[1824] | 1 | from asap.parameters import rcParams
|
---|
| 2 | from asap.selector import selector
|
---|
| 3 | from asap.scantable import scantable
|
---|
[1862] | 4 | from asap.logging import asaplog, asaplog_post_dec
|
---|
[1153] | 5 | import matplotlib.axes
|
---|
[1556] | 6 | from matplotlib.font_manager import FontProperties
|
---|
| 7 | from matplotlib.text import Text
|
---|
| 8 |
|
---|
[1317] | 9 | import re
|
---|
[203] | 10 |
|
---|
[2150] | 11 | def new_asaplot(visible=None,**kwargs):
|
---|
| 12 | """
|
---|
| 13 | Returns a new asaplot instance based on the backend settings.
|
---|
| 14 | """
|
---|
| 15 | if visible == None:
|
---|
| 16 | visible = rcParams['plotter.gui']
|
---|
| 17 |
|
---|
| 18 | backend=matplotlib.get_backend()
|
---|
| 19 | if not visible:
|
---|
| 20 | from asap.asaplot import asaplot
|
---|
| 21 | elif backend == 'TkAgg':
|
---|
| 22 | from asap.asaplotgui import asaplotgui as asaplot
|
---|
| 23 | elif backend == 'Qt4Agg':
|
---|
| 24 | from asap.asaplotgui_qt4 import asaplotgui as asaplot
|
---|
| 25 | elif backend == 'GTkAgg':
|
---|
| 26 | from asap.asaplotgui_gtk import asaplotgui as asaplot
|
---|
| 27 | else:
|
---|
| 28 | from asap.asaplot import asaplot
|
---|
| 29 | return asaplot(**kwargs)
|
---|
| 30 |
|
---|
[203] | 31 | class asapplotter:
|
---|
[226] | 32 | """
|
---|
| 33 | The ASAP plotter.
|
---|
| 34 | By default the plotter is set up to plot polarisations
|
---|
| 35 | 'colour stacked' and scantables across panels.
|
---|
[1858] | 36 |
|
---|
| 37 | .. note::
|
---|
| 38 |
|
---|
[226] | 39 | Currenly it only plots 'spectra' not Tsys or
|
---|
| 40 | other variables.
|
---|
[1858] | 41 |
|
---|
[226] | 42 | """
|
---|
[1563] | 43 | def __init__(self, visible=None , **kwargs):
|
---|
[734] | 44 | self._visible = rcParams['plotter.gui']
|
---|
| 45 | if visible is not None:
|
---|
| 46 | self._visible = visible
|
---|
[1563] | 47 | self._plotter = self._newplotter(**kwargs)
|
---|
[1819] | 48 | # additional tool bar
|
---|
[2173] | 49 | self._plotter.figmgr.casabar=self._new_custombar()
|
---|
[710] | 50 |
|
---|
[554] | 51 | self._panelling = None
|
---|
| 52 | self._stacking = None
|
---|
| 53 | self.set_panelling()
|
---|
| 54 | self.set_stacking()
|
---|
[377] | 55 | self._rows = None
|
---|
| 56 | self._cols = None
|
---|
[203] | 57 | self._autoplot = False
|
---|
[525] | 58 | self._minmaxx = None
|
---|
| 59 | self._minmaxy = None
|
---|
[710] | 60 | self._datamask = None
|
---|
[203] | 61 | self._data = None
|
---|
[607] | 62 | self._lmap = None
|
---|
[226] | 63 | self._title = None
|
---|
[257] | 64 | self._ordinate = None
|
---|
| 65 | self._abcissa = None
|
---|
[709] | 66 | self._abcunit = None
|
---|
[920] | 67 | self._usermask = []
|
---|
| 68 | self._maskselection = None
|
---|
| 69 | self._selection = selector()
|
---|
[1023] | 70 | self._hist = rcParams['plotter.histogram']
|
---|
[1556] | 71 | self._fp = FontProperties()
|
---|
[2037] | 72 | self._margins = self.set_margin(refresh=False)
|
---|
[1897] | 73 | self._offset = None
|
---|
[1981] | 74 | self._startrow = 0
|
---|
| 75 | self._ipanel = -1
|
---|
| 76 | self._panelrows = []
|
---|
[2053] | 77 | self._headtext={'string': None, 'textobj': None}
|
---|
[1023] | 78 |
|
---|
[920] | 79 | def _translate(self, instr):
|
---|
[1910] | 80 | keys = "s b i p t r".split()
|
---|
[920] | 81 | if isinstance(instr, str):
|
---|
| 82 | for key in keys:
|
---|
| 83 | if instr.lower().startswith(key):
|
---|
| 84 | return key
|
---|
| 85 | return None
|
---|
| 86 |
|
---|
[1563] | 87 | def _newplotter(self, **kwargs):
|
---|
[2150] | 88 | return new_asaplot(self._visible,**kwargs)
|
---|
[710] | 89 |
|
---|
[2173] | 90 | def _new_custombar(self):
|
---|
[1819] | 91 | backend=matplotlib.get_backend()
|
---|
[2168] | 92 | if not self._visible:
|
---|
| 93 | return None
|
---|
| 94 | elif backend == "TkAgg":
|
---|
[2155] | 95 | from asap.customgui_tkagg import CustomToolbarTkAgg
|
---|
[1819] | 96 | return CustomToolbarTkAgg(self)
|
---|
[2168] | 97 | elif backend == "Qt4Agg":
|
---|
| 98 | from asap.customgui_qt4agg import CustomToolbarQT4Agg
|
---|
| 99 | return CustomToolbarQT4Agg(self)
|
---|
[1995] | 100 | return None
|
---|
[1819] | 101 |
|
---|
[2147] | 102 | def casabar_exists(self):
|
---|
| 103 | if not hasattr(self._plotter.figmgr,'casabar'):
|
---|
| 104 | return False
|
---|
| 105 | elif self._plotter.figmgr.casabar:
|
---|
| 106 | return True
|
---|
| 107 | return False
|
---|
| 108 |
|
---|
[1862] | 109 | @asaplog_post_dec
|
---|
[935] | 110 | def plot(self, scan=None):
|
---|
[203] | 111 | """
|
---|
[920] | 112 | Plot a scantable.
|
---|
[203] | 113 | Parameters:
|
---|
[920] | 114 | scan: a scantable
|
---|
[203] | 115 | Note:
|
---|
[920] | 116 | If a scantable was specified in a previous call
|
---|
[203] | 117 | to plot, no argument has to be given to 'replot'
|
---|
[920] | 118 | NO checking is done that the abcissas of the scantable
|
---|
[203] | 119 | are consistent e.g. all 'channel' or all 'velocity' etc.
