[203] | 1 | from asap.asaplot import ASAPlot
|
---|
[226] | 2 | from asap import rcParams
|
---|
[203] | 3 |
|
---|
| 4 | class asapplotter:
|
---|
[226] | 5 | """
|
---|
| 6 | The ASAP plotter.
|
---|
| 7 | By default the plotter is set up to plot polarisations
|
---|
| 8 | 'colour stacked' and scantables across panels.
|
---|
| 9 | Note:
|
---|
| 10 | Currenly it only plots 'spectra' not Tsys or
|
---|
| 11 | other variables.
|
---|
| 12 | """
|
---|
[203] | 13 | def __init__(self):
|
---|
| 14 | self._plotter = ASAPlot()
|
---|
| 15 |
|
---|
| 16 | self._tdict = {'Time':'t','time':'t','t':'t','T':'t'}
|
---|
| 17 | self._bdict = {'Beam':'b','beam':'b','b':'b','B':'b'}
|
---|
| 18 | self._idict = {'IF':'i','if':'i','i':'i','I':'i'}
|
---|
| 19 | self._pdict = {'Pol':'p','pol':'p','p':'p'}
|
---|
| 20 | self._sdict = {'scan':'s','Scan':'s','s':'s','S':'s'}
|
---|
[525] | 21 | self._cdict = {'t':'len(self._cursor["t"])',
|
---|
| 22 | 'b':'len(self._cursor["b"])',
|
---|
| 23 | 'i':'len(self._cursor["i"])',
|
---|
| 24 | 'p':'len(self._cursor["p"])',
|
---|
[203] | 25 | 's':'len(scans)'}
|
---|
| 26 | self._ldict = {'b':'Beam',
|
---|
| 27 | 'i':'IF',
|
---|
| 28 | 'p':'Pol',
|
---|
| 29 | 's':'Scan'}
|
---|
| 30 | self._dicts = [self._tdict,self._bdict,
|
---|
| 31 | self._idict,self._pdict,
|
---|
| 32 | self._sdict]
|
---|
| 33 | self._panels = 's'
|
---|
[226] | 34 | self._stacking = rcParams['plotter.stacking']
|
---|
[377] | 35 | self._rows = None
|
---|
| 36 | self._cols = None
|
---|
[203] | 37 | self._autoplot = False
|
---|
[525] | 38 | self._minmaxx = None
|
---|
| 39 | self._minmaxy = None
|
---|
[203] | 40 | self._data = None
|
---|
| 41 | self._lmap = []
|
---|
[226] | 42 | self._title = None
|
---|
[257] | 43 | self._ordinate = None
|
---|
| 44 | self._abcissa = None
|
---|
[525] | 45 | self._cursor = {'t':None, 'b':None,
|
---|
| 46 | 'i':None, 'p':None
|
---|
| 47 | }
|
---|
[203] | 48 |
|
---|
| 49 | def _translate(self, name):
|
---|
| 50 | for d in self._dicts:
|
---|
| 51 | if d.has_key(name):
|
---|
| 52 | return d[name]
|
---|
| 53 | return None
|
---|
| 54 |
|
---|
[525] | 55 | def plot(self, *args):
|
---|
[203] | 56 | """
|
---|
| 57 | Plot a (list of) scantables.
|
---|
| 58 | Parameters:
|
---|
| 59 | one or more comma separated scantables
|
---|
| 60 | Note:
|
---|
| 61 | If a (list) of scantables was specified in a previous call
|
---|
| 62 | to plot, no argument has to be given to 'replot'
|
---|
[525] | 63 | NO checking is done that the abcissas of the scantables
|
---|
[203] | 64 | are consistent e.g. all 'channel' or all 'velocity' etc.
|
---|
| 65 | """
|
---|
| 66 | if self._plotter.is_dead:
|
---|
| 67 | self._plotter = ASAPlot()
|
---|
| 68 | self._plotter.clear()
|
---|
| 69 | self._plotter.hold()
|
---|
| 70 | if len(args) > 0:
|
---|
[525] | 71 | if self._data is not None:
|
---|
| 72 | if list(args) != self._data:
|
---|
| 73 | self._data = list(args)
|
---|
| 74 | # reset cursor
|
---|
| 75 | self.set_cursor()
|
---|
| 76 | else:
|
---|
| 77 | self._data = list(args)
|
---|
| 78 | self.set_cursor()
|
---|
[203] | 79 | if self._panels == 't':
|
---|
[525] | 80 | if self._data[0].nrow() > 49:
|
---|
| 81 | print "Scan to be plotted contains more than 25 rows.\n \
|
---|
| 82 | Can't plot that many panels..."
