1 | from asap import rcParams, print_log, selector
|
---|
2 | from asap import NUM
|
---|
3 | import matplotlib.axes
|
---|
4 | import sre
|
---|
5 |
|
---|
6 | class asapplotter:
|
---|
7 | """
|
---|
8 | The ASAP plotter.
|
---|
9 | By default the plotter is set up to plot polarisations
|
---|
10 | 'colour stacked' and scantables across panels.
|
---|
11 | Note:
|
---|
12 | Currenly it only plots 'spectra' not Tsys or
|
---|
13 | other variables.
|
---|
14 | """
|
---|
15 | def __init__(self, visible=None):
|
---|
16 | self._visible = rcParams['plotter.gui']
|
---|
17 | if visible is not None:
|
---|
18 | self._visible = visible
|
---|
19 | self._plotter = self._newplotter()
|
---|
20 |
|
---|
21 | self._panelling = None
|
---|
22 | self._stacking = None
|
---|
23 | self.set_panelling()
|
---|
24 | self.set_stacking()
|
---|
25 | self._rows = None
|
---|
26 | self._cols = None
|
---|
27 | self._autoplot = False
|
---|
28 | self._minmaxx = None
|
---|
29 | self._minmaxy = None
|
---|
30 | self._datamask = None
|
---|
31 | self._data = None
|
---|
32 | self._lmap = None
|
---|
33 | self._title = None
|
---|
34 | self._ordinate = None
|
---|
35 | self._abcissa = None
|
---|
36 | self._abcunit = None
|
---|
37 | self._usermask = []
|
---|
38 | self._maskselection = None
|
---|
39 | self._selection = selector()
|
---|
40 | self._hist = rcParams['plotter.histogram']
|
---|
41 |
|
---|
42 | def _translate(self, instr):
|
---|
43 | keys = "s b i p t".split()
|
---|
44 | if isinstance(instr, str):
|
---|
45 | for key in keys:
|
---|
46 | if instr.lower().startswith(key):
|
---|
47 | return key
|
---|
48 | return None
|
---|
49 |
|
---|
50 | def _newplotter(self):
|
---|
51 | if self._visible:
|
---|
52 | from asap.asaplotgui import asaplotgui as asaplot
|
---|
53 | else:
|
---|
54 | from asap.asaplot import asaplot
|
---|
55 | return asaplot()
|
---|
56 |
|
---|
57 |
|
---|
58 | def plot(self, scan=None):
|
---|
59 | """
|
---|
60 | Plot a scantable.
|
---|
61 | Parameters:
|
---|
62 | scan: a scantable
|
---|
63 | Note:
|
---|
64 | If a scantable was specified in a previous call
|
---|
65 | to plot, no argument has to be given to 'replot'
|
---|
66 | NO checking is done that the abcissas of the scantable
|
---|
67 | are consistent e.g. all 'channel' or all 'velocity' etc.
|
---|
68 | """
|
---|
69 | if self._plotter.is_dead:
|
---|
70 | self._plotter = self._newplotter()
|
---|
71 | self._plotter.hold()
|
---|
72 | self._plotter.clear()
|
---|
73 | from asap import scantable
|
---|
74 | if not self._data and not scan:
|
---|
75 | msg = "Input is not a scantable"
|
---|
76 | if rcParams['verbose']:
|
---|
77 | print msg
|
---|
78 | return
|
---|
79 | raise TypeError(msg)
|
---|
80 | if isinstance(scan, scantable):
|
---|
81 | if self._data is not None:
|
---|
82 | if scan != self._data:
|
---|
83 | self._data = scan
|
---|
84 | # reset
|
---|
85 | self._reset()
|
---|
86 | else:
|
---|
87 | self._data = scan
|
---|
88 | self._reset()
|
---|
89 | # ranges become invalid when unit changes
|
---|
90 | if self._abcunit and self._abcunit != self._data.get_unit():
|
---|
91 | self._minmaxx = None
|
---|
92 | self._minmaxy = None
|
---|
93 | self._abcunit = self._data.get_unit()
|
---|
94 | self._datamask = None
|
---|
95 | self._plot(self._data)
|
---|
96 | if self._minmaxy is not None:
|
---|
97 | self._plotter.set_limits(ylim=self._minmaxy)
|
---|
98 | self._plotter.release()
|
---|
99 | self._plotter.tidy()
|
---|
100 | self._plotter.show(hardrefresh=False)
|
---|
101 | print_log()
|
---|
102 | return
|
---|
103 |
|
---|
104 |
|
---|
105 | # forwards to matplotlib axes
|
---|
106 | def text(self, *args, **kwargs):
|
---|
107 | self._axes_callback("text", *args, **kwargs)
|
---|
108 | text. __doc__ = matplotlib.axes.Axes.text.__doc__
|
---|
109 | def arrow(self, *args, **kwargs):
|
---|
110 | self._axes_callback("arrow", *args, **kwargs)
|
---|
111 | arrow. __doc__ = matplotlib.axes.Axes.arrow.__doc__
|
---|
112 | def axvline(self, *args, **kwargs):
|
---|
113 | self._axes_callback("axvline", *args, **kwargs)
|
---|
114 | axvline. __doc__ = matplotlib.axes.Axes.axvline.__doc__
|
---|
115 | def axhline(self, *args, **kwargs):
|
---|
116 | self._axes_callback("axhline", *args, **kwargs)
|
---|
117 | axhline. __doc__ = matplotlib.axes.Axes.axhline.__doc__
|
---|
118 | def axvspan(self, *args, **kwargs):
|
---|
119 | self._axes_callback("axvspan", *args, **kwargs)
|
---|
120 | # hack to preventy mpl from redrawing the patch
|
---|
121 | # it seem to convert the patch into lines on every draw.