|
---|
| 120 | """
|
---|
[1981] | 121 | self._startrow = 0
|
---|
| 122 | self._ipanel = -1
|
---|
[2056] | 123 | self._reset_header()
|
---|
[710] | 124 | if self._plotter.is_dead:
|
---|
[2147] | 125 | if self.casabar_exists():
|
---|
[1819] | 126 | del self._plotter.figmgr.casabar
|
---|
[710] | 127 | self._plotter = self._newplotter()
|
---|
[2173] | 128 | self._plotter.figmgr.casabar=self._new_custombar()
|
---|
[2147] | 129 | if self.casabar_exists():
|
---|
[1984] | 130 | self._plotter.figmgr.casabar.set_pagecounter(1)
|
---|
[1981] | 131 | self._panelrows = []
|
---|
[600] | 132 | self._plotter.hold()
|
---|
[1945] | 133 | #self._plotter.clear()
|
---|
[935] | 134 | if not self._data and not scan:
|
---|
[1101] | 135 | msg = "Input is not a scantable"
|
---|
| 136 | raise TypeError(msg)
|
---|
[1897] | 137 | if scan:
|
---|
| 138 | self.set_data(scan, refresh=False)
|
---|
[920] | 139 | self._plot(self._data)
|
---|
[709] | 140 | if self._minmaxy is not None:
|
---|
| 141 | self._plotter.set_limits(ylim=self._minmaxy)
|
---|
[2147] | 142 | if self.casabar_exists(): self._plotter.figmgr.casabar.enable_button()
|
---|
[203] | 143 | self._plotter.release()
|
---|
[1153] | 144 | self._plotter.tidy()
|
---|
| 145 | self._plotter.show(hardrefresh=False)
|
---|
[203] | 146 | return
|
---|
| 147 |
|
---|
[1572] | 148 | def gca(self):
|
---|
| 149 | return self._plotter.figure.gca()
|
---|
| 150 |
|
---|
[1550] | 151 | def refresh(self):
|
---|
[1572] | 152 | """Do a soft refresh"""
|
---|
[1550] | 153 | self._plotter.figure.show()
|
---|
| 154 |
|
---|
[1555] | 155 | def create_mask(self, nwin=1, panel=0, color=None):
|
---|
[1597] | 156 | """
|
---|
[1927] | 157 | Interactively define a mask. It retruns a mask that is equivalent to
|
---|
[1597] | 158 | the one created manually with scantable.create_mask.
|
---|
| 159 | Parameters:
|
---|
| 160 | nwin: The number of mask windows to create interactively
|
---|
| 161 | default is 1.
|
---|
| 162 | panel: Which panel to use for mask selection. This is useful
|
---|
| 163 | if different IFs are spread over panels (default 0)
|
---|
| 164 | """
|
---|
[1555] | 165 | if self._data is None:
|
---|
| 166 | return []
|
---|
[1547] | 167 | outmask = []
|
---|
[1549] | 168 | self._plotter.subplot(panel)
|
---|
| 169 | xmin, xmax = self._plotter.axes.get_xlim()
|
---|
[1548] | 170 | marg = 0.05*(xmax-xmin)
|
---|
[1549] | 171 | self._plotter.axes.set_xlim(xmin-marg, xmax+marg)
|
---|
[1550] | 172 | self.refresh()
|
---|
[1695] | 173 |
|
---|
[1555] | 174 | def cleanup(lines=False, texts=False, refresh=False):
|
---|
| 175 | if lines:
|
---|
| 176 | del self._plotter.axes.lines[-1]
|
---|
| 177 | if texts:
|
---|
| 178 | del self._plotter.axes.texts[-1]
|
---|
| 179 | if refresh:
|
---|
| 180 | self.refresh()
|
---|
| 181 |
|
---|
| 182 | for w in xrange(nwin):
|
---|
[1547] | 183 | wpos = []
|
---|
[1695] | 184 | self.text(0.05,1.0, "Add start boundary",
|
---|
[1555] | 185 | coords="relative", fontsize=10)
|
---|
| 186 | point = self._plotter.get_point()
|
---|
| 187 | cleanup(texts=True)
|
---|
| 188 | if point is None:
|
---|
| 189 | continue
|
---|
| 190 | wpos.append(point[0])
|
---|
[1695] | 191 | self.axvline(wpos[0], color=color)
|
---|
[1551] | 192 | self.text(0.05,1.0, "Add end boundary", coords="relative", fontsize=10)
|
---|
[1555] | 193 | point = self._plotter.get_point()
|
---|
| 194 | cleanup(texts=True, lines=True)
|
---|
| 195 | if point is None:
|
---|
| 196 | self.refresh()
|
---|
| 197 | continue
|
---|
| 198 | wpos.append(point[0])
|
---|
| 199 | self.axvspan(wpos[0], wpos[1], alpha=0.1,
|
---|
| 200 | edgecolor=color, facecolor=color)
|
---|
| 201 | ymin, ymax = self._plotter.axes.get_ylim()
|
---|
[1547] | 202 | outmask.append(wpos)
|
---|
[1153] | 203 |
|
---|
[1555] | 204 | self._plotter.axes.set_xlim(xmin, xmax)
|
---|
| 205 | self.refresh()
|
---|
| 206 | if len(outmask) > 0:
|
---|
| 207 | return self._data.create_mask(*outmask)
|
---|
| 208 | return []
|
---|
| 209 |
|
---|
[1153] | 210 | # forwards to matplotlib axes
|
---|
| 211 | def text(self, *args, **kwargs):
|
---|
[1547] | 212 | if kwargs.has_key("interactive"):
|
---|
| 213 | if kwargs.pop("interactive"):
|
---|
| 214 | pos = self._plotter.get_point()
|
---|
| 215 | args = tuple(pos)+args
|
---|
[1153] | 216 | self._axes_callback("text", *args, **kwargs)
|
---|
[1547] | 217 |
|
---|
[1358] | 218 | text.__doc__ = matplotlib.axes.Axes.text.__doc__
|
---|
[1559] | 219 |
|
---|
[1153] | 220 | def arrow(self, *args, **kwargs):
|
---|
[1547] | 221 | if kwargs.has_key("interactive"):
|
---|
| 222 | if kwargs.pop("interactive"):
|
---|
| 223 | pos = self._plotter.get_region()
|
---|
| 224 | dpos = (pos[0][0], pos[0][1],
|
---|
| 225 | pos[1][0]-pos[0][0],
|
---|
| 226 | pos[1][1] - pos[0][1])
|
---|
| 227 | args = dpos + args
|
---|
[1153] | 228 | self._axes_callback("arrow", *args, **kwargs)
|
---|
[1547] | 229 |
|
---|