|
---|
[203] | 83 | return
|
---|
| 84 | self._plot_time(self._data[0], self._stacking)
|
---|
| 85 | elif self._panels == 's':
|
---|
| 86 | self._plot_scans(self._data, self._stacking)
|
---|
| 87 | else:
|
---|
| 88 | self._plot_other(self._data, self._stacking)
|
---|
[525] | 89 | if self._minmaxx is not None or self._minmaxy is not None:
|
---|
| 90 | self._plotter.set_limits(xlim=self._minmaxx,ylim=self._minmaxy)
|
---|
[203] | 91 | self._plotter.release()
|
---|
| 92 | return
|
---|
| 93 |
|
---|
| 94 | def _plot_time(self, scan, colmode):
|
---|
| 95 | if colmode == 't':
|
---|
| 96 | return
|
---|
[525] | 97 | n = len(self._cursor["t"])
|
---|
[203] | 98 | cdict = {'b':'scan.setbeam(j)',
|
---|
| 99 | 'i':'scan.setif(j)',
|
---|
| 100 | 'p':'scan.setpol(j)'}
|
---|
[525] | 101 | cdict2 = {'b':'self._cursor["b"]',
|
---|
| 102 | 'i':'self._cursor["i"]',
|
---|
| 103 | 'p':'self._cursor["p"]'}
|
---|
| 104 | ncol = 1
|
---|
[203] | 105 | if self._stacking is not None:
|
---|
| 106 | ncol = eval(self._cdict.get(colmode))
|
---|
| 107 | self._plotter.set_panels()
|
---|
| 108 | if n > 1:
|
---|
[377] | 109 | if self._rows and self._cols:
|
---|
| 110 | n = min(n,self._rows*self._cols)
|
---|
| 111 | self._plotter.set_panels(rows=self._rows,cols=self._cols,
|
---|
| 112 | nplots=n)
|
---|
| 113 | else:
|
---|
[485] | 114 | self._plotter.set_panels(rows=n,cols=0,nplots=n)
|
---|
[525] | 115 | rows = self._cursor["t"]
|
---|
| 116 | self._plotter.palette(1)
|
---|
| 117 | for rowsel in rows:
|
---|
| 118 | i = self._cursor["t"].index(rowsel)
|
---|
[203] | 119 | if n > 1:
|
---|
[377] | 120 | self._plotter.palette(1)
|
---|
[203] | 121 | self._plotter.subplot(i)
|
---|
[525] | 122 | colvals = eval(cdict2.get(colmode))
|
---|
| 123 | for j in colvals:
|
---|
| 124 | polmode = "raw"
|
---|
| 125 | jj = colvals.index(j)
|
---|
| 126 | savej = j
|
---|
| 127 | for k in cdict.keys():
|
---|
| 128 | sel = eval(cdict2.get(k))
|
---|
| 129 | j = sel[0]
|
---|
| 130 | if k == "p":
|
---|
| 131 | which = self._cursor["p"].index(j)
|
---|
| 132 | polmode = self._polmode[which]
|
---|
| 133 | j = which
|
---|
| 134 | eval(cdict.get(k))
|
---|
| 135 | j = savej
|
---|
| 136 | if colmode == "p":
|
---|
| 137 | polmode = self._polmode[self._cursor["p"].index(j)]
|
---|
| 138 | j = jj
|
---|
[203] | 139 | eval(cdict.get(colmode))
|
---|
| 140 | x = None
|
---|
| 141 | y = None
|
---|
| 142 | m = None
|
---|
[226] | 143 | if not self._title:
|
---|
[525] | 144 | tlab = scan._getsourcename(rowsel)
|
---|
[226] | 145 | else:
|
---|
| 146 | if len(self._title) == n:
|
---|
[525] | 147 | tlab = self._title[rowsel]
|
---|
[226] | 148 | else:
|
---|
[525] | 149 | tlab = scan._getsourcename(rowsel)
|
---|
| 150 | x,xlab = scan.get_abcissa(rowsel)
|
---|
[257] | 151 | if self._abcissa: xlab = self._abcissa
|
---|
[525] | 152 | y = None
|
---|
| 153 | if polmode == "stokes":
|
---|
| 154 | y = scan._getstokesspectrum(rowsel)
|
---|
| 155 | elif polmode == "stokes2":
|
---|
| 156 | y = scan._getstokesspectrum(rowsel,True)
|
---|
| 157 | else:
|
---|
| 158 | y = scan._getspectrum(rowsel)
|
---|
[257] | 159 | if self._ordinate:
|
---|
| 160 | ylab = self._ordinate
|
---|
| 161 | else:
|
---|
