from asap.asaplot import ASAPlot from asap import rcParams class asapplotter: """ The ASAP plotter. By default the plotter is set up to plot polarisations 'colour stacked' and scantables across panels. Note: Currenly it only plots 'spectra' not Tsys or other variables. """ def __init__(self): self._plotter = ASAPlot() self._tdict = {'Time':'t','time':'t','t':'t','T':'t'} self._bdict = {'Beam':'b','beam':'b','b':'b','B':'b'} self._idict = {'IF':'i','if':'i','i':'i','I':'i'} self._pdict = {'Pol':'p','pol':'p','p':'p'} self._sdict = {'scan':'s','Scan':'s','s':'s','S':'s'} self._cdict = {'t':'len(self._cursor["t"])', 'b':'len(self._cursor["b"])', 'i':'len(self._cursor["i"])', 'p':'len(self._cursor["p"])', 's':'len(scans)'} self._ldict = {'b':'Beam', 'i':'IF', 'p':'Pol', 's':'Scan'} self._dicts = [self._tdict,self._bdict, self._idict,self._pdict, self._sdict] self._panelling = None self._stacking = None self.set_panelling() self.set_stacking() self._rows = None self._cols = None self._autoplot = False self._minmaxx = None self._minmaxy = None self._data = None self._lmap = [] self._title = None self._ordinate = None self._abcissa = None self._cursor = {'t':None, 'b':None, 'i':None, 'p':None } def _translate(self, name): for d in self._dicts: if d.has_key(name): return d[name] return None def plot(self, *args): """ Plot a (list of) scantables. Parameters: one or more comma separated scantables Note: If a (list) of scantables was specified in a previous call to plot, no argument has to be given to 'replot' NO checking is done that the abcissas of the scantables are consistent e.g. all 'channel' or all 'velocity' etc. """ if self._plotter.is_dead: self._plotter = ASAPlot() self._plotter.clear() self._plotter.hold() if len(args) > 0: if self._data is not None: if list(args) != self._data: self._data = list(args) # reset cursor self.set_cursor(refresh=False) else: self._data = list(args) self.set_cursor(refresh=False) if self._panelling == 't': maxrows = 9 if self._data[0].nrow() > maxrows: print "Scan to be plotted contains more than %d rows.\n" \ "Selecting first %d rows..." % (maxrows,maxrows) self._cursor["t"] = range(maxrows) self._plot_time(self._data[0], self._stacking) elif self._panelling == 's': self._plot_scans(self._data, self._stacking) else: self._plot_other(self._data, self._stacking) if self._minmaxx is not None or self._minmaxy is not None: self._plotter.set_limits(xlim=self._minmaxx,ylim=self._minmaxy) self._plotter.release() return def _plot_time(self, scan, colmode): if colmode == 't': return n = len(self._cursor["t"]) cdict = {'b':'scan.setbeam(j)', 'i':'scan.setif(j)', 'p':'scan.setpol(j)'} cdict2 = {'b':'self._cursor["b"]', 'i':'self._cursor["i"]', 'p':'self._cursor["p"]'} ncol = 1 if self._stacking is not None: ncol = eval(self._cdict.get(colmode)) self._plotter.set_panels() if n > 1: if self._rows and self._cols: n = min(n,self._rows*self._cols) self._plotter.set_panels(rows=self._rows,cols=self._cols, nplots=n) else: self._plotter.set_panels(rows=n,cols=0,nplots=n) rows = self._cursor["t"] self._plotter.palette(1) for rowsel in rows: i = self._cursor["t"].index(rowsel) if n > 1: self._plotter.palette(1) self._plotter.subplot(i) colvals = eval(cdict2.get(colmode)) for j in colvals: polmode = "raw" jj = colvals.index(j) savej = j for k in cdict.keys(): sel = eval(cdict2.get(k)) j = sel[0] if k == "p": which = self._cursor["p"].index(j) polmode = self._polmode[which] j = which eval(cdict.get(k)) j = savej if colmode == "p": polmode = self._polmode[self._cursor["p"].index(j)] j = jj eval(cdict.get(colmode)) x = None y = None m = None if not self._title: tlab = scan._getsourcename(rowsel) else: if len(self._title) == n: tlab = self._title[rowsel] else: tlab = scan._getsourcename(rowsel) x,xlab = scan.get_abcissa(rowsel) if self._abcissa: xlab = self._abcissa y = None if polmode == "stokes": y = scan._getstokesspectrum(rowsel) elif polmode == "stokes2": y = scan._getstokesspectrum(rowsel,True) elif