[1358] | 230 | arrow.__doc__ = matplotlib.axes.Axes.arrow.__doc__
|
---|
[1559] | 231 |
|
---|
| 232 | def annotate(self, text, xy=None, xytext=None, **kwargs):
|
---|
| 233 | if kwargs.has_key("interactive"):
|
---|
| 234 | if kwargs.pop("interactive"):
|
---|
| 235 | xy = self._plotter.get_point()
|
---|
| 236 | xytext = self._plotter.get_point()
|
---|
| 237 | if not kwargs.has_key("arrowprops"):
|
---|
| 238 | kwargs["arrowprops"] = dict(arrowstyle="->")
|
---|
| 239 | self._axes_callback("annotate", text, xy, xytext, **kwargs)
|
---|
| 240 |
|
---|
| 241 | annotate.__doc__ = matplotlib.axes.Axes.annotate.__doc__
|
---|
| 242 |
|
---|
[1153] | 243 | def axvline(self, *args, **kwargs):
|
---|
[1547] | 244 | if kwargs.has_key("interactive"):
|
---|
| 245 | if kwargs.pop("interactive"):
|
---|
| 246 | pos = self._plotter.get_point()
|
---|
| 247 | args = (pos[0],)+args
|
---|
[1153] | 248 | self._axes_callback("axvline", *args, **kwargs)
|
---|
[1559] | 249 |
|
---|
[1358] | 250 | axvline.__doc__ = matplotlib.axes.Axes.axvline.__doc__
|
---|
[1547] | 251 |
|
---|
[1153] | 252 | def axhline(self, *args, **kwargs):
|
---|
[1547] | 253 | if kwargs.has_key("interactive"):
|
---|
| 254 | if kwargs.pop("interactive"):
|
---|
| 255 | pos = self._plotter.get_point()
|
---|
| 256 | args = (pos[1],)+args
|
---|
[1153] | 257 | self._axes_callback("axhline", *args, **kwargs)
|
---|
[1559] | 258 |
|
---|
[1358] | 259 | axhline.__doc__ = matplotlib.axes.Axes.axhline.__doc__
|
---|
[1547] | 260 |
|
---|
[1153] | 261 | def axvspan(self, *args, **kwargs):
|
---|
[1547] | 262 | if kwargs.has_key("interactive"):
|
---|
| 263 | if kwargs.pop("interactive"):
|
---|
| 264 | pos = self._plotter.get_region()
|
---|
| 265 | dpos = (pos[0][0], pos[1][0])
|
---|
| 266 | args = dpos + args
|
---|
[1153] | 267 | self._axes_callback("axvspan", *args, **kwargs)
|
---|
| 268 | # hack to preventy mpl from redrawing the patch
|
---|
| 269 | # it seem to convert the patch into lines on every draw.
|
---|
| 270 | # This doesn't happen in a test script???
|
---|
[1547] | 271 | #del self._plotter.axes.patches[-1]
|
---|
| 272 |
|
---|
[1358] | 273 | axvspan.__doc__ = matplotlib.axes.Axes.axvspan.__doc__
|
---|
[1232] | 274 |
|
---|
[1153] | 275 | def axhspan(self, *args, **kwargs):
|
---|
[1547] | 276 | if kwargs.has_key("interactive"):
|
---|
| 277 | if kwargs.pop("interactive"):
|
---|
| 278 | pos = self._plotter.get_region()
|
---|
| 279 | dpos = (pos[0][1], pos[1][1])
|
---|
| 280 | args = dpos + args
|
---|
[1232] | 281 | self._axes_callback("axhspan", *args, **kwargs)
|
---|
[1153] | 282 | # hack to preventy mpl from redrawing the patch
|
---|
| 283 | # it seem to convert the patch into lines on every draw.
|
---|
| 284 | # This doesn't happen in a test script???
|
---|
[1547] | 285 | #del self._plotter.axes.patches[-1]
|
---|
[1559] | 286 |
|
---|
[1358] | 287 | axhspan.__doc__ = matplotlib.axes.Axes.axhspan.__doc__
|
---|
[1153] | 288 |
|
---|
| 289 | def _axes_callback(self, axesfunc, *args, **kwargs):
|
---|
| 290 | panel = 0
|
---|
| 291 | if kwargs.has_key("panel"):
|
---|
| 292 | panel = kwargs.pop("panel")
|
---|
| 293 | coords = None
|
---|
| 294 | if kwargs.has_key("coords"):
|
---|
| 295 | coords = kwargs.pop("coords")
|
---|
| 296 | if coords.lower() == 'world':
|
---|
| 297 | kwargs["transform"] = self._plotter.axes.transData
|
---|
| 298 | elif coords.lower() == 'relative':
|
---|
| 299 | kwargs["transform"] = self._plotter.axes.transAxes
|
---|
| 300 | self._plotter.subplot(panel)
|
---|
| 301 | self._plotter.axes.set_autoscale_on(False)
|
---|
| 302 | getattr(self._plotter.axes, axesfunc)(*args, **kwargs)
|
---|
| 303 | self._plotter.show(False)
|
---|
| 304 | self._plotter.axes.set_autoscale_on(True)
|
---|
| 305 | # end matplotlib.axes fowarding functions
|
---|
| 306 |
|
---|
[1862] | 307 | @asaplog_post_dec
|
---|
[1819] | 308 | def set_data(self, scan, refresh=True):
|
---|
| 309 | """
|
---|
[1824] | 310 | Set a scantable to plot.
|
---|
[1819] | 311 | Parameters:
|
---|
| 312 | scan: a scantable
|
---|
| 313 | refresh: True (default) or False. If True, the plot is
|
---|
[1824] | 314 | replotted based on the new parameter setting(s).
|
---|
[1819] | 315 | Otherwise,the parameter(s) are set without replotting.
|
---|
| 316 | Note:
|
---|
| 317 | The user specified masks and data selections will be reset
|
---|
| 318 | if a new scantable is set. This method should be called before
|
---|
[1824] | 319 | setting data selections (set_selection) and/or masks (set_mask).
|
---|
[1819] | 320 | """
|
---|
| 321 | from asap import scantable
|
---|
| 322 | if isinstance(scan, scantable):
|
---|
| 323 | if self._data is not None:
|
---|
| 324 | if scan != self._data:
|
---|
[2123] | 325 | del self._data
|
---|
[1819] | 326 | self._data = scan
|
---|
| 327 | # reset
|
---|
| 328 | self._reset()
|
---|
[1897] | 329 | msg = "A new scantable is set to the plotter. "\
|
---|
| 330 | "The masks and data selections are reset."