| 162 | ylab = 'Flux ('+scan.get_fluxunit()+')'
|
---|
[525] | 163 | m = scan._getmask(rowsel)
|
---|
[226] | 164 | if self._lmap and len(self._lmap) > 0:
|
---|
[525] | 165 | llab = self._lmap[jj]
|
---|
[203] | 166 | else:
|
---|
[525] | 167 | if colmode == 'p':
|
---|
| 168 | if polmode == "stokes":
|
---|
| 169 | llab = scan._getpolarizationlabel(0,1,0)
|
---|
| 170 | elif polmode == "stokes2":
|
---|
| 171 | llab = scan._getpolarizationlabel(0,1,1)
|
---|
| 172 | else:
|
---|
| 173 | llab = scan._getpolarizationlabel(1,0,0)
|
---|
| 174 | else:
|
---|
| 175 | llab = self._ldict.get(colmode)+' '+str(j)
|
---|
[203] | 176 | self._plotter.set_line(label=llab)
|
---|
| 177 | self._plotter.plot(x,y,m)
|
---|
| 178 | xlim=[min(x),max(x)]
|
---|
| 179 | self._plotter.axes.set_xlim(xlim)
|
---|
| 180 | self._plotter.set_axes('xlabel',xlab)
|
---|
| 181 | self._plotter.set_axes('ylabel',ylab)
|
---|
| 182 | self._plotter.set_axes('title',tlab)
|
---|
| 183 | return
|
---|
| 184 |
|
---|
[525] | 185 | def _plot_scans(self, scans, colmode):
|
---|
| 186 | print "Can only plot one row per scan."
|
---|
[203] | 187 | if colmode == 's':
|
---|
| 188 | return
|
---|
| 189 | cdict = {'b':'scan.setbeam(j)',
|
---|
| 190 | 'i':'scan.setif(j)',
|
---|
| 191 | 'p':'scan.setpol(j)'}
|
---|
[525] | 192 | cdict2 = {'b':'self._cursor["b"]',
|
---|
| 193 | 'i':'self._cursor["i"]',
|
---|
| 194 | 'p':'self._cursor["p"]'}
|
---|
| 195 |
|
---|
[203] | 196 | n = len(scans)
|
---|
[525] | 197 | ncol = 1
|
---|
[203] | 198 | if self._stacking is not None:
|
---|
| 199 | scan = scans[0]
|
---|
| 200 | ncol = eval(self._cdict.get(colmode))
|
---|
| 201 | self._plotter.set_panels()
|
---|
| 202 | if n > 1:
|
---|
[377] | 203 | if self._rows and self._cols:
|
---|
| 204 | n = min(n,self._rows*self._cols)
|
---|
| 205 | self._plotter.set_panels(rows=self._rows,cols=self._cols,
|
---|
| 206 | nplots=n)
|
---|
| 207 | else:
|
---|
[485] | 208 | self._plotter.set_panels(rows=n,cols=0,nplots=n)
|
---|
[525] | 209 | self._plotter.palette(1)
|
---|
[203] | 210 | for scan in scans:
|
---|
| 211 | if n > 1:
|
---|
[525] | 212 | self._plotter.subplot(scans.index(scan))
|
---|
[485] | 213 | self._plotter.palette(1)
|
---|
[525] | 214 | colvals = eval(cdict2.get(colmode))
|
---|
| 215 | rowsel = self._cursor["t"][0]
|
---|
| 216 | for j in colvals:
|
---|
| 217 | polmode = "raw"
|
---|
| 218 | jj = colvals.index(j)
|
---|
| 219 | savej = j
|
---|
| 220 | for k in cdict.keys():
|
---|
| 221 | sel = eval(cdict2.get(k))
|
---|
| 222 | j = sel[0]
|
---|
| 223 | eval(cdict.get(k))
|
---|
| 224 | if k == "p":
|
---|
| 225 | which = self._cursor["p"].index(j)
|
---|
| 226 | polmode = self._polmode[which]
|
---|
| 227 | j = which
|
---|
| 228 | j = savej
|
---|
| 229 | if colmode == "p":
|
---|
| 230 | polmode = self._polmode[self._cursor["p"].index(j)]
|
---|
| 231 | j = jj
|
---|
[203] | 232 | eval(cdict.get(colmode))
|
---|
| 233 | x = None
|
---|
| 234 | y = None
|
---|
| 235 | m = None
|
---|
[226] | 236 | tlab = self._title
|
---|
| 237 | if not self._title:
|
---|
[525] | 238 | tlab = scan._getsourcename(rowsel)
|
---|
| 239 | x,xlab = scan.get_abcissa(rowsel)
|
---|
[257] | 240 | if self._abcissa: xlab = self._abcissa
