source: trunk/python/asapplotter.py@ 1165

Last change on this file since 1165 was 1165, checked in by mar637, 18 years ago

added auto location on peak>ymax. changed argument offset to doppler to accomodate frequency changing over the band

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 28.6 KB
Line 
1from asap import rcParams, print_log, selector
2from asap import NUM
3import matplotlib.axes
4
5class asapplotter:
6 """
7 The ASAP plotter.
8 By default the plotter is set up to plot polarisations
9 'colour stacked' and scantables across panels.
10 Note:
11 Currenly it only plots 'spectra' not Tsys or
12 other variables.
13 """
14 def __init__(self, visible=None):
15 self._visible = rcParams['plotter.gui']
16 if visible is not None:
17 self._visible = visible
18 self._plotter = self._newplotter()
19
20 self._panelling = None
21 self._stacking = None
22 self.set_panelling()
23 self.set_stacking()
24 self._rows = None
25 self._cols = None
26 self._autoplot = False
27 self._minmaxx = None
28 self._minmaxy = None
29 self._datamask = None
30 self._data = None
31 self._lmap = None
32 self._title = None
33 self._ordinate = None
34 self._abcissa = None
35 self._abcunit = None
36 self._usermask = []
37 self._maskselection = None
38 self._selection = selector()
39 self._hist = rcParams['plotter.histogram']
40
41 def _translate(self, instr):
42 keys = "s b i p t".split()
43 if isinstance(instr, str):
44 for key in keys:
45 if instr.lower().startswith(key):
46 return key
47 return None
48
49 def _newplotter(self):
50 if self._visible:
51 from asap.asaplotgui import asaplotgui as asaplot
52 else:
53 from asap.asaplot import asaplot
54 return asaplot()
55
56
57 def plot(self, scan=None):
58 """
59 Plot a scantable.
60 Parameters:
61 scan: a scantable
62 Note:
63 If a scantable was specified in a previous call
64 to plot, no argument has to be given to 'replot'
65 NO checking is done that the abcissas of the scantable
66 are consistent e.g. all 'channel' or all 'velocity' etc.
67 """
68 if self._plotter.is_dead:
69 self._plotter = self._newplotter()
70 self._plotter.hold()
71 self._plotter.clear()
72 from asap import scantable
73 if not self._data and not scan:
74 msg = "Input is not a scantable"
75 if rcParams['verbose']:
76 print msg
77 return
78 raise TypeError(msg)
79 if isinstance(scan, scantable):
80 if self._data is not None:
81 if scan != self._data:
82 self._data = scan
83 # reset
84 self._reset()
85 else:
86 self._data = scan
87 self._reset()
88 # ranges become invalid when unit changes
89 if self._abcunit and self._abcunit != self._data.get_unit():
90 self._minmaxx = None
91 self._minmaxy = None
92 self._abcunit = self._data.get_unit()
93 self._datamask = None
94 self._plot(self._data)
95 if self._minmaxy is not None:
96 self._plotter.set_limits(ylim=self._minmaxy)
97 self._plotter.release()
98 self._plotter.tidy()
99 self._plotter.show(hardrefresh=False)
100 print_log()
101 return
102
103
104 # forwards to matplotlib axes
105 def text(self, *args, **kwargs):
106 self._axes_callback("text", *args, **kwargs)
107 text. __doc__ = matplotlib.axes.Axes.text.__doc__
108 def arrow(self, *args, **kwargs):
109 self._axes_callback("arrow", *args, **kwargs)
110 arrow. __doc__ = matplotlib.axes.Axes.arrow.__doc__
111 def axvline(self, *args, **kwargs):
112 self._axes_callback("axvline", *args, **kwargs)
113 axvline. __doc__ = matplotlib.axes.Axes.axvline.__doc__
114 def axhline(self, *args, **kwargs):
115 self._axes_callback("axhline", *args, **kwargs)
116 axhline. __doc__ = matplotlib.axes.Axes.axhline.__doc__
117 def axvspan(self, *args, **kwargs):
118 self._axes_callback("axvspan", *args, **kwargs)
119 # hack to preventy mpl from redrawing the patch
120 # it seem to convert the patch into lines on every draw.
121 # This doesn't happen in a test script???
122 del self._plotter.axes.patches[-1]
123 axvspan. __doc__ = matplotlib.axes.Axes.axvspan.__doc__
124 def axhspan(self, *args, **kwargs):
125 self._axes_callback("ahvspan", *args, **kwargs)
126 # hack to preventy mpl from redrawing the patch
127 # it seem to convert the patch into lines on every draw.
