[203] | 1 | from asap.asaplot import ASAPlot
|
---|
[226] | 2 | from asap import rcParams
|
---|
[203] | 3 |
|
---|
| 4 | class asapplotter:
|
---|
[226] | 5 | """
|
---|
| 6 | The ASAP plotter.
|
---|
| 7 | By default the plotter is set up to plot polarisations
|
---|
| 8 | 'colour stacked' and scantables across panels.
|
---|
| 9 | Note:
|
---|
| 10 | Currenly it only plots 'spectra' not Tsys or
|
---|
| 11 | other variables.
|
---|
| 12 | """
|
---|
[203] | 13 | def __init__(self):
|
---|
| 14 | self._plotter = ASAPlot()
|
---|
| 15 |
|
---|
| 16 | self._tdict = {'Time':'t','time':'t','t':'t','T':'t'}
|
---|
| 17 | self._bdict = {'Beam':'b','beam':'b','b':'b','B':'b'}
|
---|
| 18 | self._idict = {'IF':'i','if':'i','i':'i','I':'i'}
|
---|
| 19 | self._pdict = {'Pol':'p','pol':'p','p':'p'}
|
---|
| 20 | self._sdict = {'scan':'s','Scan':'s','s':'s','S':'s'}
|
---|
[525] | 21 | self._cdict = {'t':'len(self._cursor["t"])',
|
---|
| 22 | 'b':'len(self._cursor["b"])',
|
---|
| 23 | 'i':'len(self._cursor["i"])',
|
---|
| 24 | 'p':'len(self._cursor["p"])',
|
---|
[203] | 25 | 's':'len(scans)'}
|
---|
| 26 | self._ldict = {'b':'Beam',
|
---|
| 27 | 'i':'IF',
|
---|
| 28 | 'p':'Pol',
|
---|
| 29 | 's':'Scan'}
|
---|
| 30 | self._dicts = [self._tdict,self._bdict,
|
---|
| 31 | self._idict,self._pdict,
|
---|
| 32 | self._sdict]
|
---|
[554] | 33 | self._panelling = None
|
---|
| 34 | self._stacking = None
|
---|
| 35 | self.set_panelling()
|
---|
| 36 | self.set_stacking()
|
---|
[377] | 37 | self._rows = None
|
---|
| 38 | self._cols = None
|
---|
[203] | 39 | self._autoplot = False
|
---|
[525] | 40 | self._minmaxx = None
|
---|
| 41 | self._minmaxy = None
|
---|
[203] | 42 | self._data = None
|
---|
[607] | 43 | self._lmap = None
|
---|
[226] | 44 | self._title = None
|
---|
[257] | 45 | self._ordinate = None
|
---|
| 46 | self._abcissa = None
|
---|
[525] | 47 | self._cursor = {'t':None, 'b':None,
|
---|
| 48 | 'i':None, 'p':None
|
---|
| 49 | }
|
---|
[203] | 50 |
|
---|
| 51 | def _translate(self, name):
|
---|
| 52 | for d in self._dicts:
|
---|
| 53 | if d.has_key(name):
|
---|
| 54 | return d[name]
|
---|
| 55 | return None
|
---|
| 56 |
|
---|
[525] | 57 | def plot(self, *args):
|
---|
[203] | 58 | """
|
---|
| 59 | Plot a (list of) scantables.
|
---|
| 60 | Parameters:
|
---|
| 61 | one or more comma separated scantables
|
---|
| 62 | Note:
|
---|
| 63 | If a (list) of scantables was specified in a previous call
|
---|
| 64 | to plot, no argument has to be given to 'replot'
|
---|
[525] | 65 | NO checking is done that the abcissas of the scantables
|
---|
[203] | 66 | are consistent e.g. all 'channel' or all 'velocity' etc.
