start,end
|
|---|
| 649 |
|
|---|
| 650 | def _reset(self):
|
|---|
| 651 | self._usermask = []
|
|---|
| 652 | self._usermaskspectra = None
|
|---|
| 653 | self.set_selection(None, False)
|
|---|
| 654 |
|
|---|
| 655 | def _plot(self, scan):
|
|---|
| 656 | savesel = scan.get_selection()
|
|---|
| 657 | sel = savesel + self._selection
|
|---|
| 658 | d0 = {'s': 'SCANNO', 'b': 'BEAMNO', 'i':'IFNO',
|
|---|
| 659 | 'p': 'POLNO', 'c': 'CYCLENO', 't' : 'TIME' }
|
|---|
| 660 | order = [d0[self._panelling],d0[self._stacking]]
|
|---|
| 661 | sel.set_order(order)
|
|---|
| 662 | scan.set_selection(sel)
|
|---|
| 663 | d = {'b': scan.getbeam, 's': scan.getscan,
|
|---|
| 664 | 'i': scan.getif, 'p': scan.getpol, 't': scan._gettime }
|
|---|
| 665 |
|
|---|
| 666 | polmodes = dict(zip(self._selection.get_pols(),
|
|---|
| 667 | self._selection.get_poltypes()))
|
|---|
| 668 | # this returns either a tuple of numbers or a length (ncycles)
|
|---|
| 669 | # convert this into lengths
|
|---|
| 670 | n0,nstack0 = self._get_selected_n(scan)
|
|---|
| 671 | if isinstance(n0, int): n = n0
|
|---|
| 672 | else: n = len(n0)
|
|---|
| 673 | if isinstance(nstack0, int): nstack = nstack0
|
|---|
| 674 | else: nstack = len(nstack0)
|
|---|
| 675 | maxpanel, maxstack = 16,8
|
|---|
| 676 | if n > maxpanel or nstack > maxstack:
|
|---|
| 677 | from asap import asaplog
|
|---|
| 678 | maxn = 0
|
|---|
| 679 | if nstack > maxstack: maxn = maxstack
|
|---|
| 680 | if n > maxpanel: maxn = maxpanel
|
|---|
| 681 | msg ="Scan to be plotted contains more than %d selections.\n" \
|
|---|
| 682 | "Selecting first %d selections..." % (maxn, maxn)
|
|---|
| 683 | asaplog.push(msg)
|
|---|
| 684 | print_log()
|
|---|
| 685 | n = min(n,maxpanel)
|
|---|
| 686 | nstack = min(nstack,maxstack)
|
|---|
| 687 | if n > 1:
|
|---|
| 688 | ganged = rcParams['plotter.ganged']
|
|---|
| 689 | if self._rows and self._cols:
|
|---|
| 690 | n = min(n,self._rows*self._cols)
|
|---|
| 691 | self._plotter.set_panels(rows=self._rows,cols=self._cols,
|
|---|
| 692 | nplots=n,ganged=ganged)
|
|---|
| 693 | else:
|
|---|
| 694 | self._plotter.set_panels(rows=n,cols=0,nplots=n,ganged=ganged)
|
|---|
| 695 | else:
|
|---|
| 696 | self._plotter.set_panels()
|
|---|
| 697 | r=0
|
|---|
| 698 | nr = scan.nrow()
|
|---|
| 699 | a0,b0 = -1,-1
|
|---|
| 700 | allxlim = []
|
|---|
| 701 | allylim = []
|
|---|
| 702 | newpanel=True
|
|---|
| 703 | panelcount,stackcount = 0,0
|
|---|
| 704 | while r < nr:
|
|---|
| 705 | a = d[self._panelling](r)
|
|---|
| 706 | b = d[self._stacking](r)
|
|---|
| 707 | if a > a0 and panelcount < n:
|
|---|
| 708 | if n > 1:
|
|---|
| 709 | self._plotter.subplot(panelcount)
|
|---|
| 710 | self._plotter.palette(0)
|
|---|
| 711 | #title
|
|---|
| 712 | xlab = self._abcissa and self._abcissa[panelcount] \
|
|---|
| 713 | or scan._getabcissalabel()
|
|---|
| 714 | ylab = self._ordinate and self._ordinate[panelcount] \
|
|---|
| 715 | or scan._get_ordinate_label()
|
|---|