128 # This doesn't happen in a test script???
129 del self._plotter.axes.patches[-1]
130 axhspan. __doc__ = matplotlib.axes.Axes.axhspan.__doc__
131
132 def _axes_callback(self, axesfunc, *args, **kwargs):
133 panel = 0
134 if kwargs.has_key("panel"):
135 panel = kwargs.pop("panel")
136 coords = None
137 if kwargs.has_key("coords"):
138 coords = kwargs.pop("coords")
139 if coords.lower() == 'world':
140 kwargs["transform"] = self._plotter.axes.transData
141 elif coords.lower() == 'relative':
142 kwargs["transform"] = self._plotter.axes.transAxes
143 self._plotter.subplot(panel)
144 self._plotter.axes.set_autoscale_on(False)
145 getattr(self._plotter.axes, axesfunc)(*args, **kwargs)
146 self._plotter.show(False)
147 self._plotter.axes.set_autoscale_on(True)
148 # end matplotlib.axes fowarding functions
149
150 def set_mode(self, stacking=None, panelling=None):
151 """
152 Set the plots look and feel, i.e. what you want to see on the plot.
153 Parameters:
154 stacking: tell the plotter which variable to plot
155 as line color overlays (default 'pol')
156 panelling: tell the plotter which variable to plot
157 across multiple panels (default 'scan'
158 Note:
159 Valid modes are:
160 'beam' 'Beam' 'b': Beams
161 'if' 'IF' 'i': IFs
162 'pol' 'Pol' 'p': Polarisations
163 'scan' 'Scan' 's': Scans
164 'time' 'Time' 't': Times
165 """
166 msg = "Invalid mode"
167 if not self.set_panelling(panelling) or \
168 not self.set_stacking(stacking):
169 if rcParams['verbose']:
170 print msg
171 return
172 else:
173 raise TypeError(msg)
174 if self._data: self.plot(self._data)
175 return
176
177 def set_panelling(self, what=None):
178 mode = what
179 if mode is None:
180 mode = rcParams['plotter.panelling']
181 md = self._translate(mode)
182 if md:
183 self._panelling = md
184 self._title = None
185 return True
186 return False
187
188 def set_layout(self,rows=None,cols=None):
189 """
190 Set the multi-panel layout, i.e. how many rows and columns plots
191 are visible.
192 Parameters:
193 rows: The number of rows of plots
194 cols: The number of columns of plots
195 Note:
196 If no argument is given, the potter reverts to its auto-plot
197 behaviour.
198 """
199 self._rows = rows
200 self._cols = cols
201 if self._data: self.plot(self._data)
202 return
203
204 def set_stacking(self, what=None):
205 mode = what
206 if mode is None:
207 mode = rcParams['plotter.stacking']
208 md = self._translate(mode)
209 if md:
210 self._stacking = md
211 self._lmap = None
212 return True
213 return False
214
215 def set_range(self,xstart=None,xend=None,ystart=None,yend=None):
216 """
217 Set the range of interest on the abcissa of the plot
218 Parameters:
219 [x,y]start,[x,y]end: The start and end points of the 'zoom' window
220 Note:
221 These become non-sensical when the unit changes.
222 use plotter.set_range() without parameters to reset
223
224 """
225 if xstart is None and xend is None:
226 self._minmaxx = None
227 else:
228 self._minmaxx = [xstart,xend]
229 if ystart is None and yend is None:
230 self._minmaxy = None
231 else:
232 self._minmaxy = [ystart,yend]
233 if self._data: self.plot(self._data)
234 return
235
236 def set_legend(self, mp=None, fontsize = None, mode = 0):
237 """
238 Specify a mapping for the legend instead of using the default
239 indices:
240 Parameters:
241 mp: a list of 'strings'. This should have the same length
242 as the number of elements on the legend and then maps
243 to the indeces in order. It is possible to uses latex
244 math expression. These have to be enclosed in r'',
245 e.g. r'$x^{2}$'
246 fontsize: The font size of the label (default None)
247 mode: where to display the legend
248 Any other value for loc else disables the legend:
249 0: auto
250 1: upper right
251 2: upper left
252 3: lower left
253 4: lower right
254 5: right
255 6: center left
256 7: center right
257 8: lower center
258 9: upper center
259 10: center
260
261 Example:
262 If the data has two IFs/rest frequencies with index 0 and 1
263 for CO and SiO:
264 plotter.set_stacking('i')
265 plotter.set_legend(['CO','SiO'])
266 plotter.plot()
267 plotter.set_legend([r'$^{12}CO$', r'SiO'])
268 """
269 self._lmap = mp
270 self._plotter.legend(mode)
271 if isinstance(fontsize, int):
272 from matplotlib import rc as rcp
273 rcp('legend', fontsize=fontsize)
274 if self._data:
275 self.plot(self._data)
276 return
277
278 def set_title(self, title=None, fontsize=None):
279 """
280 Set the title of the plot. If multiple panels are plotted,
281 multiple titles have to be specified.