|
---|
| 67 | """
|
---|
| 68 | if self._plotter.is_dead:
|
---|
| 69 | self._plotter = ASAPlot()
|
---|
[600] | 70 | self._plotter.hold()
|
---|
[203] | 71 | self._plotter.clear()
|
---|
| 72 | if len(args) > 0:
|
---|
[525] | 73 | if self._data is not None:
|
---|
| 74 | if list(args) != self._data:
|
---|
| 75 | self._data = list(args)
|
---|
| 76 | # reset cursor
|
---|
[541] | 77 | self.set_cursor(refresh=False)
|
---|
[525] | 78 | else:
|
---|
| 79 | self._data = list(args)
|
---|
[541] | 80 | self.set_cursor(refresh=False)
|
---|
[554] | 81 | if self._panelling == 't':
|
---|
[626] | 82 | maxrows = 25
|
---|
[541] | 83 | if self._data[0].nrow() > maxrows:
|
---|
[603] | 84 | if self._cursor["t"] is None or \
|
---|
| 85 | (isinstance(self._cursor["t"],list) and \
|
---|
| 86 | len(self._cursor["t"]) > maxrows ):
|
---|
| 87 | print "Scan to be plotted contains more than %d rows.\n" \
|
---|
| 88 | "Selecting first %d rows..." % (maxrows,maxrows)
|
---|
| 89 | self._cursor["t"] = range(maxrows)
|
---|
[203] | 90 | self._plot_time(self._data[0], self._stacking)
|
---|
[554] | 91 | elif self._panelling == 's':
|
---|
[203] | 92 | self._plot_scans(self._data, self._stacking)
|
---|
| 93 | else:
|
---|
| 94 | self._plot_other(self._data, self._stacking)
|
---|
[525] | 95 | if self._minmaxx is not None or self._minmaxy is not None:
|
---|
| 96 | self._plotter.set_limits(xlim=self._minmaxx,ylim=self._minmaxy)
|
---|
[203] | 97 | self._plotter.release()
|
---|
| 98 | return
|
---|
| 99 |
|
---|
| 100 | def _plot_time(self, scan, colmode):
|
---|
| 101 | if colmode == 't':
|
---|
| 102 | return
|
---|
[525] | 103 | n = len(self._cursor["t"])
|
---|
[203] | 104 | cdict = {'b':'scan.setbeam(j)',
|
---|
| 105 | 'i':'scan.setif(j)',
|
---|
| 106 | 'p':'scan.setpol(j)'}
|
---|
[525] | 107 | cdict2 = {'b':'self._cursor["b"]',
|
---|
| 108 | 'i':'self._cursor["i"]',
|
---|
| 109 | 'p':'self._cursor["p"]'}
|
---|
| 110 | ncol = 1
|
---|
[203] | 111 | if self._stacking is not None:
|
---|
| 112 | ncol = eval(self._cdict.get(colmode))
|
---|
| 113 | if n > 1:
|
---|
[377] | 114 | if self._rows and self._cols:
|
---|
| 115 | n = min(n,self._rows*self._cols)
|
---|
| 116 | self._plotter.set_panels(rows=self._rows,cols=self._cols,
|
---|
| 117 | nplots=n)
|
---|
| 118 | else:
|
---|
[485] | 119 | self._plotter.set_panels(rows=n,cols=0,nplots=n)
|
---|
[600] | 120 | else:
|
---|
| 121 | self._plotter.set_panels()
|
---|
[525] | 122 | rows = self._cursor["t"]
|
---|
[652] | 123 | self._plotter.palette(0)
|
---|
[525] | 124 | for rowsel in rows:
|
---|
| 125 | i = self._cursor["t"].index(rowsel)
|
---|
[203] | 126 | if n > 1:
|
---|
[652] | 127 | self._plotter.palette(0)
|
---|
[203] | 128 | self._plotter.subplot(i)
|
---|
[525] | 129 | colvals = eval(cdict2.get(colmode))
|
---|
| 130 | for j in colvals:
|
---|
| 131 | polmode = "raw"
|
---|
| 132 | jj = colvals.index(j)
|
---|
| 133 | savej = j
|
---|
| 134 | for k in cdict.keys():
|
---|
| 135 | sel = eval(cdict2.get(k))
|
---|
| 136 | j = sel[0]
|
---|
| 137 | if k == "p":
|
---|
| 138 | which = self._cursor["p"].index(j)
|
---|
| 139 | polmode = self._polmode[which]
|
---|
| 140 | j = which
|
---|
| 141 | eval(cdict.get(k))
|
---|
| 142 | j = savej
|
---|
| 143 | if colmode == "p":
|
---|
| 144 | polmode = self._polmode[self._cursor["p"].index(j)]
|
---|
| 145 | j = jj
|
---|
[203] | 146 | eval(cdict.get(colmode))
|
---|
| 147 | x = None
|
---|
| 148 | y = None
|
---|
| 149 | m = None