| 716 | self._plotter.set_axes('xlabel', xlab)
|
|---|
| 717 | self._plotter.set_axes('ylabel', ylab)
|
|---|
| 718 | lbl = self._get_label(scan, r, self._panelling, self._title)
|
|---|
| 719 | if isinstance(lbl, list) or isinstance(lbl, tuple):
|
|---|
| 720 | if 0 <= panelcount < len(lbl):
|
|---|
| 721 | lbl = lbl[panelcount]
|
|---|
| 722 | else:
|
|---|
| 723 | # get default label
|
|---|
| 724 | lbl = self._get_label(scan, r, self._panelling, None)
|
|---|
| 725 | self._plotter.set_axes('title',lbl)
|
|---|
| 726 | newpanel = True
|
|---|
| 727 | stackcount =0
|
|---|
| 728 | panelcount += 1
|
|---|
| 729 | if (b > b0 or newpanel) and stackcount < nstack:
|
|---|
| 730 | y = []
|
|---|
| 731 | if len(polmodes):
|
|---|
| 732 | y = scan._getspectrum(r, polmodes[scan.getpol(r)])
|
|---|
| 733 | else:
|
|---|
| 734 | y = scan._getspectrum(r)
|
|---|
| 735 | m = scan._getmask(r)
|
|---|
| 736 | from matplotlib.numerix import logical_not, logical_and
|
|---|
| 737 | if self._maskselection and len(self._usermask) == len(m):
|
|---|
| 738 | if d[self._stacking](r) in self._maskselection[self._stacking]:
|
|---|
| 739 | m = logical_and(m, self._usermask)
|
|---|
| 740 | x = scan._getabcissa(r)
|
|---|
| 741 | from matplotlib.numerix import ma, array
|
|---|
| 742 | y = ma.masked_array(y,mask=logical_not(array(m,copy=False)))
|
|---|
| 743 | if self._minmaxx is not None:
|
|---|
| 744 | s,e = self._slice_indeces(x)
|
|---|
| 745 | x = x[s:e]
|
|---|
| 746 | y = y[s:e]
|
|---|
| 747 | if len(x) > 1024 and rcParams['plotter.decimate']:
|
|---|
| 748 | fac = len(x)/1024
|
|---|
| 749 | x = x[::fac]
|
|---|
| 750 | y = y[::fac]
|
|---|
| 751 | llbl = self._get_label(scan, r, self._stacking, self._lmap)
|
|---|
| 752 | if isinstance(llbl, list) or isinstance(llbl, tuple):
|
|---|
| 753 | if 0 <= stackcount < len(llbl):
|
|---|
| 754 | # use user label
|
|---|
| 755 | llbl = llbl[stackcount]
|
|---|
| 756 | else:
|
|---|
| 757 | # get default label
|
|---|
| 758 | llbl = self._get_label(scan, r, self._stacking, None)
|
|---|
| 759 | self._plotter.set_line(label=llbl)
|
|---|
| 760 | plotit = self._plotter.plot
|
|---|
| 761 | if self._hist: plotit = self._plotter.hist
|
|---|
| 762 | if len(x) > 0:
|
|---|
| 763 | plotit(x,y)
|
|---|
| 764 | xlim= self._minmaxx or [min(x),max(x)]
|
|---|
| 765 | allxlim += xlim
|
|---|
| 766 | ylim= self._minmaxy or [ma.minimum(y),ma.maximum(y)]
|
|---|
| 767 | allylim += ylim
|
|---|
| 768 | stackcount += 1
|
|---|
| 769 | # last in colour stack -> autoscale x
|
|---|
| 770 | if stackcount == nstack:
|
|---|
| 771 | allxlim.sort()
|
|---|
| 772 | self._plotter.axes.set_xlim([allxlim[0],allxlim[-1]])
|
|---|
| 773 | # clear
|
|---|
| 774 | allxlim =[]
|
|---|
| 775 |
|
|---|
| 776 | newpanel = False
|
|---|
| 777 | a0=a
|
|---|
| 778 | b0=b
|
|---|
| 779 | # ignore following rows
|
|---|
| 780 | if (panelcount == n) and (stackcount == nstack):
|
|---|
| 781 | # last panel -> autoscale y if ganged
|
|---|
| 782 | if rcParams['plotter.ganged']:
|
|---|
| 783 | allylim.sort()
|
|---|
| 784 | self._plotter.set_limits(ylim=[allylim[0],allylim[-1]])
|
|---|
| 785 | break
|
|---|
| 786 | r+=1 # next row
|
|---|
| 787 | #reset the selector to the scantable's original
|
|---|
| 788 | scan.set_selection(savesel)
|
|---|
| 789 |
|
|---|
| 790 | def set_selection(self, selection=None, refresh=True):
|
|---|
| 791 | self._selection = isinstance(selection,selector) and selection or selector()
|
|---|
| 792 | d0 = {'s': 'SCANNO', 'b': 'BEAMNO', 'i':'IFNO',
|
|---|
| 793 | 'p': 'POLNO', 'c': 'CYCLENO', 't' : 'TIME' }
|
|---|
| 794 | order = [d0[self._panelling],d0[self._stacking]]
|
|---|
| 795 | self._selection.set_order(order)
|
|---|
| 796 | if self._data and refresh: self.plot(self._data)
|
|---|
| 797 |
|
|---|
| 798 | def _get_selected_n(self, scan):
|
|---|
| 799 | d1 = {'b': scan.getbeamnos, 's': scan.getscannos,
|
|---|
| 800 | 'i': scan.getifnos, 'p': scan.getpolnos, 't': scan.ncycle }
|
|---|
| 801 | d2 = { 'b': self._selection.get_beams(),
|
|---|
| 802 | 's': self._selection.get_scans(),
|
|---|
| 803 | 'i': self._selection.get_ifs(),
|
|---|
| 804 | 'p': self._selection.get_pols(),
|
|---|
| 805 | 't': self._selection.get_cycles() }
|
|---|
| 806 | n = d2[self._panelling] or d1[self._panelling]()
|
|---|
| 807 | nstack = d2[self._stacking] or d1[self._stacking]()
|
|---|
| 808 | return n,nstack
|
|---|
| 809 |
|
|---|
| 810 | def _get_label(self, scan, row, mode, userlabel=None):
|
|---|
| 811 | if isinstance(userlabel, list) and len(userlabel) == 0:
|
|---|
| 812 | userlabel = " "
|
|---|
| 813 | pms = dict(zip(self._selection.get_pols(),self._selection.get_poltypes()))
|
|---|
| 814 | if len(pms):
|
|---|
| 815 | poleval = scan._getpollabel(scan.getpol(row),pms[scan.getpol(row)])
|
|---|
| 816 | else:
|
|---|
| 817 | poleval = scan._getpollabel(scan.getpol(row),scan.poltype())
|
|---|
| 818 | d = {'b': "Beam "+str(scan.getbeam(row)),
|
|---|
| 819 | 's': scan._getsourcename(row),
|
|---|
| 820 | 'i': "IF"+str(scan.getif(row)),
|
|---|
| 821 | 'p': poleval,
|
|---|
| 822 | 't': str(scan.get_time(row)) }
|
|---|
| 823 | return userlabel or d[mode]
|
|---|
| 824 |
|
|---|
| 825 | def plotazel(self, scan=None):
|
|---|
| 826 | """
|
|---|
| 827 | plot azimuth and elevation versus time of a scantable
|
|---|
| 828 | """
|
|---|
| 829 | import pylab as PL
|
|---|
| 830 | from matplotlib.dates import DateFormatter, timezone, HourLocator, MinuteLocator, DayLocator
|
|---|
| 831 | from matplotlib.ticker import MultipleLocator
|
|---|
| 832 | from matplotlib.numerix import array, pi
|
|---|
| 833 | self._data = scan
|
|---|
| 834 | dates = self._data.get_time()
|
|---|
| 835 | t = PL.date2num(dates)
|
|---|
| 836 | tz = timezone('UTC')
|
|---|
| 837 | PL.cla()
|
|---|
| 838 | PL.ioff()
|
|---|
| 839 | PL.clf()
|
|---|
| 840 | tdel = max(t) - min(t)
|
|---|
| 841 | ax = PL.subplot(2,1,1)
|
|---|
| 842 | el = array(self._data.get_elevation())*180./pi
|
|---|
| 843 | PL.ylabel('El [deg.]')