282 Example:
283 # two panels are visible on the plotter
284 plotter.set_title(["First Panel","Second Panel"])
285 """
286 self._title = title
287 if isinstance(fontsize, int):
288 from matplotlib import rc as rcp
289 rcp('axes', titlesize=fontsize)
290 if self._data: self.plot(self._data)
291 return
292
293 def set_ordinate(self, ordinate=None, fontsize=None):
294 """
295 Set the y-axis label of the plot. If multiple panels are plotted,
296 multiple labels have to be specified.
297 Parameters:
298 ordinate: a list of ordinate labels. None (default) let
299 data determine the labels
300 Example:
301 # two panels are visible on the plotter
302 plotter.set_ordinate(["First Y-Axis","Second Y-Axis"])
303 """
304 self._ordinate = ordinate
305 if isinstance(fontsize, int):
306 from matplotlib import rc as rcp
307 rcp('axes', labelsize=fontsize)
308 rcp('ytick', labelsize=fontsize)
309 if self._data: self.plot(self._data)
310 return
311
312 def set_abcissa(self, abcissa=None, fontsize=None):
313 """
314 Set the x-axis label of the plot. If multiple panels are plotted,
315 multiple labels have to be specified.
316 Parameters:
317 abcissa: a list of abcissa labels. None (default) let
318 data determine the labels
319 Example:
320 # two panels are visible on the plotter
321 plotter.set_ordinate(["First X-Axis","Second X-Axis"])
322 """
323 self._abcissa = abcissa
324 if isinstance(fontsize, int):
325 from matplotlib import rc as rcp
326 rcp('axes', labelsize=fontsize)
327 rcp('xtick', labelsize=fontsize)
328 if self._data: self.plot(self._data)
329 return
330
331 def set_colors(self, colormap):
332 """
333 Set the colors to be used. The plotter will cycle through
334 these colors when lines are overlaid (stacking mode).
335 Parameters:
336 colormap: a list of colour names
337 Example:
338 plotter.set_colors("red green blue")
339 # If for example four lines are overlaid e.g I Q U V
340 # 'I' will be 'red', 'Q' will be 'green', U will be 'blue'
341 # and 'V' will be 'red' again.
342 """
343 if isinstance(colormap,str):
344 colormap = colormap.split()
345 self._plotter.palette(0,colormap=colormap)
346 if self._data: self.plot(self._data)
347
348 def set_histogram(self, hist=True, linewidth=None):
349 """
350 Enable/Disable histogram-like plotting.
351 Parameters:
352 hist: True (default) or False. The fisrt default
353 is taken from the .asaprc setting
354 plotter.histogram
355 """
356 self._hist = hist
357 if isinstance(linewidth, float) or isinstance(linewidth, int):
358 from matplotlib import rc as rcp
359 rcp('lines', linewidth=linewidth)
360 if self._data: self.plot(self._data)
361
362 def set_linestyles(self, linestyles=None, linewidth=None):
363 """
364 Set the linestyles to be used. The plotter will cycle through
365 these linestyles when lines are overlaid (stacking mode) AND
366 only one color has been set.
367 Parameters:
368 linestyles: a list of linestyles to use.
369 'line', 'dashed', 'dotted', 'dashdot',
370 'dashdotdot' and 'dashdashdot' are
371 possible
372
373 Example:
374 plotter.set_colors("black")
375 plotter.set_linestyles("line dashed dotted dashdot")
376 # If for example four lines are overlaid e.g I Q U V
377 # 'I' will be 'solid', 'Q' will be 'dashed',
378 # U will be 'dotted' and 'V' will be 'dashdot'.