|
---|
[626] | 150 | if self._title is None:
|
---|
[525] | 151 | tlab = scan._getsourcename(rowsel)
|
---|
[226] | 152 | else:
|
---|
[626] | 153 | if len(self._title) >= n:
|
---|
[525] | 154 | tlab = self._title[rowsel]
|
---|
[226] | 155 | else:
|
---|
[525] | 156 | tlab = scan._getsourcename(rowsel)
|
---|
| 157 | x,xlab = scan.get_abcissa(rowsel)
|
---|
[257] | 158 | if self._abcissa: xlab = self._abcissa
|
---|
[525] | 159 | y = None
|
---|
| 160 | if polmode == "stokes":
|
---|
| 161 | y = scan._getstokesspectrum(rowsel)
|
---|
| 162 | elif polmode == "stokes2":
|
---|
| 163 | y = scan._getstokesspectrum(rowsel,True)
|
---|
[541] | 164 | elif polmode == "circular":
|
---|
| 165 | y = scan._stokestopolspectrum(rowsel,False,-1)
|
---|
[525] | 166 | else:
|
---|
| 167 | y = scan._getspectrum(rowsel)
|
---|
[257] | 168 | if self._ordinate:
|
---|
| 169 | ylab = self._ordinate
|
---|
| 170 | else:
|
---|
[626] | 171 | ylab = scan._get_ordinate_label()
|
---|
[525] | 172 | m = scan._getmask(rowsel)
|
---|
[226] | 173 | if self._lmap and len(self._lmap) > 0:
|
---|
[525] | 174 | llab = self._lmap[jj]
|
---|
[203] | 175 | else:
|
---|
[525] | 176 | if colmode == 'p':
|
---|
[603] | 177 | llab = self._get_pollabel(scan, polmode)
|
---|
[525] | 178 | else:
|
---|
| 179 | llab = self._ldict.get(colmode)+' '+str(j)
|
---|
[203] | 180 | self._plotter.set_line(label=llab)
|
---|
| 181 | self._plotter.plot(x,y,m)
|
---|
| 182 | xlim=[min(x),max(x)]
|
---|
| 183 | self._plotter.axes.set_xlim(xlim)
|
---|
| 184 | self._plotter.set_axes('xlabel',xlab)
|
---|
| 185 | self._plotter.set_axes('ylabel',ylab)
|
---|
| 186 | self._plotter.set_axes('title',tlab)
|
---|
| 187 | return
|
---|
| 188 |
|
---|
[525] | 189 | def _plot_scans(self, scans, colmode):
|
---|
| 190 | print "Can only plot one row per scan."
|
---|
[203] | 191 | if colmode == 's':
|
---|
| 192 | return
|
---|
| 193 | cdict = {'b':'scan.setbeam(j)',
|
---|
| 194 | 'i':'scan.setif(j)',
|
---|
| 195 | 'p':'scan.setpol(j)'}
|
---|
[525] | 196 | cdict2 = {'b':'self._cursor["b"]',
|
---|
| 197 | 'i':'self._cursor["i"]',
|
---|
| 198 | 'p':'self._cursor["p"]'}
|
---|
| 199 |
|
---|
[203] | 200 | n = len(scans)
|
---|
[525] | 201 | ncol = 1
|
---|
[203] | 202 | if self._stacking is not None:
|
---|
| 203 | scan = scans[0]
|
---|
| 204 | ncol = eval(self._cdict.get(colmode))
|
---|
| 205 | if n > 1:
|
---|
[377] | 206 | if self._rows and self._cols:
|
---|
| 207 | n = min(n,self._rows*self._cols)
|
---|
[626] | 208 | self._plotter.set_panels(rows=self._rows,cols=self._cols,
|
---|
[377] | 209 | nplots=n)
|
---|
| 210 | else:
|
---|
[626] | 211 | self._plotter.set_panels(rows=n,cols=0,nplots=n)
|
---|
[600] | 212 | else:
|
---|
| 213 | self._plotter.set_panels()
|
---|
[626] | 214 |
|
---|
[203] | 215 | for scan in scans:
|
---|
[652] | 216 | self._plotter.palette(0)
|
---|
[203] | 217 | if n > 1:
|
---|
[525] | 218 | self._plotter.subplot(scans.index(scan))
|
---|
| 219 | colvals = eval(cdict2.get(colmode))
|
---|
| 220 | rowsel = self._cursor["t"][0]
|
---|
| 221 | for j in colvals:
|
---|
| 222 | polmode = "raw"
|
---|
| 223 | jj = colvals.index(j)
|
---|
| 224 | savej = j
|
---|
| 225 | for k in cdict.keys():
|
---|
| 226 | sel = eval(cdict2.get(k))
|
---|
| 227 | j = sel[0]
|
---|
| 228 | eval(cdict.get(k))
|
---|
| 229 | if k == "p":
|
---|
| 230 | which = self._cursor["p"].index(j)
|
---|
| 231 | polmode = self._polmode[which]
|
---|
| 232 | j = which
|
---|
| 233 | j = savej