|
---|
[1819] | 331 | asaplog.push( msg )
|
---|
| 332 | else:
|
---|
| 333 | self._data = scan
|
---|
| 334 | self._reset()
|
---|
| 335 | else:
|
---|
| 336 | msg = "Input is not a scantable"
|
---|
| 337 | raise TypeError(msg)
|
---|
[1547] | 338 |
|
---|
[1819] | 339 | # ranges become invalid when unit changes
|
---|
| 340 | if self._abcunit and self._abcunit != self._data.get_unit():
|
---|
| 341 | self._minmaxx = None
|
---|
| 342 | self._minmaxy = None
|
---|
| 343 | self._abcunit = self._data.get_unit()
|
---|
| 344 | self._datamask = None
|
---|
| 345 | if refresh: self.plot()
|
---|
| 346 |
|
---|
[1862] | 347 | @asaplog_post_dec
|
---|
[1819] | 348 | def set_mode(self, stacking=None, panelling=None, refresh=True):
|
---|
[203] | 349 | """
|
---|
[377] | 350 | Set the plots look and feel, i.e. what you want to see on the plot.
|
---|
[203] | 351 | Parameters:
|
---|
| 352 | stacking: tell the plotter which variable to plot
|
---|
[1217] | 353 | as line colour overlays (default 'pol')
|
---|
[203] | 354 | panelling: tell the plotter which variable to plot
|
---|
| 355 | across multiple panels (default 'scan'
|
---|
[1819] | 356 | refresh: True (default) or False. If True, the plot is
|
---|
[1824] | 357 | replotted based on the new parameter setting(s).
|
---|
[1819] | 358 | Otherwise,the parameter(s) are set without replotting.
|
---|
[203] | 359 | Note:
|
---|
| 360 | Valid modes are:
|
---|
| 361 | 'beam' 'Beam' 'b': Beams
|
---|
| 362 | 'if' 'IF' 'i': IFs
|
---|
| 363 | 'pol' 'Pol' 'p': Polarisations
|
---|
| 364 | 'scan' 'Scan' 's': Scans
|
---|
| 365 | 'time' 'Time' 't': Times
|
---|
[1989] | 366 | 'row' 'Row' 'r': Rows
|
---|
| 367 | When either 'stacking' or 'panelling' is set to 'row',
|
---|
| 368 | the other parameter setting is ignored.
|
---|
[203] | 369 | """
|
---|
[753] | 370 | msg = "Invalid mode"
|
---|
| 371 | if not self.set_panelling(panelling) or \
|
---|
| 372 | not self.set_stacking(stacking):
|
---|
[1859] | 373 | raise TypeError(msg)
|
---|
[1989] | 374 | #if self._panelling == 'r':
|
---|
| 375 | # self._stacking = '_r'
|
---|
| 376 | #if self._stacking == 'r':
|
---|
| 377 | # self._panelling = '_r'
|
---|
[1819] | 378 | if refresh and self._data: self.plot(self._data)
|
---|
[203] | 379 | return
|
---|
| 380 |
|
---|
[554] | 381 | def set_panelling(self, what=None):
|
---|
[1858] | 382 | """Set the 'panelling' mode i.e. which type of spectra should be
|
---|
| 383 | spread across different panels.
|
---|
| 384 | """
|
---|
| 385 |
|
---|
[554] | 386 | mode = what
|
---|
| 387 | if mode is None:
|
---|
| 388 | mode = rcParams['plotter.panelling']
|
---|
| 389 | md = self._translate(mode)
|
---|
[203] | 390 | if md:
|
---|
[554] | 391 | self._panelling = md
|
---|
[226] | 392 | self._title = None
|
---|
[1989] | 393 | #if md == 'r':
|
---|
| 394 | # self._stacking = '_r'
|
---|
[1981] | 395 | # you need to reset counters for multi page plotting
|
---|
| 396 | self._reset_counters()
|
---|
[203] | 397 | return True
|
---|
| 398 | return False
|
---|
| 399 |
|
---|
[1819] | 400 | def set_layout(self,rows=None,cols=None,refresh=True):
|
---|
[377] | 401 | """
|
---|
| 402 | Set the multi-panel layout, i.e. how many rows and columns plots
|
---|
| 403 | are visible.
|
---|
| 404 | Parameters:
|
---|
| 405 | rows: The number of rows of plots
|
---|
| 406 | cols: The number of columns of plots
|
---|
[1819] | 407 | refresh: True (default) or False. If True, the plot is
|
---|
[1824] | 408 | replotted based on the new parameter setting(s).
|
---|
[1819] | 409 | Otherwise,the parameter(s) are set without replotting.
|
---|
[377] | 410 | Note:
|
---|
| 411 | If no argument is given, the potter reverts to its auto-plot
|
---|
| 412 | behaviour.
|
---|
| 413 | """
|
---|
| 414 | self._rows = rows
|
---|
| 415 | self._cols = cols
|
---|
[1819] | 416 | if refresh and self._data: self.plot(self._data)
|
---|
[377] | 417 | return
|
---|
| 418 |
|
---|
[709] | 419 | def set_stacking(self, what=None):
|
---|
[1858] | 420 | """Set the 'stacking' mode i.e. which type of spectra should be
|
---|
| 421 | overlayed.
|
---|
| 422 | """
|
---|
[554] | 423 | mode = what
|
---|
[709] | 424 | if mode is None:
|
---|
| 425 | mode = rcParams['plotter.stacking']
|
---|
[554] | 426 | md = self._translate(mode)
|
---|
[203] | 427 | if md:
|
---|
| 428 | self._stacking = md
|
---|
[226] | 429 | self._lmap = None
|
---|
[1989] | 430 | #if md == 'r':
|
---|
| 431 | # self._panelling = '_r'
|
---|
[1981] | 432 | # you need to reset counters for multi page plotting
|
---|
| 433 | self._reset_counters()
|
---|
[203] | 434 | return True
|
---|
| 435 | return False
|
---|
| 436 |
|
---|
[1981] | 437 | def _reset_counters(self):
|
---|
| 438 | self._startrow = 0
|
---|
| 439 | self._ipanel = -1
|
---|
| 440 | self._panelrows = []
|
---|
| 441 |
|
---|
[1897] | 442 | def set_range(self,xstart=None,xend=None,ystart=None,yend=None,refresh=True, offset=None):
|
---|
[203] | 443 | """
|
---|
| 444 | Set the range of interest on the abcissa of the plot
|
---|
| 445 | Parameters:
|
---|
[525] | 446 | [x,y]start,[x,y]end: The start and end points of the 'zoom' window
|
---|
[1819] | 447 | refresh: True (default) or False. If True, the plot is
|
---|
[1824] | 448 | replotted based on the new parameter setting(s).
|
---|
[1819] | 449 | Otherwise,the parameter(s) are set without replotting.
|
---|
[1897] | 450 | offset: shift the abcissa by the given amount. The abcissa label will
|
---|
| 451 | have '(relative)' appended to it.