379 """
380 if isinstance(linestyles,str):
381 linestyles = linestyles.split()
382 self._plotter.palette(color=0,linestyle=0,linestyles=linestyles)
383 if isinstance(linewidth, float) or isinstance(linewidth, int):
384 from matplotlib import rc as rcp
385 rcp('lines', linewidth=linewidth)
386 if self._data: self.plot(self._data)
387
388 def set_font(self, family=None, style=None, weight=None, size=None):
389 """
390 Set font properties.
391 Parameters:
392 family: one of 'sans-serif', 'serif', 'cursive', 'fantasy', 'monospace'
393 style: one of 'normal' (or 'roman'), 'italic' or 'oblique'
394 weight: one of 'normal or 'bold'
395 size: the 'general' font size, individual elements can be adjusted
396 seperately
397 """
398 from matplotlib import rc as rcp
399 if isinstance(family, str):
400 rcp('font', family=family)
401 if isinstance(style, str):
402 rcp('font', style=style)
403 if isinstance(weight, str):
404 rcp('font', weight=weight)
405 if isinstance(size, float) or isinstance(size, int):
406 rcp('font', size=size)
407 if self._data: self.plot(self._data)
408
409 def plot_lines(self, linecat=None, offset=0.0, deltachan=10, rotate=0.0,
410 location=None):
411 """
412 Plot a line catalog.
413 Parameters:
414 linecat: the linecatalog to plot
415 offset: the shift in frequency to apply to the frequencies
416 deltachan: the number of channels to include each side of the
417 line to determine a local maximum/minimum
418 rotate: the rotation for the text label
419 location: the location of the line annotation from the 'top',
420 'bottom' or alternate (None - the default)
421 Notes:
422 If the spectrum is flagged no line will be drawn in that location.
423 """
424 if not self._data: return
425 from asap._asap import linecatalog
426 if not isinstance(linecat, linecatalog): return
427 if not self._data.get_unit().endswith("GHz"): return
428 #self._plotter.hold()
429 from matplotlib.numerix import ma
430 for j in range(len(self._plotter.subplots)):
431 self._plotter.subplot(j)
432 lims = self._plotter.axes.get_xlim()
433 for row in range(linecat.nrow()):
434 restf = linecat.get_frequency(row)/1000.0
435 c = 299792.458
436 freq = restf*(doppler+c)/c
437 if lims[0] < freq < lims[1]:
438 if location is None:
439 loc = 'bottom'
440 if row%2: loc='top'
441 else: loc = location
442 maxys = []
443 for line in self._plotter.axes.lines:
444 v = line._x
445 asc = v[0] < v[-1]
446
447 idx = None
448 if not asc:
449 if v[len(v)-1] <= freq <= v[0]:
450 i = len(v)-1
451 while i>=0 and v[i] < freq:
452 idx = i
453 i-=1
454 else:
455 if v[0] <= freq <= v[len(v)-1]:
456 i = 0
457 while i<len(v) and v[i] < freq:
458 idx = i
459 i+=1
460 if idx is not None:
461 lower = idx - deltachan
462 upper = idx + deltachan
463 if lower < 0: lower = 0
464 if upper > len(v): upper = len(v)
465 s = slice(lower, upper)
466 y = line._y_orig[s]
467 maxy = ma.maximum(y)
468 if isinstance( maxy, float):
469 maxys.append(maxy)
470 if len(maxys):
471 peak = max(maxys)
472 if peak > self._plotter.axes.get_ylim()[1]:
473 loc = 'bottom'
474 else:
475 continue
476 print freq,peak
477 self._plotter.vline_with_label(freq, peak,
478 linecat.get_name(row),
479 location=loc, rotate=rotate)
480 # self._plotter.release()
481 self._plotter.show(hardrefresh=False)
482
483
484 def save(self, filename=None, orientation=None, dpi=None):
485 """
486 Save the plot to a file. The know formats are 'png', 'ps', 'eps'.
487 Parameters:
488 filename: The name of the output file. This is optional
489 and autodetects the image format from the file
490 suffix. If non filename is specified a file
491 called 'yyyymmdd_hhmmss.png' is created in the
492 current directory.
493 orientation: optional parameter for postscript only (not eps).
494 'landscape', 'portrait' or None (default) are valid.
495 If None is choosen for 'ps' output, the plot is
496 automatically oriented to fill the page.
497 dpi: The dpi of the output non-ps plot
498 """
499 self._plotter.save(filename,orientation,dpi)
500 return
501
502
503 def set_mask(self, mask=None, selection=None):
504 """
505 Set a plotting mask for a specific polarization.
506 This is useful for masking out "noise" Pangle outside a source.
507 Parameters:
508 mask: a mask from scantable.create_mask
509 selection: the spectra to apply the mask to.
