[203] | 1 | from asap.asaplot import ASAPlot
|
---|
[226] | 2 | from asap import rcParams
|
---|
[203] | 3 |
|
---|
| 4 | class asapplotter:
|
---|
[226] | 5 | """
|
---|
| 6 | The ASAP plotter.
|
---|
| 7 | By default the plotter is set up to plot polarisations
|
---|
| 8 | 'colour stacked' and scantables across panels.
|
---|
| 9 | Note:
|
---|
| 10 | Currenly it only plots 'spectra' not Tsys or
|
---|
| 11 | other variables.
|
---|
| 12 | """
|
---|
[203] | 13 | def __init__(self):
|
---|
| 14 | self._plotter = ASAPlot()
|
---|
| 15 |
|
---|
| 16 | self._tdict = {'Time':'t','time':'t','t':'t','T':'t'}
|
---|
| 17 | self._bdict = {'Beam':'b','beam':'b','b':'b','B':'b'}
|
---|
| 18 | self._idict = {'IF':'i','if':'i','i':'i','I':'i'}
|
---|
| 19 | self._pdict = {'Pol':'p','pol':'p','p':'p'}
|
---|
| 20 | self._sdict = {'scan':'s','Scan':'s','s':'s','S':'s'}
|
---|
| 21 | self._cdict = {'t':'scan.nrow()',
|
---|
| 22 | 'b':'scan.nbeam()',
|
---|
| 23 | 'i':'scan.nif()',
|
---|
| 24 | 'p':'scan.npol()',
|
---|
| 25 | 's':'len(scans)'}
|
---|
| 26 | self._ldict = {'b':'Beam',
|
---|
| 27 | 'i':'IF',
|
---|
| 28 | 'p':'Pol',
|
---|
| 29 | 's':'Scan'}
|
---|
| 30 | self._dicts = [self._tdict,self._bdict,
|
---|
| 31 | self._idict,self._pdict,
|
---|
| 32 | self._sdict]
|
---|
| 33 | self._panels = 's'
|
---|
[226] | 34 | self._stacking = rcParams['plotter.stacking']
|
---|
[377] | 35 | self._rows = None
|
---|
| 36 | self._cols = None
|
---|
[203] | 37 | self._autoplot = False
|
---|
| 38 | self._minmax = None
|
---|
| 39 | self._data = None
|
---|
| 40 | self._lmap = []
|
---|
[226] | 41 | self._title = None
|
---|
[257] | 42 | self._ordinate = None
|
---|
| 43 | self._abcissa = None
|
---|
[203] | 44 |
|
---|
| 45 | def _translate(self, name):
|
---|
| 46 | for d in self._dicts:
|
---|
| 47 | if d.has_key(name):
|
---|
| 48 | return d[name]
|
---|
| 49 | return None
|
---|
| 50 |
|
---|
| 51 | def plot(self,*args):
|
---|
| 52 | """
|
---|
| 53 | Plot a (list of) scantables.
|
---|
| 54 | Parameters:
|
---|
| 55 | one or more comma separated scantables
|
---|
| 56 | Note:
|
---|
| 57 | If a (list) of scantables was specified in a previous call
|
---|
| 58 | to plot, no argument has to be given to 'replot'
|
---|
| 59 | NO checking is done that the abscissas of the scantables
|
---|
| 60 | are consistent e.g. all 'channel' or all 'velocity' etc.
|
---|
| 61 | """
|
---|
| 62 | if self._plotter.is_dead:
|
---|
| 63 | self._plotter = ASAPlot()
|
---|
| 64 | self._plotter.clear()
|
---|
| 65 | self._plotter.hold()
|
---|
| 66 | if len(args) > 0:
|
---|
| 67 | self._data = tuple(args)
|
---|
| 68 | if self._panels == 't':
|
---|
| 69 | if self._data[0].nrow() > 25:
|
---|
| 70 | print "Scan to be plotted contains more than 25 rows.\nCan't plot that many panels..."