|
---|
122 | # This doesn't happen in a test script???
|
---|
123 | del self._plotter.axes.patches[-1]
|
---|
124 | axvspan. __doc__ = matplotlib.axes.Axes.axvspan.__doc__
|
---|
125 | def axhspan(self, *args, **kwargs):
|
---|
126 | self._axes_callback("ahvspan", *args, **kwargs)
|
---|
127 | # hack to preventy mpl from redrawing the patch
|
---|
128 | # it seem to convert the patch into lines on every draw.
|
---|
129 | # This doesn't happen in a test script???
|
---|
130 | del self._plotter.axes.patches[-1]
|
---|
131 | axhspan. __doc__ = matplotlib.axes.Axes.axhspan.__doc__
|
---|
132 |
|
---|
133 | def _axes_callback(self, axesfunc, *args, **kwargs):
|
---|
134 | panel = 0
|
---|
135 | if kwargs.has_key("panel"):
|
---|
136 | panel = kwargs.pop("panel")
|
---|
137 | coords = None
|
---|
138 | if kwargs.has_key("coords"):
|
---|
139 | coords = kwargs.pop("coords")
|
---|
140 | if coords.lower() == 'world':
|
---|
141 | kwargs["transform"] = self._plotter.axes.transData
|
---|
142 | elif coords.lower() == 'relative':
|
---|
143 | kwargs["transform"] = self._plotter.axes.transAxes
|
---|
144 | self._plotter.subplot(panel)
|
---|
145 | self._plotter.axes.set_autoscale_on(False)
|
---|
146 | getattr(self._plotter.axes, axesfunc)(*args, **kwargs)
|
---|
147 | self._plotter.show(False)
|
---|
148 | self._plotter.axes.set_autoscale_on(True)
|
---|
149 | # end matplotlib.axes fowarding functions
|
---|
150 |
|
---|
151 | def set_mode(self, stacking=None, panelling=None):
|
---|
152 | """
|
---|
153 | Set the plots look and feel, i.e. what you want to see on the plot.
|
---|
154 | Parameters:
|
---|
155 | stacking: tell the plotter which variable to plot
|
---|
156 | as line colour overlays (default 'pol')
|
---|
157 | panelling: tell the plotter which variable to plot
|
---|
158 | across multiple panels (default 'scan'
|
---|
159 | Note:
|
---|
160 | Valid modes are:
|
---|
161 | 'beam' 'Beam' 'b': Beams
|
---|
162 | 'if' 'IF' 'i': IFs
|
---|
163 | 'pol' 'Pol' 'p': Polarisations
|
---|
164 | 'scan' 'Scan' 's': Scans
|
---|
165 | 'time' 'Time' 't': Times
|
---|
166 | """
|
---|
167 | msg = "Invalid mode"
|
---|
168 | if not self.set_panelling(panelling) or \
|
---|
169 | not self.set_stacking(stacking):
|
---|
170 | if rcParams['verbose']:
|
---|
171 | print msg
|
---|
172 | return
|
---|
173 | else:
|
---|
174 | raise TypeError(msg)
|
---|
175 | if self._data: self.plot(self._data)
|
---|
176 | return
|
---|
177 |
|
---|
178 | def set_panelling(self, what=None):
|
---|
179 | mode = what
|
---|
180 | if mode is None:
|
---|
181 | mode = rcParams['plotter.panelling']
|
---|
182 | md = self._translate(mode)
|
---|
183 | if md:
|
---|
184 | self._panelling = md
|
---|
185 | self._title = None
|
---|
186 | return True
|
---|
187 | return False
|
---|
188 |
|
---|
189 | def set_layout(self,rows=None,cols=None):
|
---|
190 | """
|
---|
191 | Set the multi-panel layout, i.e. how many rows and columns plots
|
---|
192 | are visible.