|
---|
| 234 | if colmode == "p":
|
---|
| 235 | polmode = self._polmode[self._cursor["p"].index(j)]
|
---|
| 236 | j = jj
|
---|
[203] | 237 | eval(cdict.get(colmode))
|
---|
| 238 | x = None
|
---|
| 239 | y = None
|
---|
| 240 | m = None
|
---|
[226] | 241 | tlab = self._title
|
---|
| 242 | if not self._title:
|
---|
[525] | 243 | tlab = scan._getsourcename(rowsel)
|
---|
| 244 | x,xlab = scan.get_abcissa(rowsel)
|
---|
[257] | 245 | if self._abcissa: xlab = self._abcissa
|
---|
[525] | 246 | if polmode == "stokes":
|
---|
| 247 | y = scan._getstokesspectrum(rowsel)
|
---|
| 248 | elif polmode == "stokes2":
|
---|
| 249 | y = scan._getstokesspectrum(rowsel,True)
|
---|
[541] | 250 | elif polmode == "circular":
|
---|
| 251 | y = scan._stokestopolspectrum(rowsel,False,-1)
|
---|
[525] | 252 | else:
|
---|
| 253 | y = scan._getspectrum(rowsel)
|
---|
[257] | 254 | if self._ordinate:
|
---|
| 255 | ylab = self._ordinate
|
---|
| 256 | else:
|
---|
[626] | 257 | ylab = scan._get_ordinate_label()
|
---|
[525] | 258 | m = scan._getmask(rowsel)
|
---|
[257] | 259 | if self._lmap and len(self._lmap) > 0:
|
---|
[525] | 260 | llab = self._lmap[jj]
|
---|
[203] | 261 | else:
|
---|
[525] | 262 | if colmode == 'p':
|
---|
[603] | 263 | llab = self._get_pollabel(scan, polmode)
|
---|
[525] | 264 | else:
|
---|
| 265 | llab = self._ldict.get(colmode)+' '+str(j)
|
---|
[203] | 266 | self._plotter.set_line(label=llab)
|
---|
| 267 | self._plotter.plot(x,y,m)
|
---|
| 268 | xlim=[min(x),max(x)]
|
---|
| 269 | self._plotter.axes.set_xlim(xlim)
|
---|
| 270 |
|
---|
| 271 | self._plotter.set_axes('xlabel',xlab)
|
---|
| 272 | self._plotter.set_axes('ylabel',ylab)
|
---|
| 273 | self._plotter.set_axes('title',tlab)
|
---|
| 274 | return
|
---|
| 275 |
|
---|
| 276 | def _plot_other(self,scans,colmode):
|
---|
[554] | 277 | if colmode == self._panelling:
|
---|
[203] | 278 | return
|
---|
[525] | 279 | cdict = {'b':'scan.setbeam(i)',
|
---|
| 280 | 'i':'scan.setif(i)',
|
---|
| 281 | 'p':'scan.setpol(i)'}
|
---|
| 282 | cdict2 = {'b':'self._cursor["b"]',
|
---|
| 283 | 'i':'self._cursor["i"]',
|
---|
| 284 | 'p':'self._cursor["p"]',
|
---|
| 285 | 's': 'scans',
|
---|
| 286 | 't': 'self._cursor["t"]'}
|
---|
[203] | 287 | scan = scans[0]
|
---|
[554] | 288 | n = eval(self._cdict.get(self._panelling))
|
---|
[525] | 289 | ncol=1
|
---|
[203] | 290 | if self._stacking is not None:
|
---|
| 291 | ncol = eval(self._cdict.get(colmode))
|
---|
| 292 | if n > 1:
|
---|
[377] | 293 | if self._rows and self._cols:
|
---|
| 294 | n = min(n,self._rows*self._cols)
|
---|
| 295 | self._plotter.set_panels(rows=self._rows,cols=self._cols,
|
---|
| 296 | nplots=n)
|
---|
| 297 | else:
|
---|
[485] | 298 | self._plotter.set_panels(rows=n,cols=0,nplots=n)
|
---|
[600] | 299 | else:
|
---|
| 300 | self._plotter.set_panels()
|
---|
[554] | 301 | panels = self._cursor[self._panelling]
|
---|
[525] | 302 | for i in panels:
|
---|
[652] | 303 | self._plotter.palette(0)
|
---|
[525] | 304 | polmode = "raw"
|
---|
[554] | 305 | ii = self._cursor[self._panelling].index(i)
|
---|
[203] | 306 | if n>1:
|
---|
[525] | 307 | self._plotter.subplot(ii)
|
---|
[554] | 308 | if self._panelling == "p":
|
---|
[525] | 309 | polmode = self._polmode[ii]
|
---|
[554] | 310 | eval(cdict.get(self._panelling))
|
---|
[525] | 311 | else:
|
---|
[554] | 312 | eval(cdict.get(self._panelling))
|
---|
[525] | 313 | colvals = eval(cdict2.get(colmode))
|
---|
| 314 | for j in colvals:
|
---|
| 315 | rowsel = self._cursor["t"][0]
|
---|
| 316 | jj = colvals.index(j)
|
---|
| 317 | savei = i
|
---|
| 318 | for k in cdict.keys():
|
---|
[554] | 319 | if k != self._panelling:
|
---|
[525] | 320 | sel = eval(cdict2.get(k))
|
---|
| 321 | i = sel[0]
|
---|
| 322 | if k == "p":
|
---|
[557] | 323 | which = self._cursor["p"].index(i)
|
---|
[525] | 324 | polmode = self._polmode[which]
|
---|
| 325 | i = which
|
---|
| 326 | eval(cdict.get(k))
|
---|
| 327 | i = savei
|
---|
[203] | 328 | if colmode == 's':
|
---|
[525] | 329 | scan = j
|
---|
[203] | 330 | elif colmode == 't':
|
---|
[525] | 331 | rowsel = j
|
---|
[203] | 332 | else:
|
---|
[525] | 333 | savei = i
|
---|
| 334 | if colmode == 'p':
|
---|
| 335 | polmode = self._polmode[self._cursor["p"].index(j)]
|
---|
| 336 | i = j
|
---|
[203] | 337 | eval(cdict.get(colmode))
|
---|
[525] | 338 | i = savei
|
---|
[203] | 339 | x = None
|
---|
| 340 | y = None
|
---|
| 341 | m = None
|
---|
[525] | 342 | x,xlab = scan.get_abcissa(rowsel)
|
---|
[257] | 343 | if self._abcissa: xlab = self._abcissa
|
---|
[525] | 344 | if polmode == "stokes":
|
---|
| 345 | y = scan._getstokesspectrum(rowsel)
|
---|
| 346 | elif polmode == "stokes2":
|
---|
| 347 | y = scan._getstokesspectrum(rowsel,True)
|
---|
[541] | 348 | elif polmode == "circular":
|
---|
| 349 | y = scan._stokestopolspectrum(rowsel,False,-1)
|
---|
[525] | 350 | else:
|
---|
| 351 | y = scan._getspectrum(rowsel)
|
---|
| 352 |
|
---|
[257] | 353 | if self._ordinate:
|
---|
| 354 | ylab = self._ordinate
|
---|
| 355 | else:
|
---|
[626] | 356 | ylab = scan._get_ordinate_label()
|
---|
[525] | 357 | m = scan._getmask(rowsel)
|
---|
[203] | 358 | if colmode == 's' or colmode == 't':
|
---|
[525] | 359 | if self._title and len(self._title) > 0:
|
---|
| 360 | tlab = self._title[ii]
|
---|
[652] | 361 | else:
|
---|
| 362 | if self._panelling == 'p':
|
---|
| 363 | tlab = self._get_pollabel(scan, polmode)
|
---|
| 364 | else:
|
---|
| 365 | tlab = self._ldict.get(self._panelling)+' '+str(i)
|
---|
[607] | 366 | if self._lmap and len(self._lmap) > 0:
|
---|
| 367 | llab = self._lmap[jj]
|
---|
| 368 | else:
|
---|
| 369 | llab = scan._getsourcename(rowsel)
|
---|
[203] | 370 | else:
|
---|
[226] | 371 | if self._title and len(self._title) > 0:
|
---|
[525] | 372 | tlab = self._title[ii]
|
---|
[226] | 373 | else:
|
---|
[603] | 374 | if self._panelling == 'p':
|
---|
| 375 | tlab = self._get_pollabel(scan, polmode)
|
---|
| 376 | else:
|
---|
| 377 | tlab = self._ldict.get(self._panelling)+' '+str(i)
|
---|
[226] | 378 | if self._lmap and len(self._lmap) > 0:
|
---|
[525] | 379 | llab = self._lmap[jj]
|
---|
[203] | 380 | else:
|
---|
[525] | 381 | if colmode == 'p':
|
---|
[603] | 382 | llab = self._get_pollabel(scan, polmode)
|
---|
[525] | 383 | else:
|
---|
| 384 | llab = self._ldict.get(colmode)+' '+str(j)
|
---|
[203] | 385 | self._plotter.set_line(label=llab)
|
---|
| 386 | self._plotter.plot(x,y,m)
|
---|
| 387 | xlim=[min(x),max(x)]
|
---|
| 388 | self._plotter.axes.set_xlim(xlim)
|
---|
| 389 |
|
---|
| 390 | self._plotter.set_axes('xlabel',xlab)
|
---|
| 391 | self._plotter.set_axes('ylabel',ylab)
|
---|
| 392 | self._plotter.set_axes('title',tlab)
|
---|
| 393 |
|
---|
| 394 | return
|
---|
| 395 |
|
---|
| 396 |
|
---|
[226] | 397 | def set_mode(self, stacking=None, panelling=None):
|
---|
[203] | 398 | """
|
---|
[377] | 399 | Set the plots look and feel, i.e. what you want to see on the plot.