|
---|
| 71 | return
|
---|
| 72 | self._plot_time(self._data[0], self._stacking)
|
---|
| 73 | elif self._panels == 's':
|
---|
| 74 | self._plot_scans(self._data, self._stacking)
|
---|
| 75 | else:
|
---|
| 76 | self._plot_other(self._data, self._stacking)
|
---|
| 77 | if self._minmax is not None:
|
---|
| 78 | self._plotter.set_limits(xlim=self._minmax)
|
---|
| 79 | self._plotter.release()
|
---|
| 80 | return
|
---|
| 81 |
|
---|
| 82 | def _plot_time(self, scan, colmode):
|
---|
| 83 | if colmode == 't':
|
---|
| 84 | return
|
---|
| 85 | n = scan.nrow()
|
---|
| 86 | cdict = {'b':'scan.setbeam(j)',
|
---|
| 87 | 'i':'scan.setif(j)',
|
---|
| 88 | 'p':'scan.setpol(j)'}
|
---|
| 89 | if self._stacking is not None:
|
---|
| 90 | ncol = eval(self._cdict.get(colmode))
|
---|
| 91 | self._plotter.set_panels()
|
---|
| 92 | if n > 1:
|
---|
[377] | 93 | if self._rows and self._cols:
|
---|
| 94 | n = min(n,self._rows*self._cols)
|
---|
| 95 | self._plotter.set_panels(rows=self._rows,cols=self._cols,
|
---|
| 96 | nplots=n)
|
---|
| 97 | else:
|
---|
| 98 | self._plotter.set_panels(rows=n,cols=0)
|
---|
[203] | 99 | for i in range(n):
|
---|
| 100 | if n > 1:
|
---|
[377] | 101 | self._plotter.palette(1)
|
---|
[203] | 102 | self._plotter.subplot(i)
|
---|
| 103 | for j in range(ncol):
|
---|
| 104 | eval(cdict.get(colmode))
|
---|
| 105 | x = None
|
---|
| 106 | y = None
|
---|
| 107 | m = None
|
---|
[226] | 108 | if not self._title:
|
---|
| 109 | tlab = scan._getsourcename(i)
|
---|
| 110 | else:
|
---|
| 111 | if len(self._title) == n:
|
---|
| 112 | tlab = self._title[i]
|
---|
| 113 | else:
|
---|
| 114 | tlab = scan._getsourcename(i)
|
---|
[203] | 115 | x,xlab = scan.get_abcissa(i)
|
---|
[257] | 116 | if self._abcissa: xlab = self._abcissa
|
---|
| 117 | y = scan._getspectrum(i)
|
---|
| 118 | if self._ordinate:
|
---|
| 119 | ylab = self._ordinate
|
---|
| 120 | else:
|
---|
| 121 | ylab = 'Flux ('+scan.get_fluxunit()+')'
|
---|
| 122 | m = scan._getmask(i)
|
---|
[226] | 123 | if self._lmap and len(self._lmap) > 0:
|
---|
[203] | 124 | llab = self._lmap[j]
|
---|
| 125 | else:
|
---|
| 126 | llab = self._ldict.get(colmode)+' '+str(j)
|
---|
| 127 | self._plotter.set_line(label=llab)
|
---|
| 128 | self._plotter.plot(x,y,m)
|
---|
| 129 | xlim=[min(x),max(x)]
|
---|
| 130 | self._plotter.axes.set_xlim(xlim)
|
---|
| 131 | self._plotter.set_axes('xlabel',xlab)
|
---|
| 132 | self._plotter.set_axes('ylabel',ylab)
|
---|
| 133 | self._plotter.set_axes('title',tlab)
|
---|
| 134 | return
|
---|
| 135 |
|
---|
| 136 | def _plot_scans(self, scans, colmode):
|
---|
| 137 | if colmode == 's':
|
---|
| 138 | return
|
---|
| 139 | cdict = {'b':'scan.setbeam(j)',
|
---|
| 140 | 'i':'scan.setif(j)',
|
---|
| 141 | 'p':'scan.setpol(j)'}
|
---|
| 142 | n = len(scans)
|
---|
| 143 | if self._stacking is not None:
|
---|
| 144 | scan = scans[0]
|
---|
| 145 | ncol = eval(self._cdict.get(colmode))
|
---|
| 146 | self._plotter.set_panels()
|
---|
| 147 | if n > 1:
|
---|
[377] | 148 | if self._rows and self._cols:
|
---|
| 149 | n = min(n,self._rows*self._cols)
|
---|
| 150 | self._plotter.set_panels(rows=self._rows,cols=self._cols,
|
---|
| 151 | nplots=n)
|
---|
| 152 | else:
|
---|
| 153 | self._plotter.set_panels(rows=n,cols=0)
|
---|
[203] | 154 | i = 0
|
---|
| 155 | for scan in scans:
|
---|
| 156 | if n > 1:
|
---|
| 157 | self._plotter.subplot(i)
|
---|
| 158 | self._plotter.palette(0)
|
---|
| 159 | for j in range(ncol):
|
---|
| 160 | eval(cdict.get(colmode))
|
---|
| 161 | x = None
|
---|
| 162 | y = None
|
---|
| 163 | m = None
|
---|
[226] | 164 | tlab = self._title
|
---|
| 165 | if not self._title:
|
---|
| 166 | tlab = scan._getsourcename()
|
---|
[203] | 167 | x,xlab = scan.get_abcissa()
|
---|
[257] | 168 | if self._abcissa: xlab = self._abcissa
|
---|
| 169 | y = scan._getspectrum()
|
---|
| 170 | if self._ordinate:
|
---|
| 171 | ylab = self._ordinate
|
---|
| 172 | else:
|
---|
| 173 | ylab = 'Flux ('+scan.get_fluxunit()+')'
|
---|
| 174 | m = scan._getmask()
|
---|
| 175 | if self._lmap and len(self._lmap) > 0:
|
---|
[203] | 176 | llab = self._lmap[j]
|
---|
| 177 | else:
|
---|
| 178 | llab = self._ldict.get(colmode)+' '+str(j)
|
---|
| 179 | self._plotter.set_line(label=llab)
|
---|
| 180 | self._plotter.plot(x,y,m)
|
---|
| 181 | xlim=[min(x),max(x)]
|
---|
| 182 | self._plotter.axes.set_xlim(xlim)
|
---|
| 183 |
|
---|
| 184 | self._plotter.set_axes('xlabel',xlab)
|
---|
| 185 | self._plotter.set_axes('ylabel',ylab)
|
---|
| 186 | self._plotter.set_axes('title',tlab)
|
---|
| 187 | i += 1
|
---|
| 188 | return
|
---|
| 189 |
|
---|
| 190 | def _plot_other(self,scans,colmode):
|
---|
| 191 | if colmode == self._panels:
|
---|
| 192 | return
|
---|
| 193 | cdict = {'b':'scan.setbeam(j)',
|
---|
| 194 | 'i':'scan.setif(j)',
|
---|
| 195 | 'p':'scan.setpol(j)',
|
---|
| 196 | 's':'scans[j]'}
|
---|
| 197 | scan = scans[0]
|
---|
| 198 | n = eval(self._cdict.get(self._panels))
|
---|
| 199 | if self._stacking is not None:
|
---|
| 200 | ncol = eval(self._cdict.get(colmode))
|
---|
| 201 | self._plotter.set_panels()
|
---|
| 202 | if n > 1:
|
---|
[377] | 203 | if self._rows and self._cols:
|
---|
| 204 | n = min(n,self._rows*self._cols)
|
---|
| 205 | self._plotter.set_panels(rows=self._rows,cols=self._cols,
|
---|
| 206 | nplots=n)
|
---|
| 207 | else:
|
---|
| 208 | self._plotter.set_panels(rows=n,cols=0)
|
---|
[203] | 209 | for i in range(n):
|
---|
| 210 | if n>1:
|
---|
| 211 | self._plotter.subplot(i)
|
---|
| 212 | self._plotter.palette(0)
|
---|
| 213 | k=0
|
---|
[282] | 214 | j=i
|
---|
[203] | 215 | eval(cdict.get(self._panels))
|
---|
| 216 | for j in range(ncol):
|
---|
| 217 | if colmode == 's':
|
---|
| 218 | scan = eval(cdict.get(colmode))
|
---|
| 219 | elif colmode == 't':
|
---|
| 220 | k = j
|
---|
| 221 | else:
|
---|
| 222 | eval(cdict.get(colmode))
|
---|
| 223 | x = None
|
---|
| 224 | y = None
|
---|
| 225 | m = None
|
---|
| 226 | x,xlab = scan.get_abcissa(k)
|
---|
[257] | 227 | if self._abcissa: xlab = self._abcissa
|
---|
| 228 | y = scan._getspectrum(k)