|
---|
193 | Parameters:
|
---|
194 | rows: The number of rows of plots
|
---|
195 | cols: The number of columns of plots
|
---|
196 | Note:
|
---|
197 | If no argument is given, the potter reverts to its auto-plot
|
---|
198 | behaviour.
|
---|
199 | """
|
---|
200 | self._rows = rows
|
---|
201 | self._cols = cols
|
---|
202 | if self._data: self.plot(self._data)
|
---|
203 | return
|
---|
204 |
|
---|
205 | def set_stacking(self, what=None):
|
---|
206 | mode = what
|
---|
207 | if mode is None:
|
---|
208 | mode = rcParams['plotter.stacking']
|
---|
209 | md = self._translate(mode)
|
---|
210 | if md:
|
---|
211 | self._stacking = md
|
---|
212 | self._lmap = None
|
---|
213 | return True
|
---|
214 | return False
|
---|
215 |
|
---|
216 | def set_range(self,xstart=None,xend=None,ystart=None,yend=None):
|
---|
217 | """
|
---|
218 | Set the range of interest on the abcissa of the plot
|
---|
219 | Parameters:
|
---|
220 | [x,y]start,[x,y]end: The start and end points of the 'zoom' window
|
---|
221 | Note:
|
---|
222 | These become non-sensical when the unit changes.
|
---|
223 | use plotter.set_range() without parameters to reset
|
---|
224 |
|
---|
225 | """
|
---|
226 | if xstart is None and xend is None:
|
---|
227 | self._minmaxx = None
|
---|
228 | else:
|
---|
229 | self._minmaxx = [xstart,xend]
|
---|
230 | if ystart is None and yend is None:
|
---|
231 | self._minmaxy = None
|
---|
232 | else:
|
---|
233 | self._minmaxy = [ystart,yend]
|
---|
234 | if self._data: self.plot(self._data)
|
---|
235 | return
|
---|
236 |
|
---|
237 | def set_legend(self, mp=None, fontsize = None, mode = 0):
|
---|
238 | """
|
---|
239 | Specify a mapping for the legend instead of using the default
|
---|
240 | indices:
|
---|
241 | Parameters:
|
---|
242 | mp: a list of 'strings'. This should have the same length
|
---|
243 | as the number of elements on the legend and then maps
|
---|
244 | to the indeces in order. It is possible to uses latex
|
---|
245 | math expression. These have to be enclosed in r'',
|
---|
246 | e.g. r'$x^{2}$'
|
---|
247 | fontsize: The font size of the label (default None)
|
---|
248 | mode: where to display the legend
|
---|
249 | Any other value for loc else disables the legend:
|
---|
250 | 0: auto
|
---|
251 | 1: upper right
|
---|
252 | 2: upper left
|
---|
253 | 3: lower left
|
---|
254 | 4: lower right
|
---|
255 | 5: right
|
---|
256 | 6: center left
|
---|
257 | 7: center right
|
---|
258 | 8: lower center
|
---|
259 | 9: upper center
|
---|
260 | 10: center
|
---|
261 |
|
---|
262 | Example:
|
---|
263 | If the data has two IFs/rest frequencies with index 0 and 1
|
---|
264 | for CO and SiO:
|
---|
265 | plotter.set_stacking('i')
|
---|
266 | plotter.set_legend(['CO','SiO'])
|
---|
267 | plotter.plot()
|
---|
268 | plotter.set_legend([r'$^{12}CO$', r'SiO'])
|
---|
269 | """
|
---|
270 | self._lmap = mp
|
---|
271 | self._plotter.legend(mode)
|
---|
272 | if isinstance(fontsize, int):
|
---|
273 | from matplotlib import rc as rcp
|
---|
274 | rcp('legend', fontsize=fontsize)
|
---|
275 | if self._data:
|
---|
276 | self.plot(self._data)
|
---|
277 | return
|
---|
278 |
|
---|
279 | def set_title(self, title=None, fontsize=None):
|
---|
280 | """
|
---|
281 | Set the title of the plot. If multiple panels are plotted,
|
---|
282 | multiple titles have to be specified.
|
---|
283 | Example:
|
---|
284 | # two panels are visible on the plotter
|
---|
285 | plotter.set_title(["First Panel","Second Panel"])
|
---|
286 | """
|
---|
287 | self._title = title
|
---|
288 | if isinstance(fontsize, int):
|
---|
289 | from matplotlib import rc as rcp
|
---|
290 | rcp('axes', titlesize=fontsize)
|
---|
291 | if self._data: self.plot(self._data)
|
---|
292 | return
|
---|
293 |
|
---|
294 | def set_ordinate(self, ordinate=None, fontsize=None):
|
---|
295 | """
|
---|
296 | Set the y-axis label of the plot. If multiple panels are plotted,
|
---|
297 | multiple labels have to be specified.