|
---|
[203] | 400 | Parameters:
|
---|
| 401 | stacking: tell the plotter which variable to plot
|
---|
| 402 | as line colour overlays (default 'pol')
|
---|
| 403 | panelling: tell the plotter which variable to plot
|
---|
| 404 | across multiple panels (default 'scan'
|
---|
| 405 | Note:
|
---|
| 406 | Valid modes are:
|
---|
| 407 | 'beam' 'Beam' 'b': Beams
|
---|
| 408 | 'if' 'IF' 'i': IFs
|
---|
| 409 | 'pol' 'Pol' 'p': Polarisations
|
---|
| 410 | 'scan' 'Scan' 's': Scans
|
---|
| 411 | 'time' 'Time' 't': Times
|
---|
| 412 | """
|
---|
[554] | 413 | if not self.set_panelling(panelling):
|
---|
[203] | 414 | print "Invalid mode"
|
---|
[226] | 415 | return
|
---|
[203] | 416 | if not self.set_stacking(stacking):
|
---|
| 417 | print "Invalid mode"
|
---|
[226] | 418 | return
|
---|
| 419 | if self._data: self.plot()
|
---|
[203] | 420 | return
|
---|
| 421 |
|
---|
[554] | 422 | def set_panelling(self, what=None):
|
---|
| 423 | mode = what
|
---|
| 424 | if mode is None:
|
---|
| 425 | mode = rcParams['plotter.panelling']
|
---|
| 426 | md = self._translate(mode)
|
---|
[203] | 427 | if md:
|
---|
[554] | 428 | self._panelling = md
|
---|
[226] | 429 | self._title = None
|
---|
[203] | 430 | return True
|
---|
| 431 | return False
|
---|
| 432 |
|
---|
[377] | 433 | def set_layout(self,rows=None,cols=None):
|
---|
| 434 | """
|
---|
| 435 | Set the multi-panel layout, i.e. how many rows and columns plots
|
---|
| 436 | are visible.
|
---|
| 437 | Parameters:
|
---|
| 438 | rows: The number of rows of plots
|
---|
| 439 | cols: The number of columns of plots
|
---|
| 440 | Note:
|
---|
| 441 | If no argument is given, the potter reverts to its auto-plot
|
---|
| 442 | behaviour.
|
---|
| 443 | """
|
---|
| 444 | self._rows = rows
|
---|
| 445 | self._cols = cols
|
---|
| 446 | if self._data: self.plot()
|
---|
| 447 | return
|
---|
| 448 |
|
---|
[226] | 449 | def set_stacking(self, what=None):
|
---|
[554] | 450 | mode = what
|
---|
| 451 | if mode is None:
|
---|
| 452 | mode = rcParams['plotter.stacking']
|
---|
| 453 | md = self._translate(mode)
|
---|
[203] | 454 | if md:
|
---|
| 455 | self._stacking = md
|
---|
[226] | 456 | self._lmap = None
|
---|
[203] | 457 | return True
|
---|
| 458 | return False
|
---|
| 459 |
|
---|
[525] | 460 | def set_range(self,xstart=None,xend=None,ystart=None,yend=None):
|
---|
[203] | 461 | """
|
---|
| 462 | Set the range of interest on the abcissa of the plot
|
---|
| 463 | Parameters:
|
---|
[525] | 464 | [x,y]start,[x,y]end: The start and end points of the 'zoom' window
|
---|
[203] | 465 | Note:
|
---|
| 466 | These become non-sensical when the unit changes.