|
---|
[203] | 452 | Note:
|
---|
| 453 | These become non-sensical when the unit changes.
|
---|
| 454 | use plotter.set_range() without parameters to reset
|
---|
| 455 |
|
---|
| 456 | """
|
---|
[1897] | 457 | self._offset = offset
|
---|
[525] | 458 | if xstart is None and xend is None:
|
---|
| 459 | self._minmaxx = None
|
---|
[600] | 460 | else:
|
---|
| 461 | self._minmaxx = [xstart,xend]
|
---|
[525] | 462 | if ystart is None and yend is None:
|
---|
| 463 | self._minmaxy = None
|
---|
[600] | 464 | else:
|
---|
[709] | 465 | self._minmaxy = [ystart,yend]
|
---|
[1819] | 466 | if refresh and self._data: self.plot(self._data)
|
---|
[203] | 467 | return
|
---|
[709] | 468 |
|
---|
[1819] | 469 | def set_legend(self, mp=None, fontsize = None, mode = 0, refresh=True):
|
---|
[203] | 470 | """
|
---|
| 471 | Specify a mapping for the legend instead of using the default
|
---|
| 472 | indices:
|
---|
| 473 | Parameters:
|
---|
[1101] | 474 | mp: a list of 'strings'. This should have the same length
|
---|
| 475 | as the number of elements on the legend and then maps
|
---|
| 476 | to the indeces in order. It is possible to uses latex
|
---|
| 477 | math expression. These have to be enclosed in r'',
|
---|
| 478 | e.g. r'$x^{2}$'
|
---|
| 479 | fontsize: The font size of the label (default None)
|
---|
| 480 | mode: where to display the legend
|
---|
| 481 | Any other value for loc else disables the legend:
|
---|
[1096] | 482 | 0: auto
|
---|
| 483 | 1: upper right
|
---|
| 484 | 2: upper left
|
---|
| 485 | 3: lower left
|
---|
| 486 | 4: lower right
|
---|
| 487 | 5: right
|
---|
| 488 | 6: center left
|
---|
| 489 | 7: center right
|
---|
| 490 | 8: lower center
|
---|
| 491 | 9: upper center
|
---|
| 492 | 10: center
|
---|
[1819] | 493 | refresh: True (default) or False. If True, the plot is
|
---|
[1824] | 494 | replotted based on the new parameter setting(s).
|
---|
[1819] | 495 | Otherwise,the parameter(s) are set without replotting.
|
---|
[203] | 496 |
|
---|
| 497 | Example:
|
---|
[485] | 498 | If the data has two IFs/rest frequencies with index 0 and 1
|
---|
[203] | 499 | for CO and SiO:
|
---|
| 500 | plotter.set_stacking('i')
|
---|
[710] | 501 | plotter.set_legend(['CO','SiO'])
|
---|
[203] | 502 | plotter.plot()
|
---|
[710] | 503 | plotter.set_legend([r'$^{12}CO$', r'SiO'])
|
---|
[203] | 504 | """
|
---|
| 505 | self._lmap = mp
|
---|
[1096] | 506 | self._plotter.legend(mode)
|
---|
[1101] | 507 | if isinstance(fontsize, int):
|
---|
| 508 | from matplotlib import rc as rcp
|
---|
| 509 | rcp('legend', fontsize=fontsize)
|
---|
[1819] | 510 | if refresh and self._data: self.plot(self._data)
|
---|
[226] | 511 | return
|
---|
| 512 |
|
---|
[1819] | 513 | def set_title(self, title=None, fontsize=None, refresh=True):
|
---|
[710] | 514 | """
|
---|
| 515 | Set the title of the plot. If multiple panels are plotted,
|
---|
| 516 | multiple titles have to be specified.
|
---|
[1819] | 517 | Parameters:
|
---|
| 518 | refresh: True (default) or False. If True, the plot is
|
---|
[1824] | 519 | replotted based on the new parameter setting(s).
|
---|
[1819] | 520 | Otherwise,the parameter(s) are set without replotting.
|
---|
[710] | 521 | Example:
|
---|
| 522 | # two panels are visible on the plotter
|
---|
| 523 | plotter.set_title(["First Panel","Second Panel"])
|
---|
| 524 | """
|
---|
[226] | 525 | self._title = title
|
---|
[1101] | 526 | if isinstance(fontsize, int):
|
---|
| 527 | from matplotlib import rc as rcp
|
---|
| 528 | rcp('axes', titlesize=fontsize)
|
---|
[1819] | 529 | if refresh and self._data: self.plot(self._data)
|
---|
[226] | 530 | return
|
---|
| 531 |
|
---|
[1819] | 532 | def set_ordinate(self, ordinate=None, fontsize=None, refresh=True):
|
---|
[710] | 533 | """
|
---|
| 534 | Set the y-axis label of the plot. If multiple panels are plotted,
|
---|
| 535 | multiple labels have to be specified.
|
---|
[1021] | 536 | Parameters:
|
---|
| 537 | ordinate: a list of ordinate labels. None (default) let
|
---|
| 538 | data determine the labels
|
---|
[1819] | 539 | refresh: True (default) or False. If True, the plot is
|
---|
[1824] | 540 | replotted based on the new parameter setting(s).
|
---|
[1819] | 541 | Otherwise,the parameter(s) are set without replotting.
|
---|
[710] | 542 | Example:
|
---|
| 543 | # two panels are visible on the plotter
|
---|
| 544 | plotter.set_ordinate(["First Y-Axis","Second Y-Axis"])
|
---|
| 545 | """
|
---|
[257] | 546 | self._ordinate = ordinate
|
---|
[1101] | 547 | if isinstance(fontsize, int):
|
---|
| 548 | from matplotlib import rc as rcp
|
---|
| 549 | rcp('axes', labelsize=fontsize)
|
---|
| 550 | rcp('ytick', labelsize=fontsize)
|
---|
[1819] | 551 | if refresh and self._data: self.plot(self._data)
|
---|
[257] | 552 | return
|
---|
| 553 |
|
---|
[1819] | 554 | def set_abcissa(self, abcissa=None, fontsize=None, refresh=True):
|
---|
[710] | 555 | """
|
---|
| 556 | Set the x-axis label of the plot. If multiple panels are plotted,
|
---|
| 557 | multiple labels have to be specified.
|
---|
[1021] | 558 | Parameters:
|
---|
| 559 | abcissa: a list of abcissa labels. None (default) let
|
---|
| 560 | data determine the labels
|
---|
[1819] | 561 | refresh: True (default) or False. If True, the plot is
|
---|
[1824] | 562 | replotted based on the new parameter setting(s).
|
---|
[1819] | 563 | Otherwise,the parameter(s) are set without replotting.