|
---|
[525] | 241 | if polmode == "stokes":
|
---|
| 242 | y = scan._getstokesspectrum(rowsel)
|
---|
| 243 | elif polmode == "stokes2":
|
---|
| 244 | y = scan._getstokesspectrum(rowsel,True)
|
---|
| 245 | else:
|
---|
| 246 | y = scan._getspectrum(rowsel)
|
---|
[257] | 247 | if self._ordinate:
|
---|
| 248 | ylab = self._ordinate
|
---|
| 249 | else:
|
---|
| 250 | ylab = 'Flux ('+scan.get_fluxunit()+')'
|
---|
[525] | 251 | m = scan._getmask(rowsel)
|
---|
[257] | 252 | if self._lmap and len(self._lmap) > 0:
|
---|
[525] | 253 | llab = self._lmap[jj]
|
---|
[203] | 254 | else:
|
---|
[525] | 255 | if colmode == 'p':
|
---|
| 256 | if polmode == "stokes":
|
---|
| 257 | llab = scan._getpolarizationlabel(0,1,0)
|
---|
| 258 | elif polmode == "stokes2":
|
---|
| 259 | llab = scan._getpolarizationlabel(0,1,1)
|
---|
| 260 | else:
|
---|
| 261 | llab = scan._getpolarizationlabel(1,0,0)
|
---|
| 262 | else:
|
---|
| 263 | llab = self._ldict.get(colmode)+' '+str(j)
|
---|
[203] | 264 | self._plotter.set_line(label=llab)
|
---|
| 265 | self._plotter.plot(x,y,m)
|
---|
| 266 | xlim=[min(x),max(x)]
|
---|
| 267 | self._plotter.axes.set_xlim(xlim)
|
---|
| 268 |
|
---|
| 269 | self._plotter.set_axes('xlabel',xlab)
|
---|
| 270 | self._plotter.set_axes('ylabel',ylab)
|
---|
| 271 | self._plotter.set_axes('title',tlab)
|
---|
| 272 | return
|
---|
| 273 |
|
---|
| 274 | def _plot_other(self,scans,colmode):
|
---|
| 275 | if colmode == self._panels:
|
---|
| 276 | return
|
---|
[525] | 277 | cdict = {'b':'scan.setbeam(i)',
|
---|
| 278 | 'i':'scan.setif(i)',
|
---|
| 279 | 'p':'scan.setpol(i)'}
|
---|
| 280 | cdict2 = {'b':'self._cursor["b"]',
|
---|
| 281 | 'i':'self._cursor["i"]',
|
---|
| 282 | 'p':'self._cursor["p"]',
|
---|
| 283 | 's': 'scans',
|
---|
| 284 | 't': 'self._cursor["t"]'}
|
---|
[203] | 285 | scan = scans[0]
|
---|
| 286 | n = eval(self._cdict.get(self._panels))
|
---|
[525] | 287 | ncol=1
|
---|
[203] | 288 | if self._stacking is not None:
|
---|
| 289 | ncol = eval(self._cdict.get(colmode))
|
---|
| 290 | self._plotter.set_panels()
|
---|
| 291 | if n > 1:
|
---|
[377] | 292 | if self._rows and self._cols:
|
---|
| 293 | n = min(n,self._rows*self._cols)
|
---|
| 294 | self._plotter.set_panels(rows=self._rows,cols=self._cols,
|
---|
| 295 | nplots=n)
|
---|
| 296 | else:
|
---|
[485] | 297 | self._plotter.set_panels(rows=n,cols=0,nplots=n)
|
---|
[525] | 298 | self._plotter.palette(1)
|
---|
| 299 | panels = self._cursor[self._panels]
|
---|
| 300 | for i in panels:
|
---|
| 301 | polmode = "raw"
|
---|
| 302 | ii = self._cursor[self._panels].index(i)
|
---|
[203] | 303 | if n>1:
|
---|
[525] | 304 | self._plotter.subplot(ii)
|
---|
| 305 | if self._panels == "p":
|
---|
| 306 | polmode = self._polmode[ii]
|
---|
| 307 | eval(cdict.get(self._panels))
|
---|
| 308 | else:
|
---|
| 309 | eval(cdict.get(self._panels))
|
---|
| 310 | colvals = eval(cdict2.get(colmode))
|
---|
| 311 | for j in colvals:
|
---|
| 312 | rowsel = self._cursor["t"][0]
|
---|
| 313 | jj = colvals.index(j)
|
---|
| 314 | savei = i
|
---|
| 315 | for k in cdict.keys():
|
---|
| 316 | if k != self._panels:
|
---|
| 317 | sel = eval(cdict2.get(k))
|
---|
| 318 | i = sel[0]
|
---|