510 Example:
511 select = selector()
512 select.setpolstrings("Pangle")
513 plotter.set_mask(mymask, select)
514 """
515 if not self._data:
516 msg = "Can only set mask after a first call to plot()"
517 if rcParams['verbose']:
518 print msg
519 return
520 else:
521 raise RuntimeError(msg)
522 if len(mask):
523 if isinstance(mask, list) or isinstance(mask, tuple):
524 self._usermask = array(mask)
525 else:
526 self._usermask = mask
527 if mask is None and selection is None:
528 self._usermask = []
529 self._maskselection = None
530 if isinstance(selection, selector):
531 self._maskselection = {'b': selection.get_beams(),
532 's': selection.get_scans(),
533 'i': selection.get_ifs(),
534 'p': selection.get_pols(),
535 't': [] }
536 else:
537 self._maskselection = None
538 self.plot(self._data)
539
540 def _slice_indeces(self, data):
541 mn = self._minmaxx[0]
542 mx = self._minmaxx[1]
543 asc = data[0] < data[-1]
544 start=0
545 end = len(data)-1
546 inc = 1
547 if not asc:
548 start = len(data)-1
549 end = 0
550 inc = -1
551 # find min index
552 while start > 0 and data[start] < mn:
553 start+= inc
554 # find max index
555 while end > 0 and data[end] > mx:
556 end-=inc
557 if end > 0: end +=1
558 if start > end:
559 return end,start
560 return start,end
561
562 def _reset(self):
563 self._usermask = []
564 self._usermaskspectra = None
565 self.set_selection(None, False)
566
567 def _plot(self, scan):
568 savesel = scan.get_selection()
569 sel = savesel + self._selection
570 d0 = {'s': 'SCANNO', 'b': 'BEAMNO', 'i':'IFNO',
571 'p': 'POLNO', 'c': 'CYCLENO', 't' : 'TIME' }
572 order = [d0[self._panelling],d0[self._stacking]]
573 sel.set_order(order)
574 scan.set_selection(sel)
575 d = {'b': scan.getbeam, 's': scan.getscan,
576 'i': scan.getif, 'p': scan.getpol, 't': scan._gettime }
577
578 polmodes = dict(zip(self._selection.get_pols(),
579 self._selection.get_poltypes()))
580 # this returns either a tuple of numbers or a length (ncycles)
581 # convert this into lengths
582 n0,nstack0 = self._get_selected_n(scan)
583 n = len(n0)
584 if isinstance(n0, int): n = n0
585 nstack = len(nstack0)
586 if isinstance(nstack0, int): nstack = nstack0
587 maxpanel, maxstack = 16,8
588 if n > maxpanel or nstack > maxstack:
589 from asap import asaplog
590 maxn = 0
591 if nstack > maxstack: maxn = maxstack
592 if n > maxpanel: maxn = maxpanel
593 msg ="Scan to be plotted contains more than %d selections.\n" \
594 "Selecting first %d selections..." % (maxn, maxn)
595 asaplog.push(msg)
596 print_log()
597 n = min(n,maxpanel)
598 nstack = min(nstack,maxstack)
599 if n > 1:
600 ganged = rcParams['plotter.ganged']
601 if self._rows and self._cols:
602 n = min(n,self._rows*self._cols)
603 self._plotter.set_panels(rows=self._rows,cols=self._cols,
604 nplots=n,ganged=ganged)
605 else:
606 self._plotter.set_panels(rows=n,cols=0,nplots=n,ganged=ganged)
607 else:
608 self._plotter.set_panels()
609 r=0
610 nr = scan.nrow()
611 a0,b0 = -1,-1
612 allxlim = []
613 allylim = []
614 newpanel=True
615 panelcount,stackcount = 0,0
616 while r < nr:
617 a = d[self._panelling](r)
618 b = d[self._stacking](r)
619 if a > a0 and panelcount < n:
620 if n > 1:
621 self._plotter.subplot(panelcount)
622 self._plotter.palette(0)
623 #title
624 xlab = self._abcissa and self._abcissa[panelcount] \
625 or scan._getabcissalabel()
626 ylab = self._ordinate and self._ordinate[panelcount] \
627 or scan._get_ordinate_label()
628 self._plotter.set_axes('xlabel',xlab)
629 self._plotter.set_axes('ylabel',ylab)
630 lbl = self._get_label(scan, r, self._panelling, self._title)
631 if isinstance(lbl, list) or isinstance(lbl, tuple):
632 if 0 <= panelcount < len(lbl):
633 lbl = lbl[panelcount]