|
---|
298 | Parameters:
|
---|
299 | ordinate: a list of ordinate labels. None (default) let
|
---|
300 | data determine the labels
|
---|
301 | Example:
|
---|
302 | # two panels are visible on the plotter
|
---|
303 | plotter.set_ordinate(["First Y-Axis","Second Y-Axis"])
|
---|
304 | """
|
---|
305 | self._ordinate = ordinate
|
---|
306 | if isinstance(fontsize, int):
|
---|
307 | from matplotlib import rc as rcp
|
---|
308 | rcp('axes', labelsize=fontsize)
|
---|
309 | rcp('ytick', labelsize=fontsize)
|
---|
310 | if self._data: self.plot(self._data)
|
---|
311 | return
|
---|
312 |
|
---|
313 | def set_abcissa(self, abcissa=None, fontsize=None):
|
---|
314 | """
|
---|
315 | Set the x-axis label of the plot. If multiple panels are plotted,
|
---|
316 | multiple labels have to be specified.
|
---|
317 | Parameters:
|
---|
318 | abcissa: a list of abcissa labels. None (default) let
|
---|
319 | data determine the labels
|
---|
320 | Example:
|
---|
321 | # two panels are visible on the plotter
|
---|
322 | plotter.set_ordinate(["First X-Axis","Second X-Axis"])
|
---|
323 | """
|
---|
324 | self._abcissa = abcissa
|
---|
325 | if isinstance(fontsize, int):
|
---|
326 | from matplotlib import rc as rcp
|
---|
327 | rcp('axes', labelsize=fontsize)
|
---|
328 | rcp('xtick', labelsize=fontsize)
|
---|
329 | if self._data: self.plot(self._data)
|
---|
330 | return
|
---|
331 |
|
---|
332 | def set_colors(self, colmap):
|
---|
333 | """
|
---|
334 | Set the colours to be used. The plotter will cycle through
|
---|
335 | these colours when lines are overlaid (stacking mode).
|
---|
336 | Parameters:
|
---|
337 | colmap: a list of colour names
|
---|
338 | Example:
|
---|
339 | plotter.set_colors("red green blue")
|
---|
340 | # If for example four lines are overlaid e.g I Q U V
|
---|
341 | # 'I' will be 'red', 'Q' will be 'green', U will be 'blue'
|
---|
342 | # and 'V' will be 'red' again.
|
---|
343 | """
|
---|
344 | if isinstance(colmap,str):
|
---|
345 | colmap = colmap.split()
|
---|
346 | self._plotter.palette(0, colormap=colmap)
|
---|
347 | if self._data: self.plot(self._data)
|
---|
348 |
|
---|
349 | # alias for english speakers
|
---|
350 | set_colours = set_colors
|
---|
351 |
|
---|
352 | def set_histogram(self, hist=True, linewidth=None):
|
---|
353 | """
|
---|
354 | Enable/Disable histogram-like plotting.
|
---|
355 | Parameters:
|
---|
356 | hist: True (default) or False. The fisrt default
|
---|
357 | is taken from the .asaprc setting
|
---|
358 | plotter.histogram
|
---|
359 | """
|
---|
360 | self._hist = hist
|
---|
361 | if isinstance(linewidth, float) or isinstance(linewidth, int):
|
---|
362 | from matplotlib import rc as rcp
|
---|
363 | rcp('lines', linewidth=linewidth)
|
---|
364 | if self._data: self.plot(self._data)
|
---|
365 |
|
---|
366 | def set_linestyles(self, linestyles=None, linewidth=None):
|
---|
367 | """
|
---|
368 | Set the linestyles to be used. The plotter will cycle through
|
---|
369 | these linestyles when lines are overlaid (stacking mode) AND
|
---|
370 | only one color has been set.
|
---|
371 | Parameters:
|
---|
372 | linestyles: a list of linestyles to use.
|
---|
373 | 'line', 'dashed', 'dotted', 'dashdot',
|
---|
374 | 'dashdotdot' and 'dashdashdot' are
|
---|
375 | possible
|
---|
376 |
|
---|
377 | Example:
|
---|
378 | plotter.set_colors("black")
|
---|
379 | plotter.set_linestyles("line dashed dotted dashdot")
|
---|
380 | # If for example four lines are overlaid e.g I Q U V
|
---|
381 | # 'I' will be 'solid', 'Q' will be 'dashed',
|
---|
382 | # U will be 'dotted' and 'V' will be 'dashdot'.