| 319 | if k == "p":
|
---|
| 320 | which = self._cursor["p"].index(j)
|
---|
| 321 | polmode = self._polmode[which]
|
---|
| 322 | i = which
|
---|
| 323 | eval(cdict.get(k))
|
---|
| 324 | i = savei
|
---|
[203] | 325 | if colmode == 's':
|
---|
[525] | 326 | scan = j
|
---|
[203] | 327 | elif colmode == 't':
|
---|
[525] | 328 | rowsel = j
|
---|
[203] | 329 | else:
|
---|
[525] | 330 | savei = i
|
---|
| 331 | if colmode == 'p':
|
---|
| 332 | polmode = self._polmode[self._cursor["p"].index(j)]
|
---|
| 333 | i = j
|
---|
[203] | 334 | eval(cdict.get(colmode))
|
---|
[525] | 335 | i = savei
|
---|
[203] | 336 | x = None
|
---|
| 337 | y = None
|
---|
| 338 | m = None
|
---|
[525] | 339 | x,xlab = scan.get_abcissa(rowsel)
|
---|
[257] | 340 | if self._abcissa: xlab = self._abcissa
|
---|
[525] | 341 | if polmode == "stokes":
|
---|
| 342 | y = scan._getstokesspectrum(rowsel)
|
---|
| 343 | elif polmode == "stokes2":
|
---|
| 344 | y = scan._getstokesspectrum(rowsel,True)
|
---|
| 345 | else:
|
---|
| 346 | y = scan._getspectrum(rowsel)
|
---|
| 347 |
|
---|
[257] | 348 | if self._ordinate:
|
---|
| 349 | ylab = self._ordinate
|
---|
| 350 | else:
|
---|
| 351 | ylab = 'Flux ('+scan.get_fluxunit()+')'
|
---|
[525] | 352 | m = scan._getmask(rowsel)
|
---|
[203] | 353 | if colmode == 's' or colmode == 't':
|
---|
[525] | 354 | if self._title and len(self._title) > 0:
|
---|
| 355 | tlab = self._title[ii]
|
---|
| 356 | else:
|
---|
[226] | 357 | tlab = self._ldict.get(self._panels)+' '+str(i)
|
---|
[525] | 358 | llab = scan._getsourcename(rowsel)
|
---|
[203] | 359 | else:
|
---|
[226] | 360 | if self._title and len(self._title) > 0:
|
---|
[525] | 361 | tlab = self._title[ii]
|
---|
[226] | 362 | else:
|
---|
[257] | 363 | tlab = self._ldict.get(self._panels)+' '+str(i)
|
---|
[226] | 364 | if self._lmap and len(self._lmap) > 0:
|
---|
[525] | 365 | llab = self._lmap[jj]
|
---|
[203] | 366 | else:
|
---|
[525] | 367 | if colmode == 'p':
|
---|
| 368 | if polmode == "stokes":
|
---|
| 369 | llab = scan._getpolarizationlabel(0,1,0)
|
---|
| 370 | elif polmode == "stokes2":
|
---|
| 371 | llab = scan._getpolarizationlabel(0,1,1)
|
---|
| 372 | else:
|
---|
| 373 | llab = scan._getpolarizationlabel(1,0,0)
|
---|
| 374 | else:
|
---|
| 375 | llab = self._ldict.get(colmode)+' '+str(j)
|
---|
| 376 | if self._panels == 'p':
|
---|
| 377 | if polmode == "stokes":
|
---|
| 378 | tlab = scan._getpolarizationlabel(0,1,0)
|
---|
| 379 | elif polmode == "stokes2":
|
---|
| 380 | tlab = scan._getpolarizationlabel(0,1,1)
|
---|
| 381 | else:
|
---|
| 382 | tlab = scan._getpolarizationlabel(1,0,0)
|
---|
[203] | 383 | self._plotter.set_line(label=llab)
|
---|
| 384 | self._plotter.plot(x,y,m)
|
---|
| 385 | xlim=[min(x),max(x)]
|
---|
| 386 | self._plotter.axes.set_xlim(xlim)
|
---|
| 387 |
|
---|
| 388 | self._plotter.set_axes('xlabel',xlab)
|
---|
| 389 | self._plotter.set_axes('ylabel',ylab)
|
---|
| 390 | self._plotter.set_axes('title',tlab)
|
---|
| 391 |
|
---|
| 392 | return
|
---|
| 393 |
|
---|
| 394 |
|
---|
[226] | 395 | def set_mode(self, stacking=None, panelling=None):
|
---|
[203] | 396 | """
|
---|
[377] | 397 | Set the plots look and feel, i.e. what you want to see on the plot.