634 else:
635 # get default label
636 lbl = self._get_label(scan, r, self._panelling, None)
637 self._plotter.set_axes('title',lbl)
638 newpanel = True
639 stackcount =0
640 panelcount += 1
641 if (b > b0 or newpanel) and stackcount < nstack:
642 y = []
643 if len(polmodes):
644 y = scan._getspectrum(r, polmodes[scan.getpol(r)])
645 else:
646 y = scan._getspectrum(r)
647 m = scan._getmask(r)
648 from matplotlib.numerix import logical_not, logical_and
649 if self._maskselection and len(self._usermask) == len(m):
650 if d[self._stacking](r) in self._maskselection[self._stacking]:
651 m = logical_and(m, self._usermask)
652 x = scan._getabcissa(r)
653 from matplotlib.numerix import ma, array
654 y = ma.masked_array(y,mask=logical_not(array(m,copy=False)))
655 if self._minmaxx is not None:
656 s,e = self._slice_indeces(x)
657 x = x[s:e]
658 y = y[s:e]
659 if len(x) > 1024 and rcParams['plotter.decimate']:
660 fac = len(x)/1024
661 x = x[::fac]
662 y = y[::fac]
663 llbl = self._get_label(scan, r, self._stacking, self._lmap)
664 if isinstance(llbl, list) or isinstance(llbl, tuple):
665 if 0 <= stackcount < len(llbl):
666 # use user label
667 llbl = llbl[stackcount]
668 else:
669 # get default label
670 llbl = self._get_label(scan, r, self._stacking, None)
671 self._plotter.set_line(label=llbl)
672 plotit = self._plotter.plot
673 if self._hist: plotit = self._plotter.hist
674 if len(x) > 0:
675 plotit(x,y)
676 xlim= self._minmaxx or [min(x),max(x)]
677 allxlim += xlim
678 ylim= self._minmaxy or [ma.minimum(y),ma.maximum(y)]
679 allylim += ylim
680 stackcount += 1
681 # last in colour stack -> autoscale x
682 if stackcount == nstack:
683 allxlim.sort()
684 self._plotter.axes.set_xlim([allxlim[0],allxlim[-1]])
685 # clear
686 allxlim =[]
687
688 newpanel = False
689 a0=a
690 b0=b
691 # ignore following rows
692 if (panelcount == n) and (stackcount == nstack):
693 # last panel -> autoscale y if ganged
694 if rcParams['plotter.ganged']:
695 allylim.sort()
696 self._plotter.set_limits(ylim=[allylim[0],allylim[-1]])
697 break
698 r+=1 # next row
699 #reset the selector to the scantable's original
700 scan.set_selection(savesel)
701
702 def set_selection(self, selection=None, refresh=True):
703 self._selection = isinstance(selection,selector) and selection or selector()
704 d0 = {'s': 'SCANNO', 'b': 'BEAMNO', 'i':'IFNO',
705 'p': 'POLNO', 'c': 'CYCLENO', 't' : 'TIME' }
706 order = [d0[self._panelling],d0[self._stacking]]
707 self._selection.set_order(order)
708 if self._data and refresh: self.plot(self._data)
709
710 def _get_selected_n(self, scan):
711 d1 = {'b': scan.getbeamnos, 's': scan.getscannos,
712 'i': scan.getifnos, 'p': scan.getpolnos, 't': scan.ncycle }
713 d2 = { 'b': self._selection.get_beams(),
714 's': self._selection.get_scans(),
715 'i': self._selection.get_ifs(),
716 'p': self._selection.get_pols(),
717 't': self._selection.get_cycles() }
718 n = d2[self._panelling] or d1[self._panelling]()
719 nstack = d2[self._stacking] or d1[self._stacking]()
720 return n,nstack
721
722 def _get_label(self, scan, row, mode, userlabel=None):
723 if isinstance(userlabel, list) and len(userlabel) == 0:
724 userlabel = " "
725 pms = dict(zip(self._selection.get_pols(),self._selection.get_poltypes()))
726 if len(pms):
727 poleval = scan._getpollabel(scan.getpol(row),pms[scan.getpol(row)])
728 else:
729 poleval = scan._getpollabel(scan.getpol(row),scan.poltype())
730 d = {'b': "Beam "+str(scan.getbeam(row)),
731 's': scan._getsourcename(row),
732 'i': "IF"+str(scan.getif(row)),
733 'p': poleval,
734 't': scan._gettime(row) }
735 return userlabel or d[mode]
736
Note: See TracBrowser for help on using the repository browser.