[203] | 1 | from asap.asaplot import ASAPlot
|
---|
[226] | 2 | from asap import rcParams
|
---|
[203] | 3 |
|
---|
| 4 | class asapplotter:
|
---|
[226] | 5 | """
|
---|
| 6 | The ASAP plotter.
|
---|
| 7 | By default the plotter is set up to plot polarisations
|
---|
| 8 | 'colour stacked' and scantables across panels.
|
---|
| 9 | The defaul plotter is called 'plotter'.
|
---|
| 10 | Note:
|
---|
| 11 | Currenly it only plots 'spectra' not Tsys or
|
---|
| 12 | other variables.
|
---|
| 13 | """
|
---|
[203] | 14 | def __init__(self):
|
---|
| 15 | self._plotter = ASAPlot()
|
---|
| 16 |
|
---|
| 17 | self._tdict = {'Time':'t','time':'t','t':'t','T':'t'}
|
---|
| 18 | self._bdict = {'Beam':'b','beam':'b','b':'b','B':'b'}
|
---|
| 19 | self._idict = {'IF':'i','if':'i','i':'i','I':'i'}
|
---|
| 20 | self._pdict = {'Pol':'p','pol':'p','p':'p'}
|
---|
| 21 | self._sdict = {'scan':'s','Scan':'s','s':'s','S':'s'}
|
---|
| 22 | self._cdict = {'t':'scan.nrow()',
|
---|
| 23 | 'b':'scan.nbeam()',
|
---|
| 24 | 'i':'scan.nif()',
|
---|
| 25 | 'p':'scan.npol()',
|
---|
| 26 | 's':'len(scans)'}
|
---|
| 27 | self._ldict = {'b':'Beam',
|
---|
| 28 | 'i':'IF',
|
---|
| 29 | 'p':'Pol',
|
---|
| 30 | 's':'Scan'}
|
---|
| 31 | self._dicts = [self._tdict,self._bdict,
|
---|
| 32 | self._idict,self._pdict,
|
---|
| 33 | self._sdict]
|
---|
| 34 | self._panels = 's'
|
---|
[226] | 35 | self._stacking = rcParams['plotter.stacking']
|
---|
[203] | 36 | self._autoplot = False
|
---|
| 37 | self._minmax = None
|
---|
| 38 | self._data = None
|
---|
| 39 | self._lmap = []
|
---|
[226] | 40 | self._title = None
|
---|
[203] | 41 |
|
---|
| 42 | def _translate(self, name):
|
---|
| 43 | for d in self._dicts:
|
---|
| 44 | if d.has_key(name):
|
---|
| 45 | return d[name]
|
---|
| 46 | return None
|
---|
| 47 |
|
---|
| 48 | def plot(self,*args):
|
---|
| 49 | """
|
---|
| 50 | Plot a (list of) scantables.
|
---|
| 51 | Parameters:
|
---|
| 52 | one or more comma separated scantables
|
---|
| 53 | Note:
|
---|
| 54 | If a (list) of scantables was specified in a previous call
|
---|
| 55 | to plot, no argument has to be given to 'replot'
|
---|
| 56 | NO checking is done that the abscissas of the scantables
|
---|
| 57 | are consistent e.g. all 'channel' or all 'velocity' etc.
|
---|
| 58 | """
|
---|
| 59 | if self._plotter.is_dead:
|
---|
| 60 | self._plotter = ASAPlot()
|
---|
| 61 | self._plotter.clear()
|
---|
| 62 | self._plotter.hold()
|
---|
| 63 | if len(args) > 0:
|
---|
| 64 | self._data = tuple(args)
|
---|
| 65 | if self._panels == 't':
|
---|
| 66 | if self._data[0].nrow() > 25:
|
---|
| 67 | print "Scan to be plotted contains more than 25 rows.\nCan't plot that many panels..."