|
---|
[203] | 398 | Parameters:
|
---|
| 399 | stacking: tell the plotter which variable to plot
|
---|
| 400 | as line colour overlays (default 'pol')
|
---|
| 401 | panelling: tell the plotter which variable to plot
|
---|
| 402 | across multiple panels (default 'scan'
|
---|
| 403 | Note:
|
---|
| 404 | Valid modes are:
|
---|
| 405 | 'beam' 'Beam' 'b': Beams
|
---|
| 406 | 'if' 'IF' 'i': IFs
|
---|
| 407 | 'pol' 'Pol' 'p': Polarisations
|
---|
| 408 | 'scan' 'Scan' 's': Scans
|
---|
| 409 | 'time' 'Time' 't': Times
|
---|
| 410 | """
|
---|
| 411 | if not self.set_panels(panelling):
|
---|
| 412 | print "Invalid mode"
|
---|
[226] | 413 | return
|
---|
[203] | 414 | if not self.set_stacking(stacking):
|
---|
| 415 | print "Invalid mode"
|
---|
[226] | 416 | return
|
---|
| 417 | if self._data: self.plot()
|
---|
[203] | 418 | return
|
---|
| 419 |
|
---|
[377] | 420 | def set_panels(self, what=None):
|
---|
[226] | 421 | if not what:
|
---|
| 422 | what = rcParams['plotter.panelling']
|
---|
[203] | 423 | md = self._translate(what)
|
---|
| 424 | if md:
|
---|
[226] | 425 | self._panels = md
|
---|
| 426 | self._title = None
|
---|
[203] | 427 | return True
|
---|
| 428 | return False
|
---|
| 429 |
|
---|
[377] | 430 | def set_layout(self,rows=None,cols=None):
|
---|
| 431 | """
|
---|
| 432 | Set the multi-panel layout, i.e. how many rows and columns plots
|
---|
| 433 | are visible.
|
---|
| 434 | Parameters:
|
---|
| 435 | rows: The number of rows of plots
|
---|
| 436 | cols: The number of columns of plots
|
---|
| 437 | Note:
|
---|
| 438 | If no argument is given, the potter reverts to its auto-plot
|
---|
| 439 | behaviour.
|
---|
| 440 | """
|
---|
| 441 | self._rows = rows
|
---|
| 442 | self._cols = cols
|
---|
| 443 | if self._data: self.plot()
|
---|
| 444 | return
|
---|
| 445 |
|
---|
[226] | 446 | def set_stacking(self, what=None):
|
---|
| 447 | if not what:
|
---|
| 448 | what = rcParams['plotter.stacking']
|
---|
[203] | 449 | md = self._translate(what)
|
---|
| 450 | if md:
|
---|
| 451 | self._stacking = md
|
---|
[226] | 452 | self._lmap = None
|
---|
[203] | 453 | return True
|
---|
| 454 | return False
|
---|
| 455 |
|
---|
[525] | 456 | def set_range(self,xstart=None,xend=None,ystart=None,yend=None):
|
---|
[203] | 457 | """
|
---|
| 458 | Set the range of interest on the abcissa of the plot
|
---|
| 459 | Parameters:
|
---|
[525] | 460 | [x,y]start,[x,y]end: The start and end points of the 'zoom' window
|
---|
[203] | 461 | Note:
|
---|
| 462 | These become non-sensical when the unit changes.