|
---|
383 | """
|
---|
384 | if isinstance(linestyles,str):
|
---|
385 | linestyles = linestyles.split()
|
---|
386 | self._plotter.palette(color=0,linestyle=0,linestyles=linestyles)
|
---|
387 | if isinstance(linewidth, float) or isinstance(linewidth, int):
|
---|
388 | from matplotlib import rc as rcp
|
---|
389 | rcp('lines', linewidth=linewidth)
|
---|
390 | if self._data: self.plot(self._data)
|
---|
391 |
|
---|
392 | def set_font(self, family=None, style=None, weight=None, size=None):
|
---|
393 | """
|
---|
394 | Set font properties.
|
---|
395 | Parameters:
|
---|
396 | family: one of 'sans-serif', 'serif', 'cursive', 'fantasy', 'monospace'
|
---|
397 | style: one of 'normal' (or 'roman'), 'italic' or 'oblique'
|
---|
398 | weight: one of 'normal or 'bold'
|
---|
399 | size: the 'general' font size, individual elements can be adjusted
|
---|
400 | seperately
|
---|
401 | """
|
---|
402 | from matplotlib import rc as rcp
|
---|
403 | if isinstance(family, str):
|
---|
404 | rcp('font', family=family)
|
---|
405 | if isinstance(style, str):
|
---|
406 | rcp('font', style=style)
|
---|
407 | if isinstance(weight, str):
|
---|
408 | rcp('font', weight=weight)
|
---|
409 | if isinstance(size, float) or isinstance(size, int):
|
---|
410 | rcp('font', size=size)
|
---|
411 | if self._data: self.plot(self._data)
|
---|
412 |
|
---|
413 | def plot_lines(self, linecat=None, doppler=0.0, deltachan=10, rotate=0.0,
|
---|
414 | location=None):
|
---|
415 | """
|
---|
416 | Plot a line catalog.
|
---|
417 | Parameters:
|
---|
418 | linecat: the linecatalog to plot
|
---|
419 | doppler: the velocity shift to apply to the frequencies
|
---|
420 | deltachan: the number of channels to include each side of the
|
---|
421 | line to determine a local maximum/minimum
|
---|
422 | rotate: the rotation for the text label
|
---|
423 | location: the location of the line annotation from the 'top',
|
---|
424 | 'bottom' or alternate (None - the default)
|
---|
425 | Notes:
|
---|
426 | If the spectrum is flagged no line will be drawn in that location.
|
---|
427 | """
|
---|
428 | if not self._data: return
|
---|
429 | from asap._asap import linecatalog
|
---|
430 | if not isinstance(linecat, linecatalog): return
|
---|
431 | if not self._data.get_unit().endswith("GHz"): return
|
---|
432 | #self._plotter.hold()
|
---|
433 | from matplotlib.numerix import ma
|
---|
434 | for j in range(len(self._plotter.subplots)):
|
---|
435 | self._plotter.subplot(j)
|
---|
436 | lims = self._plotter.axes.get_xlim()
|
---|
437 | for row in range(linecat.nrow()):
|
---|
438 | restf = linecat.get_frequency(row)/1000.0
|
---|
439 | c = 299792.458
|
---|
440 | freq = restf*(1.0-doppler/c)
|
---|
441 | if lims[0] < freq < lims[1]:
|
---|
442 | if location is None:
|
---|
443 | loc = 'bottom'
|
---|
444 | if row%2: loc='top'
|
---|
445 | else: loc = location
|
---|
446 | maxys = []
|
---|
447 | for line in self._plotter.axes.lines:
|
---|
448 | v = line._x
|
---|
449 | asc = v[0] < v[-1]
|
---|
450 |
|
---|
451 | idx = None
|
---|
452 | if not asc:
|
---|
453 | if v[len(v)-1] <= freq <= v[0]:
|
---|
454 | i = len(v)-1
|
---|
455 | while i>=0 and v[i] < freq:
|
---|
456 | idx = i
|
---|
457 | i-=1
|
---|
458 | else:
|
---|
459 | if v[0] <= freq <= v[len(v)-1]:
|
---|
460 | i = 0
|
---|
461 | while i<len(v) and v[i] < freq:
|
---|
462 | idx = i
|
---|
463 | i+=1
|
---|
464 | if idx is not None:
|
---|
465 | lower = idx - deltachan
|
---|
466 | upper = idx + deltachan
|
---|
467 | if lower < 0: lower = 0
|
---|
468 | if upper > len(v): upper = len(v)
|
---|
469 | s = slice(lower, upper)
|
---|
470 | y = line._y[s]
|
---|
471 | maxy = ma.maximum(y)
|
---|
472 | if isinstance( maxy, float):
|
---|
473 | maxys.append(maxy)
|
---|
474 | if len(maxys):
|
---|
475 | peak = max(maxys)
|
---|
476 | if peak > self._plotter.axes.get_ylim()[1]:
|
---|
477 | loc = 'bottom'
|
---|
478 | else:
|
---|
479 | continue
|
---|
480 | self._plotter.vline_with_label(freq, peak,
|
---|
481 | linecat.get_name(row),
|
---|
482 | location=loc, rotate=rotate)
|
---|
483 | # self._plotter.release()
|
---|
484 | self._plotter.show(hardrefresh=False)
|
---|
485 |
|
---|
486 |
|
---|
487 | def save(self, filename=None, orientation=None, dpi=None):
|
---|
488 | """
|
---|
489 | Save the plot to a file. The know formats are 'png', 'ps', 'eps'.