|
---|
| 467 | use plotter.set_range() without parameters to reset
|
---|
| 468 |
|
---|
| 469 | """
|
---|
[525] | 470 | if xstart is None and xend is None:
|
---|
| 471 | self._minmaxx = None
|
---|
[600] | 472 | else:
|
---|
| 473 | self._minmaxx = [xstart,xend]
|
---|
[525] | 474 | if ystart is None and yend is None:
|
---|
| 475 | self._minmaxy = None
|
---|
[600] | 476 | else:
|
---|
| 477 | self._minmaxy = [ystart,yend]
|
---|
[525] | 478 | if self._data: self.plot()
|
---|
[203] | 479 | return
|
---|
| 480 |
|
---|
[257] | 481 | def set_legend(self, mp=None):
|
---|
[203] | 482 | """
|
---|
| 483 | Specify a mapping for the legend instead of using the default
|
---|
| 484 | indices:
|
---|
| 485 | Parameters:
|
---|
| 486 | mp: a list of 'strings'. This should have the same length
|
---|
| 487 | as the number of elements on the legend and then maps
|
---|
| 488 | to the indeces in order
|
---|
| 489 |
|
---|
| 490 | Example:
|
---|
[485] | 491 | If the data has two IFs/rest frequencies with index 0 and 1
|
---|
[203] | 492 | for CO and SiO:
|
---|
| 493 | plotter.set_stacking('i')
|
---|
| 494 | plotter.set_legend_map(['CO','SiO'])
|
---|
| 495 | plotter.plot()
|
---|
| 496 | """
|
---|
| 497 | self._lmap = mp
|
---|
[226] | 498 | if self._data: self.plot()
|
---|
| 499 | return
|
---|
| 500 |
|
---|
| 501 | def set_title(self, title=None):
|
---|
| 502 | self._title = title
|
---|
| 503 | if self._data: self.plot()
|
---|
| 504 | return
|
---|
| 505 |
|
---|
[257] | 506 | def set_ordinate(self, ordinate=None):
|
---|
| 507 | self._ordinate = ordinate
|
---|
| 508 | if self._data: self.plot()
|
---|
| 509 | return
|
---|
| 510 |
|
---|
| 511 | def set_abcissa(self, abcissa=None):
|
---|
| 512 | self._abcissa = abcissa
|
---|
| 513 | if self._data: self.plot()
|
---|
| 514 | return
|
---|
| 515 |
|
---|
[652] | 516 | def save(self, filename=None, orientation='landscape'):
|
---|
[377] | 517 | """
|
---|
| 518 | Save the plot to a file. The know formats are 'png', 'ps', 'eps'.
|
---|
| 519 | Parameters:
|
---|
| 520 | filename: The name of the output file. This is optional
|
---|
| 521 | and autodetects the image format from the file
|
---|
| 522 | suffix. If non filename is specified a file
|
---|
| 523 | called 'yyyymmdd_hhmmss.png' is created in the
|
---|
| 524 | current directory.
|
---|
[652] | 525 | orientation: optional parameter for postscript. 'landscape'
|
---|
| 526 | (default) and 'portrait' are valid.
|
---|
[377] | 527 | """
|
---|
[652] | 528 | self._plotter.save(filename,orientation)
|
---|
[377] | 529 | return
|
---|
[525] | 530 |
|
---|
[541] | 531 | def set_cursor(self, row=None,beam=None,IF=None,pol=None, refresh=True):
|
---|
[525] | 532 | """
|
---|
| 533 | Specify a 'cursor' for plotting selected spectra. Time (rows),
|
---|
| 534 | Beam, IF, Polarisation ranges can be specified.
|
---|
| 535 | Parameters:
|
---|
| 536 | Default for all paramaters is to select all available
|
---|
| 537 | row: selects the rows (time stamps) to be plotted, this has
|
---|
| 538 | to be a vector of row indices, e.g. row=[0,2,5] or row=[2]
|
---|
| 539 | beam: select a range of beams
|
---|
| 540 | IF: select a range of IFs
|
---|
| 541 | pol: select Polarisations for plotting these can be by index
|
---|
| 542 | (raw polarisations (default)) or by names any of:
|
---|
| 543 | ["I", "Q", "U", "V"] or
|
---|
| 544 | ["I", "Plinear", "Pangle", "V"] or
|
---|
[541] | 545 | ["XX", "YY", "Real(XY)", "Imag(XY)"] or
|
---|
| 546 | ["RR", "LL"]
|
---|
[525] | 547 | Example:
|
---|
| 548 | plotter.set_mode('pol','time')
|
---|
| 549 | plotter.plot(myscan) # plots all raw polarisations colour stacked
|
---|
| 550 | plotter.set_cursor(pol=["I"]) # plot "I" only for all rows
|
---|
| 551 | # plot "I" only for two time stamps row=0 and row=2
|
---|
| 552 | plotter.set_cursor(row=[0,2],pol=["I"])
|
---|
[257] | 553 |
|
---|
[525] | 554 | Note:
|
---|
| 555 | Be careful to select only exisiting polarisations.