|
---|
| 463 | use plotter.set_range() without parameters to reset
|
---|
| 464 |
|
---|
| 465 | """
|
---|
[525] | 466 | if xstart is None and xend is None:
|
---|
| 467 | self._minmaxx = None
|
---|
[226] | 468 | if self._data: self.plot()
|
---|
[525] | 469 | return
|
---|
| 470 | if ystart is None and yend is None:
|
---|
| 471 | self._minmaxy = None
|
---|
[226] | 472 | if self._data: self.plot()
|
---|
[525] | 473 | return
|
---|
| 474 | self._minmaxx = [xstart,xend]
|
---|
| 475 | self._minmaxy = [ystart,yend]
|
---|
| 476 | if self._data: self.plot()
|
---|
[203] | 477 | return
|
---|
| 478 |
|
---|
[257] | 479 | def set_legend(self, mp=None):
|
---|
[203] | 480 | """
|
---|
| 481 | Specify a mapping for the legend instead of using the default
|
---|
| 482 | indices:
|
---|
| 483 | Parameters:
|
---|
| 484 | mp: a list of 'strings'. This should have the same length
|
---|
| 485 | as the number of elements on the legend and then maps
|
---|
| 486 | to the indeces in order
|
---|
| 487 |
|
---|
| 488 | Example:
|
---|
[485] | 489 | If the data has two IFs/rest frequencies with index 0 and 1
|
---|
[203] | 490 | for CO and SiO:
|
---|
| 491 | plotter.set_stacking('i')
|
---|
| 492 | plotter.set_legend_map(['CO','SiO'])
|
---|
| 493 | plotter.plot()
|
---|
| 494 | """
|
---|
| 495 | self._lmap = mp
|
---|
[226] | 496 | if self._data: self.plot()
|
---|
| 497 | return
|
---|
| 498 |
|
---|
| 499 | def set_title(self, title=None):
|
---|
| 500 | self._title = title
|
---|
| 501 | if self._data: self.plot()
|
---|
| 502 | return
|
---|
| 503 |
|
---|
[257] | 504 | def set_ordinate(self, ordinate=None):
|
---|
| 505 | self._ordinate = ordinate
|
---|
| 506 | if self._data: self.plot()
|
---|
| 507 | return
|
---|
| 508 |
|
---|
| 509 | def set_abcissa(self, abcissa=None):
|
---|
| 510 | self._abcissa = abcissa
|
---|
| 511 | if self._data: self.plot()
|
---|
| 512 | return
|
---|
| 513 |
|
---|
[377] | 514 | def save(self, filename=None):
|
---|
| 515 | """
|
---|
| 516 | Save the plot to a file. The know formats are 'png', 'ps', 'eps'.
|
---|
| 517 | Parameters:
|
---|
| 518 | filename: The name of the output file. This is optional
|
---|
| 519 | and autodetects the image format from the file
|
---|
| 520 | suffix. If non filename is specified a file
|
---|
| 521 | called 'yyyymmdd_hhmmss.png' is created in the
|
---|
| 522 | current directory.
|
---|
| 523 | """
|
---|
| 524 | self._plotter.save(filename)
|
---|
| 525 | return
|
---|
[525] | 526 |
|
---|
| 527 | def set_cursor(self, row=None,beam=None,IF=None,pol=None):
|
---|
| 528 | """
|
---|
| 529 | Specify a 'cursor' for plotting selected spectra. Time (rows),
|
---|
| 530 | Beam, IF, Polarisation ranges can be specified.
|
---|
| 531 | Parameters:
|
---|
| 532 | Default for all paramaters is to select all available
|
---|
| 533 | row: selects the rows (time stamps) to be plotted, this has
|
---|
| 534 | to be a vector of row indices, e.g. row=[0,2,5] or row=[2]
|
---|
| 535 | beam: select a range of beams
|
---|
| 536 | IF: select a range of IFs
|
---|
| 537 | pol: select Polarisations for plotting these can be by index
|
---|
| 538 | (raw polarisations (default)) or by names any of:
|
---|
| 539 | ["I", "Q", "U", "V"] or
|
---|
| 540 | ["I", "Plinear", "Pangle", "V"] or
|
---|
| 541 | ["XX", "YY", "Real(XY)", "Imag(XY)"]
|
---|
| 542 | Circular polarisation are not handled yet.