|
---|
490 | Parameters:
|
---|
491 | filename: The name of the output file. This is optional
|
---|
492 | and autodetects the image format from the file
|
---|
493 | suffix. If non filename is specified a file
|
---|
494 | called 'yyyymmdd_hhmmss.png' is created in the
|
---|
495 | current directory.
|
---|
496 | orientation: optional parameter for postscript only (not eps).
|
---|
497 | 'landscape', 'portrait' or None (default) are valid.
|
---|
498 | If None is choosen for 'ps' output, the plot is
|
---|
499 | automatically oriented to fill the page.
|
---|
500 | dpi: The dpi of the output non-ps plot
|
---|
501 | """
|
---|
502 | self._plotter.save(filename,orientation,dpi)
|
---|
503 | return
|
---|
504 |
|
---|
505 |
|
---|
506 | def set_mask(self, mask=None, selection=None):
|
---|
507 | """
|
---|
508 | Set a plotting mask for a specific polarization.
|
---|
509 | This is useful for masking out "noise" Pangle outside a source.
|
---|
510 | Parameters:
|
---|
511 | mask: a mask from scantable.create_mask
|
---|
512 | selection: the spectra to apply the mask to.
|
---|
513 | Example:
|
---|
514 | select = selector()
|
---|
515 | select.setpolstrings("Pangle")
|
---|
516 | plotter.set_mask(mymask, select)
|
---|
517 | """
|
---|
518 | if not self._data:
|
---|
519 | msg = "Can only set mask after a first call to plot()"
|
---|
520 | if rcParams['verbose']:
|
---|
521 | print msg
|
---|
522 | return
|
---|
523 | else:
|
---|
524 | raise RuntimeError(msg)
|
---|
525 | if len(mask):
|
---|
526 | if isinstance(mask, list) or isinstance(mask, tuple):
|
---|
527 | self._usermask = array(mask)
|
---|
528 | else:
|
---|
529 | self._usermask = mask
|
---|
530 | if mask is None and selection is None:
|
---|
531 | self._usermask = []
|
---|
532 | self._maskselection = None
|
---|
533 | if isinstance(selection, selector):
|
---|
534 | self._maskselection = {'b': selection.get_beams(),
|
---|
535 | 's': selection.get_scans(),
|
---|
536 | 'i': selection.get_ifs(),
|
---|
537 | 'p': selection.get_pols(),
|
---|
538 | 't': [] }
|
---|
539 | else:
|
---|
540 | self._maskselection = None
|
---|
541 | self.plot(self._data)
|
---|
542 |
|
---|
543 | def _slice_indeces(self, data):
|
---|
544 | mn = self._minmaxx[0]
|
---|
545 | mx = self._minmaxx[1]
|
---|
546 | asc = data[0] < data[-1]
|
---|
547 | start=0
|
---|
548 | end = len(data)-1
|
---|
549 | inc = 1
|
---|
550 | if not asc:
|
---|
551 | start = len(data)-1
|
---|
552 | end = 0
|
---|
553 | inc = -1
|
---|
554 | # find min index
|
---|
555 | while start > 0 and data[start] < mn:
|
---|
556 | start+= inc
|
---|
557 | # find max index
|
---|
558 | while end > 0 and data[end] > mx:
|
---|
559 | end-=inc
|
---|
560 | if end > 0: end +=1
|
---|
561 | if start > end:
|
---|
562 | return end,start
|
---|
563 | return start,end
|
---|
564 |
|
---|
565 | def _reset(self):
|
---|
566 | self._usermask = []
|
---|
567 | self._usermaskspectra = None
|
---|
568 | self.set_selection(None, False)
|
---|
569 |
|
---|
570 | def _plot(self, scan):
|
---|
571 | savesel = scan.get_selection()
|
---|
572 | sel = savesel + self._selection
|
---|
573 | d0 = {'s': 'SCANNO', 'b': 'BEAMNO', 'i':'IFNO',
|
---|
574 | 'p': 'POLNO', 'c': 'CYCLENO', 't' : 'TIME' }
|
---|
575 | order = [d0[self._panelling],d0[self._stacking]]
|
---|
576 | sel.set_order(order)
|
---|
577 | scan.set_selection(sel)
|
---|
578 | d = {'b': scan.getbeam, 's': scan.getscan,
|
---|
579 | 'i': scan.getif, 'p': scan.getpol, 't': scan._gettime }