|
---|
| 556 | """
|
---|
| 557 | if not self._data:
|
---|
| 558 | print "Can only set cursor after a first call to plot()"
|
---|
| 559 | return
|
---|
| 560 |
|
---|
| 561 | n = self._data[0].nrow()
|
---|
| 562 | if row is None:
|
---|
| 563 | self._cursor["t"] = range(n)
|
---|
| 564 | else:
|
---|
| 565 | for i in row:
|
---|
[554] | 566 | if i < 0 or i >= n:
|
---|
[525] | 567 | print "Row index '%d' out of range" % i
|
---|
| 568 | return
|
---|
| 569 | self._cursor["t"] = row
|
---|
| 570 |
|
---|
| 571 | n = self._data[0].nbeam()
|
---|
| 572 | if beam is None:
|
---|
| 573 | self._cursor["b"] = range(n)
|
---|
| 574 | else:
|
---|
| 575 | for i in beam:
|
---|
[554] | 576 | if i < 0 or i >= n:
|
---|
[525] | 577 | print "Beam index '%d' out of range" % i
|
---|
| 578 | return
|
---|
| 579 | self._cursor["b"] = beam
|
---|
| 580 |
|
---|
| 581 | n = self._data[0].nif()
|
---|
| 582 | if IF is None:
|
---|
| 583 | self._cursor["i"] = range(n)
|
---|
| 584 | else:
|
---|
| 585 | for i in IF:
|
---|
[554] | 586 | if i < 0 or i >= n:
|
---|
[525] | 587 | print "IF index '%d' out of range" %i
|
---|
| 588 | return
|
---|
| 589 | self._cursor["i"] = IF
|
---|
| 590 |
|
---|
| 591 | n = self._data[0].npol()
|
---|
| 592 | dstokes = {"I":0,"Q":1,"U":2,"V":3}
|
---|
| 593 | dstokes2 = {"I":0,"Plinear":1,"Pangle":2,"V":3}
|
---|
| 594 | draw = {"XX":0, "YY":1,"Real(XY)":2, "Imag(XY)":3}
|
---|
[541] | 595 | dcirc = { "RR":0,"LL":1}#,"Real(RL)":2,"Image(RL)":3}
|
---|
[525] | 596 |
|
---|
| 597 | if pol is None:
|
---|
| 598 | self._cursor["p"] = range(n)
|
---|
| 599 | self._polmode = ["raw" for i in range(n)]
|
---|
| 600 | else:
|
---|
| 601 | if isinstance(pol,str):
|
---|
| 602 | pol = pol.split()
|
---|
| 603 | polmode = []
|
---|
| 604 | pols = []
|
---|
| 605 | for i in pol:
|
---|
| 606 | if isinstance(i,str):
|
---|
| 607 | if draw.has_key(i):
|
---|
| 608 | pols.append(draw.get(i))
|
---|
| 609 | polmode.append("raw")
|
---|
| 610 | elif dstokes.has_key(i):
|
---|
| 611 | pols.append(dstokes.get(i))
|
---|
| 612 | polmode.append("stokes")
|
---|
| 613 | elif dstokes2.has_key(i):
|
---|
| 614 | pols.append(dstokes2.get(i))
|
---|
| 615 | polmode.append("stokes2")
|
---|
| 616 | elif dcirc.has_key(i):
|
---|
| 617 | pols.append(dcirc.get(i))
|
---|
[541] | 618 | polmode.append("circular")
|
---|
[525] | 619 | else:
|
---|
[652] | 620 | print "Pol type '%s' not valid" %i
|
---|
[525] | 621 | return
|
---|
| 622 | elif 0 > i >= n:
|
---|
| 623 | print "Pol index '%d' out of range" %i
|
---|
| 624 | return
|
---|
| 625 | else:
|
---|
| 626 | pols.append(i)
|
---|
| 627 | polmode.append("raw")
|
---|
| 628 | self._cursor["p"] = pols
|
---|
| 629 | self._polmode = polmode
|
---|
[541] | 630 | if self._data and refresh: self.plot()
|
---|
[525] | 631 |
|
---|
[603] | 632 | def _get_pollabel(self, scan, polmode):
|
---|
| 633 | tlab = ""
|
---|
| 634 | if polmode == "stokes":
|
---|
| 635 | tlab = scan._getpolarizationlabel(0,1,0)
|
---|
| 636 | elif polmode == "stokes2":
|
---|
| 637 | tlab = scan._getpolarizationlabel(0,1,1)
|
---|
| 638 | elif polmode == "circular":
|
---|
| 639 | tlab = scan._getpolarizationlabel(0,0,0)
|
---|
| 640 | else:
|
---|
| 641 | tlab = scan._getpolarizationlabel(1,0,0)
|
---|
| 642 | return tlab
|
---|
[525] | 643 |
|
---|
[203] | 644 | if __name__ == '__main__':
|
---|
| 645 | plotter = asapplotter()
|
---|