|
---|
| 229 | if self._ordinate:
|
---|
| 230 | ylab = self._ordinate
|
---|
| 231 | else:
|
---|
| 232 | ylab = 'Flux ('+scan.get_fluxunit()+')'
|
---|
| 233 | m = scan._getmask(k)
|
---|
[203] | 234 | if colmode == 's' or colmode == 't':
|
---|
[226] | 235 | if not self._title:
|
---|
| 236 | tlab = self._ldict.get(self._panels)+' '+str(i)
|
---|
| 237 | else:
|
---|
| 238 | if len(self.title) == n:
|
---|
| 239 | tlab = self._title[i]
|
---|
| 240 | else:
|
---|
| 241 | tlab = self._ldict.get(self._panels)+' '+str(i)
|
---|
[203] | 242 | llab = scan._getsourcename(k)
|
---|
| 243 | else:
|
---|
[226] | 244 | if self._title and len(self._title) > 0:
|
---|
[257] | 245 | tlab = self._title[i]
|
---|
[226] | 246 | else:
|
---|
[257] | 247 | tlab = self._ldict.get(self._panels)+' '+str(i)
|
---|
[226] | 248 | if self._lmap and len(self._lmap) > 0:
|
---|
[203] | 249 | llab = self._lmap[j]
|
---|
| 250 | else:
|
---|
| 251 | llab = self._ldict.get(colmode)+' '+str(j)
|
---|
| 252 | self._plotter.set_line(label=llab)
|
---|
| 253 | self._plotter.plot(x,y,m)
|
---|
| 254 | xlim=[min(x),max(x)]
|
---|
| 255 | self._plotter.axes.set_xlim(xlim)
|
---|
| 256 |
|
---|
| 257 | self._plotter.set_axes('xlabel',xlab)
|
---|
| 258 | self._plotter.set_axes('ylabel',ylab)
|
---|
| 259 | self._plotter.set_axes('title',tlab)
|
---|
| 260 |
|
---|
| 261 | return
|
---|
| 262 |
|
---|
| 263 |
|
---|
[226] | 264 | def set_mode(self, stacking=None, panelling=None):
|
---|
[203] | 265 | """
|
---|
[377] | 266 | Set the plots look and feel, i.e. what you want to see on the plot.
|
---|
[203] | 267 | Parameters:
|
---|
| 268 | stacking: tell the plotter which variable to plot
|
---|
| 269 | as line colour overlays (default 'pol')
|
---|
| 270 | panelling: tell the plotter which variable to plot
|
---|
| 271 | across multiple panels (default 'scan'
|
---|
| 272 | Note:
|
---|
| 273 | Valid modes are:
|
---|
| 274 | 'beam' 'Beam' 'b': Beams
|
---|
| 275 | 'if' 'IF' 'i': IFs
|
---|
| 276 | 'pol' 'Pol' 'p': Polarisations
|
---|
| 277 | 'scan' 'Scan' 's': Scans
|
---|
| 278 | 'time' 'Time' 't': Times
|
---|
| 279 | """
|
---|
| 280 | if not self.set_panels(panelling):
|
---|
| 281 | print "Invalid mode"
|
---|
[226] | 282 | return
|
---|
[203] | 283 | if not self.set_stacking(stacking):
|
---|
| 284 | print "Invalid mode"
|
---|
[226] | 285 | return
|
---|
| 286 | if self._data: self.plot()
|
---|
[203] | 287 | return
|
---|
| 288 |
|
---|
[377] | 289 | def set_panels(self, what=None):
|
---|
| 290 | """
|
---|
| 291 | """
|
---|
[226] | 292 | if not what:
|
---|
| 293 | what = rcParams['plotter.panelling']
|
---|
[203] | 294 | md = self._translate(what)
|
---|
| 295 | if md:
|
---|
[226] | 296 | self._panels = md
|
---|
| 297 | self._title = None
|
---|
[203] | 298 | return True
|
---|
| 299 | return False
|
---|
| 300 |
|
---|
[377] | 301 | def set_layout(self,rows=None,cols=None):
|
---|
| 302 | """
|
---|
| 303 | Set the multi-panel layout, i.e. how many rows and columns plots
|
---|
| 304 | are visible.