|
---|
| 68 | return
|
---|
| 69 | self._plot_time(self._data[0], self._stacking)
|
---|
| 70 | elif self._panels == 's':
|
---|
| 71 | self._plot_scans(self._data, self._stacking)
|
---|
| 72 | else:
|
---|
| 73 | self._plot_other(self._data, self._stacking)
|
---|
| 74 | if self._minmax is not None:
|
---|
| 75 | self._plotter.set_limits(xlim=self._minmax)
|
---|
| 76 | self._plotter.release()
|
---|
| 77 | return
|
---|
| 78 |
|
---|
| 79 | def _plot_time(self, scan, colmode):
|
---|
| 80 | if colmode == 't':
|
---|
| 81 | return
|
---|
| 82 | n = scan.nrow()
|
---|
| 83 | cdict = {'b':'scan.setbeam(j)',
|
---|
| 84 | 'i':'scan.setif(j)',
|
---|
| 85 | 'p':'scan.setpol(j)'}
|
---|
| 86 | if self._stacking is not None:
|
---|
| 87 | ncol = eval(self._cdict.get(colmode))
|
---|
| 88 | self._plotter.set_panels()
|
---|
| 89 | if n > 1:
|
---|
| 90 | self._plotter.set_panels(rows=n)
|
---|
| 91 | for i in range(n):
|
---|
| 92 | if n > 1:
|
---|
| 93 | self._plotter.palette(0)
|
---|
| 94 | self._plotter.subplot(i)
|
---|
| 95 | for j in range(ncol):
|
---|
| 96 | eval(cdict.get(colmode))
|
---|
| 97 | x = None
|
---|
| 98 | y = None
|
---|
| 99 | m = None
|
---|
[226] | 100 | if not self._title:
|
---|
| 101 | tlab = scan._getsourcename(i)
|
---|
| 102 | else:
|
---|
| 103 | if len(self._title) == n:
|
---|
| 104 | tlab = self._title[i]
|
---|
| 105 | else:
|
---|
| 106 | tlab = scan._getsourcename(i)
|
---|
[203] | 107 | x,xlab = scan.get_abcissa(i)
|
---|
| 108 | y = scan.getspectrum(i)
|
---|
| 109 | ylab = 'Flux ('+scan.get_fluxunit()+')'
|
---|
| 110 | m = scan.getmask(i)
|
---|
[226] | 111 | if self._lmap and len(self._lmap) > 0:
|
---|
[203] | 112 | llab = self._lmap[j]
|
---|
| 113 | else:
|
---|
| 114 | llab = self._ldict.get(colmode)+' '+str(j)
|
---|
| 115 | self._plotter.set_line(label=llab)
|
---|
| 116 | self._plotter.plot(x,y,m)
|
---|
| 117 | xlim=[min(x),max(x)]
|
---|
| 118 | self._plotter.axes.set_xlim(xlim)
|
---|
| 119 | self._plotter.set_axes('xlabel',xlab)
|
---|
| 120 | self._plotter.set_axes('ylabel',ylab)
|
---|
| 121 | self._plotter.set_axes('title',tlab)
|
---|
| 122 | return
|
---|
| 123 |
|
---|
| 124 | def _plot_scans(self, scans, colmode):
|
---|
| 125 | if colmode == 's':
|
---|
| 126 | return
|
---|
| 127 | cdict = {'b':'scan.setbeam(j)',
|
---|
| 128 | 'i':'scan.setif(j)',
|
---|
| 129 | 'p':'scan.setpol(j)'}
|
---|
| 130 | n = len(scans)
|
---|
| 131 | if self._stacking is not None:
|
---|
| 132 | scan = scans[0]
|
---|
| 133 | ncol = eval(self._cdict.get(colmode))
|
---|
| 134 | self._plotter.set_panels()
|
---|
| 135 | if n > 1:
|
---|
| 136 | self._plotter.set_panels(rows=n)
|
---|
| 137 | i = 0
|
---|
| 138 | for scan in scans:
|
---|
| 139 | if n > 1:
|
---|
| 140 | self._plotter.subplot(i)
|
---|
| 141 | self._plotter.palette(0)
|
---|
| 142 | for j in range(ncol):
|
---|
| 143 | eval(cdict.get(colmode))
|
---|
| 144 | x = None
|
---|
| 145 | y = None
|
---|
| 146 | m = None
|
---|
[226] | 147 | tlab = self._title
|
---|
| 148 | if not self._title:
|
---|
| 149 | tlab = scan._getsourcename()
|
---|
[203] | 150 | x,xlab = scan.get_abcissa()
|
---|
| 151 | y = scan.getspectrum()
|
---|
| 152 | ylab = 'Flux ('+scan.get_fluxunit()+')'