|
---|
[710] | 564 | Example:
|
---|
| 565 | # two panels are visible on the plotter
|
---|
| 566 | plotter.set_ordinate(["First X-Axis","Second X-Axis"])
|
---|
| 567 | """
|
---|
[257] | 568 | self._abcissa = abcissa
|
---|
[1101] | 569 | if isinstance(fontsize, int):
|
---|
| 570 | from matplotlib import rc as rcp
|
---|
| 571 | rcp('axes', labelsize=fontsize)
|
---|
| 572 | rcp('xtick', labelsize=fontsize)
|
---|
[1819] | 573 | if refresh and self._data: self.plot(self._data)
|
---|
[257] | 574 | return
|
---|
| 575 |
|
---|
[1819] | 576 | def set_colors(self, colmap, refresh=True):
|
---|
[377] | 577 | """
|
---|
[1217] | 578 | Set the colours to be used. The plotter will cycle through
|
---|
| 579 | these colours when lines are overlaid (stacking mode).
|
---|
[1021] | 580 | Parameters:
|
---|
[1217] | 581 | colmap: a list of colour names
|
---|
[1819] | 582 | refresh: True (default) or False. If True, the plot is
|
---|
[1824] | 583 | replotted based on the new parameter setting(s).
|
---|
[1819] | 584 | Otherwise,the parameter(s) are set without replotting.
|
---|
[710] | 585 | Example:
|
---|
| 586 | plotter.set_colors("red green blue")
|
---|
| 587 | # If for example four lines are overlaid e.g I Q U V
|
---|
| 588 | # 'I' will be 'red', 'Q' will be 'green', U will be 'blue'
|
---|
| 589 | # and 'V' will be 'red' again.
|
---|
| 590 | """
|
---|
[1217] | 591 | if isinstance(colmap,str):
|
---|
| 592 | colmap = colmap.split()
|
---|
| 593 | self._plotter.palette(0, colormap=colmap)
|
---|
[1819] | 594 | if refresh and self._data: self.plot(self._data)
|
---|
[710] | 595 |
|
---|
[1217] | 596 | # alias for english speakers
|
---|
| 597 | set_colours = set_colors
|
---|
| 598 |
|
---|
[1819] | 599 | def set_histogram(self, hist=True, linewidth=None, refresh=True):
|
---|
[1021] | 600 | """
|
---|
| 601 | Enable/Disable histogram-like plotting.
|
---|
| 602 | Parameters:
|
---|
| 603 | hist: True (default) or False. The fisrt default
|
---|
| 604 | is taken from the .asaprc setting
|
---|
| 605 | plotter.histogram
|
---|
[1819] | 606 | refresh: True (default) or False. If True, the plot is
|
---|
[1824] | 607 | replotted based on the new parameter setting(s).
|
---|
[1819] | 608 | Otherwise,the parameter(s) are set without replotting.
|
---|
[1021] | 609 | """
|
---|
[1023] | 610 | self._hist = hist
|
---|
[1101] | 611 | if isinstance(linewidth, float) or isinstance(linewidth, int):
|
---|
| 612 | from matplotlib import rc as rcp
|
---|
| 613 | rcp('lines', linewidth=linewidth)
|
---|
[1819] | 614 | if refresh and self._data: self.plot(self._data)
|
---|
[1023] | 615 |
|
---|
[1819] | 616 | def set_linestyles(self, linestyles=None, linewidth=None, refresh=True):
|
---|
[710] | 617 | """
|
---|
[734] | 618 | Set the linestyles to be used. The plotter will cycle through
|
---|
| 619 | these linestyles when lines are overlaid (stacking mode) AND
|
---|
| 620 | only one color has been set.
|
---|
[710] | 621 | Parameters:
|
---|
| 622 | linestyles: a list of linestyles to use.
|
---|
| 623 | 'line', 'dashed', 'dotted', 'dashdot',
|
---|
| 624 | 'dashdotdot' and 'dashdashdot' are
|
---|
| 625 | possible
|
---|
[1819] | 626 | refresh: True (default) or False. If True, the plot is
|
---|
[1824] | 627 | replotted based on the new parameter setting(s).
|
---|
[1819] | 628 | Otherwise,the parameter(s) are set without replotting.
|
---|
[710] | 629 | Example:
|
---|
| 630 | plotter.set_colors("black")
|
---|
| 631 | plotter.set_linestyles("line dashed dotted dashdot")
|
---|
| 632 | # If for example four lines are overlaid e.g I Q U V
|
---|
| 633 | # 'I' will be 'solid', 'Q' will be 'dashed',
|
---|
| 634 | # U will be 'dotted' and 'V' will be 'dashdot'.
|
---|
| 635 | """
|
---|
| 636 | if isinstance(linestyles,str):
|
---|
| 637 | linestyles = linestyles.split()
|
---|
| 638 | self._plotter.palette(color=0,linestyle=0,linestyles=linestyles)
|
---|
[1101] | 639 | if isinstance(linewidth, float) or isinstance(linewidth, int):
|
---|
| 640 | from matplotlib import rc as rcp
|
---|
| 641 | rcp('lines', linewidth=linewidth)
|
---|
[1819] | 642 | if refresh and self._data: self.plot(self._data)
|
---|
[710] | 643 |
|
---|
[1819] | 644 | def set_font(self, refresh=True,**kwargs):
|
---|
[1101] | 645 | """
|
---|
| 646 | Set font properties.
|
---|
| 647 | Parameters:
|
---|
| 648 | family: one of 'sans-serif', 'serif', 'cursive', 'fantasy', 'monospace'
|
---|
| 649 | style: one of 'normal' (or 'roman'), 'italic' or 'oblique'
|
---|
| 650 | weight: one of 'normal or 'bold'
|
---|
| 651 | size: the 'general' font size, individual elements can be adjusted
|
---|
| 652 | seperately
|
---|
[1819] | 653 | refresh: True (default) or False. If True, the plot is
|
---|
[1824] | 654 | replotted based on the new parameter setting(s).
|
---|
[1819] | 655 | Otherwise,the parameter(s) are set without replotting.
|
---|
[1101] | 656 | """
|
---|
| 657 | from matplotlib import rc as rcp
|
---|
[1547] | 658 | fdict = {}
|
---|
| 659 | for k,v in kwargs.iteritems():
|
---|
| 660 | if v:
|
---|
| 661 | fdict[k] = v
|
---|
[1556] | 662 | self._fp = FontProperties(**fdict)
|
---|
[1819] | 663 | if refresh and self._data: self.plot(self._data)
|
---|
[1101] | 664 |
|
---|
[2037] | 665 | def set_margin(self,margin=[],refresh=True):
|
---|
[1819] | 666 | """
|
---|
[2037] | 667 | Set margins between subplots and plot edges.