|
---|
| 305 | Parameters:
|
---|
| 306 | rows: The number of rows of plots
|
---|
| 307 | cols: The number of columns of plots
|
---|
| 308 | Note:
|
---|
| 309 | If no argument is given, the potter reverts to its auto-plot
|
---|
| 310 | behaviour.
|
---|
| 311 | """
|
---|
| 312 | self._rows = rows
|
---|
| 313 | self._cols = cols
|
---|
| 314 | if self._data: self.plot()
|
---|
| 315 | return
|
---|
| 316 |
|
---|
[226] | 317 | def set_stacking(self, what=None):
|
---|
| 318 | if not what:
|
---|
| 319 | what = rcParams['plotter.stacking']
|
---|
[203] | 320 | md = self._translate(what)
|
---|
| 321 | if md:
|
---|
| 322 | self._stacking = md
|
---|
[226] | 323 | self._lmap = None
|
---|
[203] | 324 | return True
|
---|
| 325 | return False
|
---|
| 326 |
|
---|
| 327 | def set_range(self,start=None,end=None):
|
---|
| 328 | """
|
---|
| 329 | Set the range of interest on the abcissa of the plot
|
---|
| 330 | Parameters:
|
---|
| 331 | start,end: The start an end point of the 'zoom' window
|
---|
| 332 | Note:
|
---|
| 333 | These become non-sensical when the unit changes.
|
---|
| 334 | use plotter.set_range() without parameters to reset
|
---|
| 335 |
|
---|
| 336 | """
|
---|
| 337 | if start is None and end is None:
|
---|
| 338 | self._minmax = None
|
---|
[226] | 339 | if self._data: self.plot()
|
---|
[203] | 340 | else:
|
---|
| 341 | self._minmax = [start,end]
|
---|
[226] | 342 | if self._data: self.plot()
|
---|
[203] | 343 | return
|
---|
| 344 |
|
---|
[257] | 345 | def set_legend(self, mp=None):
|
---|
[203] | 346 | """
|
---|
| 347 | Specify a mapping for the legend instead of using the default
|
---|
| 348 | indices:
|
---|
| 349 | Parameters:
|
---|
| 350 | mp: a list of 'strings'. This should have the same length
|
---|
| 351 | as the number of elements on the legend and then maps
|
---|
| 352 | to the indeces in order
|
---|
| 353 |
|
---|
| 354 | Example:
|
---|
| 355 | If the data has to IFs/rest frequencies with index 0 and 1
|
---|
| 356 | for CO and SiO:
|
---|
| 357 | plotter.set_stacking('i')
|
---|
| 358 | plotter.set_legend_map(['CO','SiO'])
|
---|
| 359 | plotter.plot()
|
---|
| 360 | """
|
---|
| 361 | self._lmap = mp
|
---|
[226] | 362 | if self._data: self.plot()
|
---|
| 363 | return
|
---|
| 364 |
|
---|
| 365 | def set_title(self, title=None):
|
---|
| 366 | self._title = title
|
---|
| 367 | if self._data: self.plot()
|
---|
| 368 | return
|
---|
| 369 |
|
---|
[257] | 370 | def set_ordinate(self, ordinate=None):
|
---|
| 371 | self._ordinate = ordinate
|
---|
| 372 | if self._data: self.plot()
|
---|
| 373 | return
|
---|
| 374 |
|
---|
| 375 | def set_abcissa(self, abcissa=None):
|
---|
| 376 | self._abcissa = abcissa
|
---|
| 377 | if self._data: self.plot()
|
---|
| 378 | return
|
---|
| 379 |
|
---|
[377] | 380 | def save(self, filename=None):
|
---|
| 381 | """
|
---|
| 382 | Save the plot to a file. The know formats are 'png', 'ps', 'eps'.
|
---|
| 383 | Parameters:
|
---|
| 384 | filename: The name of the output file. This is optional
|
---|
| 385 | and autodetects the image format from the file
|
---|
| 386 | suffix. If non filename is specified a file
|
---|
| 387 | called 'yyyymmdd_hhmmss.png' is created in the
|
---|
| 388 | current directory.
|
---|
| 389 | """
|
---|
| 390 | self._plotter.save(filename)
|
---|
| 391 | return
|
---|
[257] | 392 |
|
---|
[203] | 393 | if __name__ == '__main__':
|
---|
| 394 | plotter = asapplotter()
|
---|