|
---|
580 |
|
---|
581 | polmodes = dict(zip(self._selection.get_pols(),
|
---|
582 | self._selection.get_poltypes()))
|
---|
583 | # this returns either a tuple of numbers or a length (ncycles)
|
---|
584 | # convert this into lengths
|
---|
585 | n0,nstack0 = self._get_selected_n(scan)
|
---|
586 | if isinstance(n0, int): n = n0
|
---|
587 | else: n = len(n0)
|
---|
588 | if isinstance(nstack0, int): nstack = nstack0
|
---|
589 | else: nstack = len(nstack0)
|
---|
590 | maxpanel, maxstack = 16,8
|
---|
591 | if n > maxpanel or nstack > maxstack:
|
---|
592 | from asap import asaplog
|
---|
593 | maxn = 0
|
---|
594 | if nstack > maxstack: maxn = maxstack
|
---|
595 | if n > maxpanel: maxn = maxpanel
|
---|
596 | msg ="Scan to be plotted contains more than %d selections.\n" \
|
---|
597 | "Selecting first %d selections..." % (maxn, maxn)
|
---|
598 | asaplog.push(msg)
|
---|
599 | print_log()
|
---|
600 | n = min(n,maxpanel)
|
---|
601 | nstack = min(nstack,maxstack)
|
---|
602 | if n > 1:
|
---|
603 | ganged = rcParams['plotter.ganged']
|
---|
604 | if self._rows and self._cols:
|
---|
605 | n = min(n,self._rows*self._cols)
|
---|
606 | self._plotter.set_panels(rows=self._rows,cols=self._cols,
|
---|
607 | nplots=n,ganged=ganged)
|
---|
608 | else:
|
---|
609 | self._plotter.set_panels(rows=n,cols=0,nplots=n,ganged=ganged)
|
---|
610 | else:
|
---|
611 | self._plotter.set_panels()
|
---|
612 | r=0
|
---|
613 | nr = scan.nrow()
|
---|
614 | a0,b0 = -1,-1
|
---|
615 | allxlim = []
|
---|
616 | allylim = []
|
---|
617 | newpanel=True
|
---|
618 | panelcount,stackcount = 0,0
|
---|
619 | while r < nr:
|
---|
620 | a = d[self._panelling](r)
|
---|
621 | b = d[self._stacking](r)
|
---|
622 | if a > a0 and panelcount < n:
|
---|
623 | if n > 1:
|
---|
624 | self._plotter.subplot(panelcount)
|
---|
625 | self._plotter.palette(0)
|
---|
626 | #title
|
---|
627 | xlab = self._abcissa and self._abcissa[panelcount] \
|
---|
628 | or scan._getabcissalabel()
|
---|
629 | ylab = self._ordinate and self._ordinate[panelcount] \
|
---|
630 | or scan._get_ordinate_label()
|
---|
631 | self._plotter.set_axes('xlabel',xlab)
|
---|
632 | self._plotter.set_axes('ylabel',ylab)
|
---|
633 | lbl = self._get_label(scan, r, self._panelling, self._title)
|
---|
634 | if isinstance(lbl, list) or isinstance(lbl, tuple):
|
---|
635 | if 0 <= panelcount < len(lbl):
|
---|
636 | lbl = lbl[panelcount]
|
---|
637 | else:
|
---|
638 | # get default label
|
---|
639 | lbl = self._get_label(scan, r, self._panelling, None)
|
---|
640 | self._plotter.set_axes('title',lbl)
|
---|
641 | newpanel = True
|
---|
642 | stackcount =0
|
---|
643 | panelcount += 1
|
---|
644 | if (b > b0 or newpanel) and stackcount < nstack:
|
---|
645 | y = []
|
---|
646 | if len(polmodes):
|
---|
647 | y = scan._getspectrum(r, polmodes[scan.getpol(r)])
|
---|
648 | else:
|
---|
649 | y = scan._getspectrum(r)
|
---|
650 | m = scan._getmask(r)
|
---|
651 | from matplotlib.numerix import logical_not, logical_and
|
---|
652 | if self._maskselection and len(self._usermask) == len(m):
|
---|
653 | if d[self._stacking](r) in self._maskselection[self._stacking]:
|
---|
654 | m = logical_and(m, self._usermask)
|
---|
655 | x = scan._getabcissa(r)
|
---|
656 | from matplotlib.numerix import ma, array
|
---|
657 | y = ma.masked_array(y,mask=logical_not(array(m,copy=False)))
|
---|
658 | if self._minmaxx is not None:
|
---|
659 | s,e = self._slice_indeces(x)
|
---|
660 | x = x[s:e]
|