polmode == "circular": y = scan._stokestopolspectrum(rowsel,False,-1) else: y = scan._getspectrum(rowsel) if self._ordinate: ylab = self._ordinate else: ylab = 'Flux ('+scan.get_fluxunit()+')' m = scan._getmask(rowsel) if self._lmap and len(self._lmap) > 0: llab = self._lmap[jj] else: if colmode == 'p': if polmode == "stokes": llab = scan._getpolarizationlabel(0,1,0) elif polmode == "stokes2": llab = scan._getpolarizationlabel(0,1,1) elif polmode == "circular": llab = scan._getpolarizationlabel(0,0,0) else: llab = scan._getpolarizationlabel(1,0,0) else: llab = self._ldict.get(colmode)+' '+str(j) self._plotter.set_line(label=llab) self._plotter.plot(x,y,m) xlim=[min(x),max(x)] self._plotter.axes.set_xlim(xlim) self._plotter.set_axes('xlabel',xlab) self._plotter.set_axes('ylabel',ylab) self._plotter.set_axes('title',tlab) return def _plot_scans(self, scans, colmode): print "Can only plot one row per scan." if colmode == 's': return cdict = {'b':'scan.setbeam(j)', 'i':'scan.setif(j)', 'p':'scan.setpol(j)'} cdict2 = {'b':'self._cursor["b"]', 'i':'self._cursor["i"]', 'p':'self._cursor["p"]'} n = len(scans) ncol = 1 if self._stacking is not None: scan = scans[0] ncol = eval(self._cdict.get(colmode)) self._plotter.set_panels() if n > 1: if self._rows and self._cols: n = min(n,self._rows*self._cols) self._plotter.set_panel(rows=self._rows,cols=self._cols, nplots=n) else: self._plotter.set_panel(rows=n,cols=0,nplots=n) for scan in scans: self._plotter.palette(1) if n > 1: self._plotter.subplot(scans.index(scan)) self._plotter.palette(1) colvals = eval(cdict2.get(colmode)) rowsel = self._cursor["t"][0] for j in colvals: polmode = "raw" jj = colvals.index(j) savej = j for k in cdict.keys(): sel = eval(cdict2.get(k)) j = sel[0] eval(cdict.get(k)) if k == "p": which = self._cursor["p"].index(j) polmode = self._polmode[which] j = which j = savej if colmode == "p": polmode = self._polmode[self._cursor["p"].index(j)] j = jj eval(cdict.get(colmode)) x = None y = None m = None tlab = self._title if not self._title: tlab = scan._getsourcename(rowsel) x,xlab = scan.get_abcissa(rowsel) if self._abcissa: xlab = self._abcissa if polmode == "stokes": y = scan._getstokesspectrum(rowsel) elif polmode == "stokes2": y = scan._getstokesspectrum(rowsel,True) elif polmode == "circular": y = scan._stokestopolspectrum(rowsel,False,-1) else: y = scan._getspectrum(rowsel) if self._ordinate: ylab = self._ordinate else: ylab = 'Flux ('+scan.get_fluxunit()+')' m = scan._getmask(rowsel) if self._lmap and len(self._lmap) > 0: llab = self._lmap[jj] else: if colmode == 'p': if polmode == "stokes": llab = scan._getpolarizationlabel(0,1,0) elif polmode == "stokes2": llab = scan._getpolarizationlabel(0,1,1) elif polmode == "circular": llab = scan._getpolarizationlabel(0,0,0) else: llab = scan._getpolarizationlabel(1,0,0) else: llab = self._ldict.get(colmode)+' '+str(j) self._plotter.set_line(label=llab) self._plotter.plot(x,y,m) xlim=[min(x),max(x)] self._plotter.axes.set_xlim(xlim) self._plotter.set_axes('xlabel',xlab) self._plotter.set_axes('ylabel',ylab) self._plotter.set_axes('title',tlab) return def _plot_other(self,scans,colmode): if colmode == self._panelling: return cdict = {'b':'scan.setbeam(i)', 'i':'scan.setif(i)', 'p':'scan.setpol(i)'} cdict2 = {'b':'self._cursor["b"]', 'i':'self._cursor["i"]', 'p':'self._cursor["p"]', 's': 'scans', 't': 'self._cursor["t"]'} scan = scans[0] n = eval(self._cdict.get(self._panelling)) ncol=1 if self._stacking is not None: ncol = eval(self._cdict.get(colmode)) self._plotter.set_panels() if n > 1: if self._rows and self._cols: n = min(n,self._rows*self._cols) self._plotter.set_panels(rows=self._rows,cols=self._cols, nplots=n) else: self._plotter.set_panels(rows=n,cols=0,nplots=n) panels = self._cursor[self._panelling] for i in panels: self._plotter.palette(1) polmode = "raw" ii = self._cursor[self._panelling].index(i) if n>1: self._plotter.subplot(ii) if self._panelling == "p": polmode = self._polmode[ii] eval(cdict.get(self._panelling)) else: eval(cdict.get(self._panelling)) colvals = eval(cdict2.get(colmode)) for j in colvals: rowsel = self._cursor["t"][0] jj = colvals.index(j) savei = i for k in cdict.keys(): if k != self._panelling: sel = eval(cdict2.get(k)) i = sel[0] if k == "p": which = self._cursor["p"].index(j) polmode = self._polmode[which] i = which eval(cdict.get(k)) i = savei if colmode == 's': scan = j elif colmode == 't': rowsel = j else: savei = i if colmode == 'p': polmode = self._polmode[self._cursor["p"].index(j)] i = j eval(cdict.get(colmode)) i = savei x = None y = None m = None x,xlab = scan.get_abcissa(rowsel) if self._abcissa: xlab = self._abcissa if polmode == "stokes": y = scan._getstokesspectrum(rowsel) elif polmode == "stokes2": y = scan._getstokesspectrum(rowsel,True) elif polmode == "circular": y = scan._stokestopolspectrum(rowsel,False,-1) else: y = scan._getspectrum(rowsel) if self._ordinate: ylab = self._ordinate else: ylab = 'Flux ('+scan.get_fluxunit()+')' m = scan._getmask(rowsel) if colmode == 's' or colmode == 't': if self._title and len(self._title) > 0: tlab = self._title[ii] else: tlab = self._ldict.get(self._panelling)+' '+str(i) llab = scan._getsourcename(rowsel) else: if self._title and len(self._title) > 0: tlab = self._title[ii] else: tlab = self._ldict.get(self._panelling)+' '+str(i) if self._lmap and len(self._lmap) > 0: llab = self._lmap[jj] else: if colmode == 'p': if polmode == "stokes": llab = scan._getpolarizationlabel(0,1,0) elif polmode == "stokes2": llab = scan._getpolarizationlabel(0,1,1) elif polmode == "circular": llab = scan._getpolarizationlabel(0,0,0) else: llab = scan._getpolarizationlabel(1,0,0) else: llab = self._ldict.get(colmode)+' '+str(j) if self._panelling == 'p': if polmode == "stokes": tlab = scan._getpolarizationlabel(0,1,0) elif polmode == "stokes2": tlab = scan._getpolarizationlabel(0,1,1) elif polmode == "circular": tlab = scan._getpolarizationlabel(0,0,0) else: tlab = scan._getpolarizationlabel(1,0,0) self._plotter.set_line(label=llab) self._plotter.plot(x,y,m) xlim=[min(x),max(x)] self._plotter.axes.set_xlim(xlim) self._plotter.set_axes('xlabel',xlab) self._plotter.set_axes('ylabel',ylab) self._plotter.set_axes('title',tlab) return def set_mode(self, stacking=None, panelling=None): """ Set the plots look and feel, i.e. what you want to see on the plot. Parameters: stacking: tell the plotter which variable to plot as line colour overlays (default 'pol') panelling: tell the plotter which variable to plot across multiple panels (default 'scan' Note: Valid modes are: 'beam' 'Beam' 'b': Beams 'if' 'IF' 'i': IFs 'pol' 'Pol' 'p': Polarisations 'scan' 'Scan' 's': Scans 'time' 'Time' 't': Times """ if not self.set_panelling(panelling): print "Invalid mode" return if not self.set_stacking(stacking): print "Invalid mode" return if self._data: self.plot() return def set_panelling(self, what=None): mode = what if mode is None: mode = rcParams['plotter.panelling'] md = self._translate(mode) if md: self._panelling = md self._title = None return True return False def set_layout(self,rows=None,cols=None): """ Set the multi-panel layout, i.e. how many rows and columns plots are visible. Parameters: rows: The number of rows of plots cols: The number of columns of plots Note: If no argument is given, the potter reverts to its auto-plot behaviour. """ self._rows = rows self._cols = cols if self._data: self.plot() return def set_stacking(self, what=None): mode = what if mode is None: mode = rcParams['plotter.stacking'] md = self._translate(mode) if md: self._stacking = md self._lmap = None return True return False def set_range(self,xstart=None,xend=None,ystart=None,yend=None): """ Set the range of interest on the abcissa of the plot Parameters: [x,y]start,[x,y]end: The start and end points of the 'zoom' window Note: These become non-sensical when the unit changes. use plotter.set_range() without parameters to reset """ if xstart is