|
---|
| 153 | m = scan.getmask()
|
---|
| 154 | if len(self._lmap) > 0:
|
---|
| 155 | llab = self._lmap[j]
|
---|
| 156 | else:
|
---|
| 157 | llab = self._ldict.get(colmode)+' '+str(j)
|
---|
| 158 | self._plotter.set_line(label=llab)
|
---|
| 159 | self._plotter.plot(x,y,m)
|
---|
| 160 | xlim=[min(x),max(x)]
|
---|
| 161 | self._plotter.axes.set_xlim(xlim)
|
---|
| 162 |
|
---|
| 163 | self._plotter.set_axes('xlabel',xlab)
|
---|
| 164 | self._plotter.set_axes('ylabel',ylab)
|
---|
| 165 | self._plotter.set_axes('title',tlab)
|
---|
| 166 | i += 1
|
---|
| 167 | return
|
---|
| 168 |
|
---|
| 169 | def _plot_other(self,scans,colmode):
|
---|
| 170 | if colmode == self._panels:
|
---|
| 171 | return
|
---|
| 172 | cdict = {'b':'scan.setbeam(j)',
|
---|
| 173 | 'i':'scan.setif(j)',
|
---|
| 174 | 'p':'scan.setpol(j)',
|
---|
| 175 | 's':'scans[j]'}
|
---|
| 176 | scan = scans[0]
|
---|
| 177 | n = eval(self._cdict.get(self._panels))
|
---|
| 178 | if self._stacking is not None:
|
---|
| 179 | ncol = eval(self._cdict.get(colmode))
|
---|
| 180 | self._plotter.set_panels()
|
---|
| 181 | if n > 1:
|
---|
| 182 | self._plotter.set_panels(rows=n)
|
---|
| 183 | for i in range(n):
|
---|
| 184 | if n>1:
|
---|
| 185 | self._plotter.subplot(i)
|
---|
| 186 | self._plotter.palette(0)
|
---|
| 187 | k=0
|
---|
| 188 | j=i
|
---|
| 189 | eval(cdict.get(self._panels))
|
---|
| 190 | for j in range(ncol):
|
---|
| 191 | if colmode == 's':
|
---|
| 192 | scan = eval(cdict.get(colmode))
|
---|
| 193 | elif colmode == 't':
|
---|
| 194 | k = j
|
---|
| 195 | else:
|
---|
| 196 | eval(cdict.get(colmode))
|
---|
| 197 | x = None
|
---|
| 198 | y = None
|
---|
| 199 | m = None
|
---|
| 200 | x,xlab = scan.get_abcissa(k)
|
---|
| 201 | y = scan.getspectrum(k)
|
---|
| 202 | ylab = 'Flux ('+scan.get_fluxunit()+')'
|
---|
| 203 | m = scan.getmask(k)
|
---|
| 204 | if colmode == 's' or colmode == 't':
|
---|
[226] | 205 | if not self._title:
|
---|
| 206 | tlab = self._ldict.get(self._panels)+' '+str(i)
|
---|
| 207 | else:
|
---|
| 208 | if len(self.title) == n:
|
---|
| 209 | tlab = self._title[i]
|
---|
| 210 | else:
|
---|
| 211 | tlab = self._ldict.get(self._panels)+' '+str(i)
|
---|
[203] | 212 | llab = scan._getsourcename(k)
|
---|
| 213 | else:
|
---|
[226] | 214 | if self._title and len(self._title) > 0:
|
---|
| 215 | tlab = self._title[k]
|
---|
| 216 | else:
|
---|
| 217 | tlab = scan._getsourcename(k)
|
---|
| 218 | if self._lmap and len(self._lmap) > 0:
|
---|
[203] | 219 | llab = self._lmap[j]
|
---|
| 220 | else:
|
---|
| 221 | llab = self._ldict.get(colmode)+' '+str(j)
|
---|
| 222 | self._plotter.set_line(label=llab)
|
---|
| 223 | self._plotter.plot(x,y,m)
|
---|
| 224 | xlim=[min(x),max(x)]
|
---|
| 225 | self._plotter.axes.set_xlim(xlim)
|
---|
| 226 |
|
---|
| 227 | self._plotter.set_axes('xlabel',xlab)
|
---|
| 228 | self._plotter.set_axes('ylabel',ylab)
|
---|
| 229 | self._plotter.set_axes('title',tlab)
|
---|
| 230 |
|
---|
| 231 | return
|
---|
| 232 |
|
---|
| 233 |
|
---|
[226] | 234 | def set_mode(self, stacking=None, panelling=None):
|
---|
[203] | 235 | """
|
---|
| 236 | Parameters:
|
---|
| 237 | stacking: tell the plotter which variable to plot
|
---|