---|
661 | y = y[s:e]
|
---|
662 | if len(x) > 1024 and rcParams['plotter.decimate']:
|
---|
663 | fac = len(x)/1024
|
---|
664 | x = x[::fac]
|
---|
665 | y = y[::fac]
|
---|
666 | llbl = self._get_label(scan, r, self._stacking, self._lmap)
|
---|
667 | if isinstance(llbl, list) or isinstance(llbl, tuple):
|
---|
668 | if 0 <= stackcount < len(llbl):
|
---|
669 | # use user label
|
---|
670 | llbl = llbl[stackcount]
|
---|
671 | else:
|
---|
672 | # get default label
|
---|
673 | llbl = self._get_label(scan, r, self._stacking, None)
|
---|
674 | self._plotter.set_line(label=llbl)
|
---|
675 | plotit = self._plotter.plot
|
---|
676 | if self._hist: plotit = self._plotter.hist
|
---|
677 | if len(x) > 0:
|
---|
678 | plotit(x,y)
|
---|
679 | xlim= self._minmaxx or [min(x),max(x)]
|
---|
680 | allxlim += xlim
|
---|
681 | ylim= self._minmaxy or [ma.minimum(y),ma.maximum(y)]
|
---|
682 | allylim += ylim
|
---|
683 | stackcount += 1
|
---|
684 | # last in colour stack -> autoscale x
|
---|
685 | if stackcount == nstack:
|
---|
686 | allxlim.sort()
|
---|
687 | self._plotter.axes.set_xlim([allxlim[0],allxlim[-1]])
|
---|
688 | # clear
|
---|
689 | allxlim =[]
|
---|
690 |
|
---|
691 | newpanel = False
|
---|
692 | a0=a
|
---|
693 | b0=b
|
---|
694 | # ignore following rows
|
---|
695 | if (panelcount == n) and (stackcount == nstack):
|
---|
696 | # last panel -> autoscale y if ganged
|
---|
697 | if rcParams['plotter.ganged']:
|
---|
698 | allylim.sort()
|
---|
699 | self._plotter.set_limits(ylim=[allylim[0],allylim[-1]])
|
---|
700 | break
|
---|
701 | r+=1 # next row
|
---|
702 | #reset the selector to the scantable's original
|
---|
703 | scan.set_selection(savesel)
|
---|
704 |
|
---|
705 | def set_selection(self, selection=None, refresh=True):
|
---|
706 | self._selection = isinstance(selection,selector) and selection or selector()
|
---|
707 | d0 = {'s': 'SCANNO', 'b': 'BEAMNO', 'i':'IFNO',
|
---|
708 | 'p': 'POLNO', 'c': 'CYCLENO', 't' : 'TIME' }
|
---|
709 | order = [d0[self._panelling],d0[self._stacking]]
|
---|
710 | self._selection.set_order(order)
|
---|
711 | if self._data and refresh: self.plot(self._data)
|
---|
712 |
|
---|
713 | def _get_selected_n(self, scan):
|
---|
714 | d1 = {'b': scan.getbeamnos, 's': scan.getscannos,
|
---|
715 | 'i': scan.getifnos, 'p': scan.getpolnos, 't': scan.ncycle }
|
---|
716 | d2 = { 'b': self._selection.get_beams(),
|
---|
717 | 's': self._selection.get_scans(),
|
---|
718 | 'i': self._selection.get_ifs(),
|
---|
719 | 'p': self._selection.get_pols(),
|
---|
720 | 't': self._selection.get_cycles() }
|
---|
721 | n = d2[self._panelling] or d1[self._panelling]()
|
---|
722 | nstack = d2[self._stacking] or d1[self._stacking]()
|
---|
723 | return n,nstack
|
---|
724 |
|
---|
725 | def _get_label(self, scan, row, mode, userlabel=None):
|
---|
726 | if isinstance(userlabel, list) and len(userlabel) == 0:
|
---|
727 | userlabel = " "
|
---|
728 | pms = dict(zip(self._selection.get_pols(),self._selection.get_poltypes()))
|
---|
729 | if len(pms):
|
---|
730 | poleval = scan._getpollabel(scan.getpol(row),pms[scan.getpol(row)])
|
---|
731 | else:
|
---|
732 | poleval = scan._getpollabel(scan.getpol(row),scan.poltype())
|
---|
733 | d = {'b': "Beam "+str(scan.getbeam(row)),
|
---|
734 | 's': scan._getsourcename(row),
|
---|
735 | 'i': "IF"+str(scan.getif(row)),
|
---|
736 | 'p': poleval,
|
---|
737 | 't': str(scan.get_time(row)) }
|
---|
738 | return userlabel or d[mode]
|
---|
739 |
|
---|