|
---|
[1819] | 668 | Parameters:
|
---|
[2037] | 669 | margin: a list of margins in figure coordinate (0-1),
|
---|
[1824] | 670 | i.e., fraction of the figure width or height.
|
---|
[1819] | 671 | The order of elements should be:
|
---|
| 672 | [left, bottom, right, top, horizontal space btw panels,
|
---|
[1824] | 673 | vertical space btw panels].
|
---|
[1819] | 674 | refresh: True (default) or False. If True, the plot is
|
---|
[1824] | 675 | replotted based on the new parameter setting(s).
|
---|
[1819] | 676 | Otherwise,the parameter(s) are set without replotting.
|
---|
| 677 | Note
|
---|
[2037] | 678 | * When margin is not specified, the values are reset to the defaults
|
---|
[1819] | 679 | of matplotlib.
|
---|
[1824] | 680 | * If any element is set to be None, the current value is adopted.
|
---|
[1819] | 681 | """
|
---|
[2037] | 682 | if margin == []: self._margins=self._reset_margin()
|
---|
[1824] | 683 | else:
|
---|
[2037] | 684 | self._margins=[None]*6
|
---|
| 685 | self._margins[0:len(margin)]=margin
|
---|
| 686 | #print "panel margin set to ",self._margins
|
---|
[1819] | 687 | if refresh and self._data: self.plot(self._data)
|
---|
| 688 |
|
---|
[2037] | 689 | def _reset_margin(self):
|
---|
[1819] | 690 | ks=map(lambda x: 'figure.subplot.'+x,
|
---|
| 691 | ['left','bottom','right','top','hspace','wspace'])
|
---|
| 692 | return map(matplotlib.rcParams.get,ks)
|
---|
| 693 |
|
---|
[1259] | 694 | def plot_lines(self, linecat=None, doppler=0.0, deltachan=10, rotate=90.0,
|
---|
[1146] | 695 | location=None):
|
---|
| 696 | """
|
---|
[1158] | 697 | Plot a line catalog.
|
---|
| 698 | Parameters:
|
---|
| 699 | linecat: the linecatalog to plot
|
---|
[1168] | 700 | doppler: the velocity shift to apply to the frequencies
|
---|
[1158] | 701 | deltachan: the number of channels to include each side of the
|
---|
| 702 | line to determine a local maximum/minimum
|
---|
[1927] | 703 | rotate: the rotation (in degrees) for the text label (default 90.0)
|
---|
[1158] | 704 | location: the location of the line annotation from the 'top',
|
---|
| 705 | 'bottom' or alternate (None - the default)
|
---|
[1165] | 706 | Notes:
|
---|
| 707 | If the spectrum is flagged no line will be drawn in that location.
|
---|
[1146] | 708 | """
|
---|
[1259] | 709 | if not self._data:
|
---|
| 710 | raise RuntimeError("No scantable has been plotted yet.")
|
---|
[1146] | 711 | from asap._asap import linecatalog
|
---|
[1259] | 712 | if not isinstance(linecat, linecatalog):
|
---|
| 713 | raise ValueError("'linecat' isn't of type linecatalog.")
|
---|
| 714 | if not self._data.get_unit().endswith("Hz"):
|
---|
| 715 | raise RuntimeError("Can only overlay linecatalogs when data is in frequency.")
|
---|
[1739] | 716 | from numpy import ma
|
---|
[1146] | 717 | for j in range(len(self._plotter.subplots)):
|
---|
| 718 | self._plotter.subplot(j)
|
---|
| 719 | lims = self._plotter.axes.get_xlim()
|
---|
[1153] | 720 | for row in range(linecat.nrow()):
|
---|
[1259] | 721 | # get_frequency returns MHz
|
---|
| 722 | base = { "GHz": 1000.0, "MHz": 1.0, "Hz": 1.0e-6 }
|
---|
| 723 | restf = linecat.get_frequency(row)/base[self._data.get_unit()]
|
---|
[1165] | 724 | c = 299792.458
|
---|
[1174] | 725 | freq = restf*(1.0-doppler/c)
|
---|
[1146] | 726 | if lims[0] < freq < lims[1]:
|
---|
| 727 | if location is None:
|
---|
| 728 | loc = 'bottom'
|
---|
[1153] | 729 | if row%2: loc='top'
|
---|
[1146] | 730 | else: loc = location
|
---|
[1153] | 731 | maxys = []
|
---|
| 732 | for line in self._plotter.axes.lines:
|
---|
| 733 | v = line._x
|
---|
| 734 | asc = v[0] < v[-1]
|
---|
| 735 |
|
---|
| 736 | idx = None
|
---|
| 737 | if not asc:
|
---|
| 738 | if v[len(v)-1] <= freq <= v[0]:
|
---|
| 739 | i = len(v)-1
|
---|
| 740 | while i>=0 and v[i] < freq:
|
---|
| 741 | idx = i
|
---|
| 742 | i-=1
|
---|
| 743 | else:
|
---|
| 744 | if v[0] <= freq <= v[len(v)-1]:
|
---|
| 745 | i = 0
|
---|
| 746 | while i<len(v) and v[i] < freq:
|
---|
| 747 | idx = i
|
---|
| 748 | i+=1
|
---|
| 749 | if idx is not None:
|
---|
| 750 | lower = idx - deltachan
|
---|
| 751 | upper = idx + deltachan
|
---|
| 752 | if lower < 0: lower = 0
|
---|
| 753 | if upper > len(v): upper = len(v)
|
---|
| 754 | s = slice(lower, upper)
|
---|
[1167] | 755 | y = line._y[s]
|
---|
[1165] | 756 | maxy = ma.maximum(y)
|
---|
| 757 | if isinstance( maxy, float):
|
---|
| 758 | maxys.append(maxy)
|
---|
[1164] | 759 | if len(maxys):
|
---|
| 760 | peak = max(maxys)
|
---|
[1165] | 761 | if peak > self._plotter.axes.get_ylim()[1]:
|
---|
| 762 | loc = 'bottom'
|
---|
[1164] | 763 | else:
|
---|
| 764 | continue
|
---|
[1157] | 765 | self._plotter.vline_with_label(freq, peak,
|
---|
| 766 | linecat.get_name(row),
|
---|
| 767 | location=loc, rotate=rotate)
|
---|
[1153] | 768 | self._plotter.show(hardrefresh=False)
|
---|
[1146] | 769 |
|
---|
[1153] | 770 |
|
---|
[710] | 771 | def save(self, filename=None, orientation=None, dpi=None):
|
---|
| 772 | """
|
---|
[1927] | 773 | Save the plot to a file. The known formats are 'png', 'ps', 'eps'.