|
|---|
| 844 | dstr = dates[0].strftime('%Y/%m/%d')
|
|---|
| 845 | if tdel > 1.0:
|
|---|
| 846 | dstr2 = dates[len(dates)-1].strftime('%Y/%m/%d')
|
|---|
| 847 | dstr = dstr + " - " + dstr2
|
|---|
| 848 | majloc = DayLocator()
|
|---|
| 849 | minloc = HourLocator(range(0,23,12))
|
|---|
| 850 | timefmt = DateFormatter("%b%d")
|
|---|
| 851 | else:
|
|---|
| 852 | timefmt = DateFormatter('%H')
|
|---|
| 853 | majloc = HourLocator()
|
|---|
| 854 | minloc = MinuteLocator(20)
|
|---|
| 855 | PL.title(dstr)
|
|---|
| 856 | PL.plot_date(t,el,'b,', tz=tz)
|
|---|
| 857 | #ax.grid(True)
|
|---|
| 858 | ax.yaxis.grid(True)
|
|---|
| 859 | yloc = MultipleLocator(30)
|
|---|
| 860 | ax.set_ylim(0,90)
|
|---|
| 861 | ax.xaxis.set_major_formatter(timefmt)
|
|---|
| 862 | ax.xaxis.set_major_locator(majloc)
|
|---|
| 863 | ax.xaxis.set_minor_locator(minloc)
|
|---|
| 864 | ax.yaxis.set_major_locator(yloc)
|
|---|
| 865 | if tdel > 1.0:
|
|---|
| 866 | labels = ax.get_xticklabels()
|
|---|
| 867 | # PL.setp(labels, fontsize=10, rotation=45)
|
|---|
| 868 | PL.setp(labels, fontsize=10)
|
|---|
| 869 | # Az plot
|
|---|
| 870 | az = array(self._data.get_azimuth())*180./pi
|
|---|
| 871 | if min(az) < 0:
|
|---|
| 872 | for irow in range(len(az)):
|
|---|
| 873 | if az[irow] < 0: az[irow] += 360.0
|
|---|
| 874 |
|
|---|
| 875 | ax = PL.subplot(2,1,2)
|
|---|
| 876 | PL.xlabel('Time (UT)')
|
|---|
| 877 | PL.ylabel('Az [deg.]')
|
|---|
| 878 | PL.plot_date(t,az,'b,', tz=tz)
|
|---|
| 879 | ax.set_ylim(0,360)
|
|---|
| 880 | #ax.grid(True)
|
|---|
| 881 | ax.yaxis.grid(True)
|
|---|
| 882 | #hfmt = DateFormatter('%H')
|
|---|
| 883 | #hloc = HourLocator()
|
|---|
| 884 | yloc = MultipleLocator(60)
|
|---|
| 885 | ax.xaxis.set_major_formatter(timefmt)
|
|---|
| 886 | ax.xaxis.set_major_locator(majloc)
|
|---|
| 887 | ax.xaxis.set_minor_locator(minloc)
|
|---|
| 888 | ax.yaxis.set_major_locator(yloc)
|
|---|
| 889 | if tdel > 1.0:
|
|---|
| 890 | labels = ax.get_xticklabels()
|
|---|
| 891 | PL.setp(labels, fontsize=10)
|
|---|
| 892 | PL.ion()
|
|---|
| 893 | PL.draw()
|
|---|
| 894 |
|
|---|
| 895 | def plotpointing(self, scan=None):
|
|---|
| 896 | """
|
|---|
| 897 | plot telescope pointings
|
|---|
| 898 | """
|
|---|
| 899 | import pylab as PL
|
|---|
| 900 | from matplotlib.dates import DateFormatter, timezone
|
|---|
| 901 | from matplotlib.ticker import MultipleLocator
|
|---|
| 902 | from matplotlib.numerix import array, pi, zeros
|
|---|
| 903 | self._data = scan
|
|---|
| 904 | dir = array(self._data.get_directionval()).transpose()
|
|---|
| 905 | ra = dir[0]*180./pi
|
|---|
| 906 | dec = dir[1]*180./pi
|
|---|
| 907 | PL.cla()
|
|---|
| 908 | PL.ioff()
|
|---|
| 909 | PL.clf()
|
|---|
| 910 | ax = PL.axes([0.1,0.1,0.8,0.8])
|
|---|
| 911 | ax = PL.axes([0.1,0.1,0.8,0.8])
|
|---|
| 912 | ax.set_aspect('equal')
|
|---|
| 913 | PL.plot(ra,dec, 'b,')
|
|---|
| 914 | PL.xlabel('RA [deg.]')
|
|---|
| 915 | PL.ylabel('Declination [deg.]')
|
|---|
| 916 | PL.title('Telescope pointings')
|
|---|
| 917 | [xmin,xmax,ymin,ymax] = PL.axis()
|
|---|
| 918 | PL.axis([xmax,xmin,ymin,ymax])
|
|---|
| 919 | PL.ion()
|
|---|
| 920 | PL.draw()
|
|---|
| 921 |
|
|---|