|
---|
| 543 | Example:
|
---|
| 544 | plotter.set_mode('pol','time')
|
---|
| 545 | plotter.plot(myscan) # plots all raw polarisations colour stacked
|
---|
| 546 | plotter.set_cursor(pol=["I"]) # plot "I" only for all rows
|
---|
| 547 | # plot "I" only for two time stamps row=0 and row=2
|
---|
| 548 | plotter.set_cursor(row=[0,2],pol=["I"])
|
---|
[257] | 549 |
|
---|
[525] | 550 | Note:
|
---|
| 551 | Be careful to select only exisiting polarisations.
|
---|
| 552 | """
|
---|
| 553 | if not self._data:
|
---|
| 554 | print "Can only set cursor after a first call to plot()"
|
---|
| 555 | return
|
---|
| 556 |
|
---|
| 557 | n = self._data[0].nrow()
|
---|
| 558 | if row is None:
|
---|
| 559 | self._cursor["t"] = range(n)
|
---|
| 560 | else:
|
---|
| 561 | for i in row:
|
---|
| 562 | if 0 > i >= n:
|
---|
| 563 | print "Row index '%d' out of range" % i
|
---|
| 564 | return
|
---|
| 565 | self._cursor["t"] = row
|
---|
| 566 |
|
---|
| 567 | n = self._data[0].nbeam()
|
---|
| 568 | if beam is None:
|
---|
| 569 | self._cursor["b"] = range(n)
|
---|
| 570 | else:
|
---|
| 571 | for i in beam:
|
---|
| 572 | if 0 > i >= n:
|
---|
| 573 | print "Beam index '%d' out of range" % i
|
---|
| 574 | return
|
---|
| 575 | self._cursor["b"] = beam
|
---|
| 576 |
|
---|
| 577 | n = self._data[0].nif()
|
---|
| 578 | if IF is None:
|
---|
| 579 | self._cursor["i"] = range(n)
|
---|
| 580 | else:
|
---|
| 581 | for i in IF:
|
---|
| 582 | if 0 > i >= n:
|
---|
| 583 | print "IF index '%d' out of range" %i
|
---|
| 584 | return
|
---|
| 585 | self._cursor["i"] = IF
|
---|
| 586 |
|
---|
| 587 | n = self._data[0].npol()
|
---|
| 588 | dstokes = {"I":0,"Q":1,"U":2,"V":3}
|
---|
| 589 | dstokes2 = {"I":0,"Plinear":1,"Pangle":2,"V":3}
|
---|
| 590 | draw = {"XX":0, "YY":1,"Real(XY)":2, "Imag(XY)":3}
|
---|
| 591 | dcirc = { "RR":0,"LL":1,"RL":2,"LR":3}
|
---|
| 592 |
|
---|
| 593 | if pol is None:
|
---|
| 594 | self._cursor["p"] = range(n)
|
---|
| 595 | self._polmode = ["raw" for i in range(n)]
|
---|
| 596 | else:
|
---|
| 597 | if isinstance(pol,str):
|
---|
| 598 | pol = pol.split()
|
---|
| 599 | polmode = []
|
---|
| 600 | pols = []
|
---|
| 601 | for i in pol:
|
---|
| 602 | if isinstance(i,str):
|
---|
| 603 | if draw.has_key(i):
|
---|
| 604 | pols.append(draw.get(i))
|
---|
| 605 | polmode.append("raw")
|
---|
| 606 | elif dstokes.has_key(i):
|
---|
| 607 | pols.append(dstokes.get(i))
|
---|
| 608 | polmode.append("stokes")
|
---|
| 609 | elif dstokes2.has_key(i):
|
---|
| 610 | pols.append(dstokes2.get(i))
|
---|
| 611 | polmode.append("stokes2")
|
---|
| 612 | elif dcirc.has_key(i):
|
---|
| 613 | pols.append(dcirc.get(i))
|
---|
| 614 | polmode.append("cricular")
|
---|
| 615 | else:
|
---|
| 616 | "Pol type '%s' not valid" %i
|
---|
| 617 | return
|
---|
| 618 | elif 0 > i >= n:
|
---|
| 619 | print "Pol index '%d' out of range" %i
|
---|
| 620 | return
|
---|
| 621 | else:
|
---|
| 622 | pols.append(i)
|
---|
| 623 | polmode.append("raw")
|
---|
| 624 | self._cursor["p"] = pols
|
---|
| 625 | self._polmode = polmode
|
---|
| 626 | if self._data: self.plot()
|
---|
| 627 |
|
---|
| 628 |
|
---|
[203] | 629 | if __name__ == '__main__':
|
---|
| 630 | plotter = asapplotter()
|
---|