None and xend is None: self._minmaxx = None if self._data: self.plot() return if ystart is None and yend is None: self._minmaxy = None if self._data: self.plot() return self._minmaxx = [xstart,xend] self._minmaxy = [ystart,yend] if self._data: self.plot() return def set_legend(self, mp=None): """ Specify a mapping for the legend instead of using the default indices: Parameters: mp: a list of 'strings'. This should have the same length as the number of elements on the legend and then maps to the indeces in order Example: If the data has two IFs/rest frequencies with index 0 and 1 for CO and SiO: plotter.set_stacking('i') plotter.set_legend_map(['CO','SiO']) plotter.plot() """ self._lmap = mp if self._data: self.plot() return def set_title(self, title=None): self._title = title if self._data: self.plot() return def set_ordinate(self, ordinate=None): self._ordinate = ordinate if self._data: self.plot() return def set_abcissa(self, abcissa=None): self._abcissa = abcissa if self._data: self.plot() return def save(self, filename=None): """ Save the plot to a file. The know formats are 'png', 'ps', 'eps'. Parameters: filename: The name of the output file. This is optional and autodetects the image format from the file suffix. If non filename is specified a file called 'yyyymmdd_hhmmss.png' is created in the current directory. """ self._plotter.save(filename) return def set_cursor(self, row=None,beam=None,IF=None,pol=None, refresh=True): """ Specify a 'cursor' for plotting selected spectra. Time (rows), Beam, IF, Polarisation ranges can be specified. Parameters: Default for all paramaters is to select all available row: selects the rows (time stamps) to be plotted, this has to be a vector of row indices, e.g. row=[0,2,5] or row=[2] beam: select a range of beams IF: select a range of IFs pol: select Polarisations for plotting these can be by index (raw polarisations (default)) or by names any of: ["I", "Q", "U", "V"] or ["I", "Plinear", "Pangle", "V"] or ["XX", "YY", "Real(XY)", "Imag(XY)"] or ["RR", "LL"] Example: plotter.set_mode('pol','time') plotter.plot(myscan) # plots all raw polarisations colour stacked plotter.set_cursor(pol=["I"]) # plot "I" only for all rows # plot "I" only for two time stamps row=0 and row=2 plotter.set_cursor(row=[0,2],pol=["I"]) Note: Be careful to select only exisiting polarisations. """ if not self._data: print "Can only set cursor after a first call to plot()" return n = self._data[0].nrow() if row is None: self._cursor["t"] = range(n) else: for i in row: if i < 0 or i >= n: print "Row index '%d' out of range" % i return self._cursor["t"] = row n = self._data[0].nbeam() if beam is None: self._cursor["b"] = range(n) else: for i in beam: if i < 0 or i >= n: print "Beam index '%d' out of range" % i return self._cursor["b"] = beam n = self._data[0].nif() if IF is None: self._cursor["i"] = range(n) else: for i in IF: if i < 0 or i >= n: print "IF index '%d' out of range" %i return self._cursor["i"] = IF n = self._data[0].npol() dstokes = {"I":0,"Q":1,"U":2,"V":3} dstokes2 = {"I":0,"Plinear":1,"Pangle":2,"V":3} draw = {"XX":0, "YY":1,"Real(XY)":2, "Imag(XY)":3} dcirc = { "RR":0,"LL":1}#,"Real(RL)":2,"Image(RL)":3} if pol is None: self._cursor["p"] = range(n) self._polmode = ["raw" for i in range(n)] else: if isinstance(pol,str): pol = pol.split() polmode = [] pols = [] for i in pol: if isinstance(i,str): if draw.has_key(i): pols.append(draw.get(i)) polmode.append("raw") elif dstokes.has_key(i): pols.append(dstokes.get(i)) polmode.append("stokes") elif dstokes2.has_key(i): pols.append(dstokes2.get(i)) polmode.append("stokes2") elif dcirc.has_key(i): pols.append(dcirc.get(i)) polmode.append("circular") else: "Pol type '%s' not valid" %i return elif 0 > i >= n: print "Pol index '%d' out of range" %i return else: pols.append(i) polmode.append("raw") self._cursor["p"] = pols self._polmode = polmode if self._data and refresh: self.plot() if __name__ == '__main__': plotter = asapplotter()