| 238 | as line colour overlays (default 'pol')
|
---|
| 239 | panelling: tell the plotter which variable to plot
|
---|
| 240 | across multiple panels (default 'scan'
|
---|
| 241 | Note:
|
---|
| 242 | Valid modes are:
|
---|
| 243 | 'beam' 'Beam' 'b': Beams
|
---|
| 244 | 'if' 'IF' 'i': IFs
|
---|
| 245 | 'pol' 'Pol' 'p': Polarisations
|
---|
| 246 | 'scan' 'Scan' 's': Scans
|
---|
| 247 | 'time' 'Time' 't': Times
|
---|
| 248 | """
|
---|
| 249 | if not self.set_panels(panelling):
|
---|
| 250 | print "Invalid mode"
|
---|
[226] | 251 | return
|
---|
[203] | 252 | if not self.set_stacking(stacking):
|
---|
| 253 | print "Invalid mode"
|
---|
[226] | 254 | return
|
---|
| 255 | if self._data: self.plot()
|
---|
[203] | 256 | return
|
---|
| 257 |
|
---|
[226] | 258 | def set_panels(self, what=None):
|
---|
| 259 | if not what:
|
---|
| 260 | what = rcParams['plotter.panelling']
|
---|
[203] | 261 | md = self._translate(what)
|
---|
| 262 | if md:
|
---|
[226] | 263 | self._panels = md
|
---|
| 264 | self._title = None
|
---|
[203] | 265 | return True
|
---|
| 266 | return False
|
---|
| 267 |
|
---|
[226] | 268 | def set_stacking(self, what=None):
|
---|
| 269 | if not what:
|
---|
| 270 | what = rcParams['plotter.stacking']
|
---|
[203] | 271 | md = self._translate(what)
|
---|
| 272 | if md:
|
---|
| 273 | self._stacking = md
|
---|
[226] | 274 | self._lmap = None
|
---|
[203] | 275 | return True
|
---|
| 276 | return False
|
---|
| 277 |
|
---|
| 278 | def set_range(self,start=None,end=None):
|
---|
| 279 | """
|
---|
| 280 | Set the range of interest on the abcissa of the plot
|
---|
| 281 | Parameters:
|
---|
| 282 | start,end: The start an end point of the 'zoom' window
|
---|
| 283 | Note:
|
---|
| 284 | These become non-sensical when the unit changes.
|
---|
| 285 | use plotter.set_range() without parameters to reset
|
---|
| 286 |
|
---|
| 287 | """
|
---|
| 288 | if start is None and end is None:
|
---|
| 289 | self._minmax = None
|
---|
[226] | 290 | if self._data: self.plot()
|
---|
[203] | 291 | else:
|
---|
| 292 | self._minmax = [start,end]
|
---|
[226] | 293 | if self._data: self.plot()
|
---|
[203] | 294 | return
|
---|
| 295 |
|
---|
[226] | 296 | def set_legend_map(self, mp=[]):
|
---|
[203] | 297 | """
|
---|
| 298 | Specify a mapping for the legend instead of using the default
|
---|
| 299 | indices:
|
---|
| 300 | Parameters:
|
---|
| 301 | mp: a list of 'strings'. This should have the same length
|
---|
| 302 | as the number of elements on the legend and then maps
|
---|
| 303 | to the indeces in order
|
---|
| 304 |
|
---|
| 305 | Example:
|
---|
| 306 | If the data has to IFs/rest frequencies with index 0 and 1
|
---|
| 307 | for CO and SiO:
|
---|
| 308 | plotter.set_stacking('i')
|
---|
| 309 | plotter.set_legend_map(['CO','SiO'])
|
---|
| 310 | plotter.plot()
|
---|
| 311 | """
|
---|
| 312 | self._lmap = mp
|
---|
[226] | 313 | if self._data: self.plot()
|
---|
| 314 | return
|
---|
| 315 |
|
---|
| 316 | def set_title(self, title=None):
|
---|
| 317 | self._title = title
|
---|
| 318 | if self._data: self.plot()
|
---|
| 319 | return
|
---|
| 320 |
|
---|
[203] | 321 | if __name__ == '__main__':
|
---|
| 322 | plotter = asapplotter()
|
---|