|
---|
[377] | 774 | Parameters:
|
---|
| 775 | filename: The name of the output file. This is optional
|
---|
| 776 | and autodetects the image format from the file
|
---|
| 777 | suffix. If non filename is specified a file
|
---|
| 778 | called 'yyyymmdd_hhmmss.png' is created in the
|
---|
| 779 | current directory.
|
---|
[709] | 780 | orientation: optional parameter for postscript only (not eps).
|
---|
| 781 | 'landscape', 'portrait' or None (default) are valid.
|
---|
| 782 | If None is choosen for 'ps' output, the plot is
|
---|
| 783 | automatically oriented to fill the page.
|
---|
[710] | 784 | dpi: The dpi of the output non-ps plot
|
---|
[377] | 785 | """
|
---|
[709] | 786 | self._plotter.save(filename,orientation,dpi)
|
---|
[377] | 787 | return
|
---|
[709] | 788 |
|
---|
[1862] | 789 | @asaplog_post_dec
|
---|
[1819] | 790 | def set_mask(self, mask=None, selection=None, refresh=True):
|
---|
[525] | 791 | """
|
---|
[734] | 792 | Set a plotting mask for a specific polarization.
|
---|
| 793 | This is useful for masking out "noise" Pangle outside a source.
|
---|
| 794 | Parameters:
|
---|
[920] | 795 | mask: a mask from scantable.create_mask
|
---|
| 796 | selection: the spectra to apply the mask to.
|
---|
[1819] | 797 | refresh: True (default) or False. If True, the plot is
|
---|
[1824] | 798 | replotted based on the new parameter setting(s).
|
---|
[1819] | 799 | Otherwise,the parameter(s) are set without replotting.
|
---|
[734] | 800 | Example:
|
---|
[920] | 801 | select = selector()
|
---|
| 802 | select.setpolstrings("Pangle")
|
---|
| 803 | plotter.set_mask(mymask, select)
|
---|
[734] | 804 | """
|
---|
[710] | 805 | if not self._data:
|
---|
[920] | 806 | msg = "Can only set mask after a first call to plot()"
|
---|
[1859] | 807 | raise RuntimeError(msg)
|
---|
[920] | 808 | if len(mask):
|
---|
| 809 | if isinstance(mask, list) or isinstance(mask, tuple):
|
---|
| 810 | self._usermask = array(mask)
|
---|
[710] | 811 | else:
|
---|
[920] | 812 | self._usermask = mask
|
---|
| 813 | if mask is None and selection is None:
|
---|
| 814 | self._usermask = []
|
---|
| 815 | self._maskselection = None
|
---|
| 816 | if isinstance(selection, selector):
|
---|
[947] | 817 | self._maskselection = {'b': selection.get_beams(),
|
---|
| 818 | 's': selection.get_scans(),
|
---|
| 819 | 'i': selection.get_ifs(),
|
---|
| 820 | 'p': selection.get_pols(),
|
---|
[920] | 821 | 't': [] }
|
---|
[710] | 822 | else:
|
---|
[920] | 823 | self._maskselection = None
|
---|
[1819] | 824 | if refresh: self.plot(self._data)
|
---|
[710] | 825 |
|
---|
[709] | 826 | def _slice_indeces(self, data):
|
---|
| 827 | mn = self._minmaxx[0]
|
---|
| 828 | mx = self._minmaxx[1]
|
---|
| 829 | asc = data[0] < data[-1]
|
---|
| 830 | start=0
|
---|
| 831 | end = len(data)-1
|
---|
| 832 | inc = 1
|
---|
| 833 | if not asc:
|
---|
| 834 | start = len(data)-1
|
---|
| 835 | end = 0
|
---|
| 836 | inc = -1
|
---|
| 837 | # find min index
|
---|
[1819] | 838 | #while start > 0 and data[start] < mn:
|
---|
| 839 | # start+= inc
|
---|
| 840 | minind=start
|
---|
| 841 | for ind in xrange(start,end+inc,inc):
|
---|
| 842 | if data[ind] > mn: break
|
---|
| 843 | minind=ind
|
---|
[709] | 844 | # find max index
|
---|
[1819] | 845 | #while end > 0 and data[end] > mx:
|
---|
| 846 | # end-=inc
|
---|
| 847 | #if end > 0: end +=1
|
---|
| 848 | maxind=end
|
---|
| 849 | for ind in xrange(end,start-inc,-inc):
|
---|
| 850 | if data[ind] < mx: break
|
---|
| 851 | maxind=ind
|
---|
| 852 | start=minind
|
---|
| 853 | end=maxind
|
---|
[709] | 854 | if start > end:
|
---|
[1819] | 855 | return end,start+1
|
---|
| 856 | elif start < end:
|
---|
| 857 | return start,end+1
|
---|
| 858 | else:
|
---|
| 859 | return start,end
|
---|
[709] | 860 |
|
---|
[710] | 861 | def _reset(self):
|
---|
[920] | 862 | self._usermask = []
|
---|
[710] | 863 | self._usermaskspectra = None
|
---|
[1897] | 864 | self._offset = None
|
---|
[920] | 865 | self.set_selection(None, False)
|
---|
[2051] | 866 | self._reset_header()
|
---|
[920] | 867 |
|
---|
[2051] | 868 | def _reset_header(self):
|
---|
[2053] | 869 | self._headtext={'string': None, 'textobj': None}
|
---|
[2051] | 870 |
|
---|
[920] | 871 | def _plot(self, scan):
|
---|
[947] | 872 | savesel = scan.get_selection()
|
---|
| 873 | sel = savesel + self._selection
|
---|
[1910] | 874 | order = self._get_sortstring([self._panelling,self._stacking])
|
---|
| 875 | if order:
|
---|
| 876 | sel.set_order(order)
|
---|
[947] | 877 | scan.set_selection(sel)
|
---|
[920] | 878 | d = {'b': scan.getbeam, 's': scan.getscan,
|
---|
[1949] | 879 | 'i': scan.getif, 'p': scan.getpol, 't': scan.get_time,
|
---|
[1989] | 880 | 'r': int}#, '_r': int}
|
---|
[920] | 881 |
|
---|
[1148] | 882 | polmodes = dict(zip(self._selection.get_pols(),
|
---|
| 883 | self._selection.get_poltypes()))
|
---|
| 884 | # this returns either a tuple of numbers or a length (ncycles)
|
---|
| 885 | # convert this into lengths
|
---|
| 886 | n0,nstack0 = self._get_selected_n(scan)
|
---|
| 887 | if isinstance(n0, int): n = n0
|
---|
[1175] | 888 | else: n = len(n0)
|
---|
[1148] | 889 | if isinstance(nstack0, int): nstack = nstack0
|
---|
[1175] | 890 | else: nstack = len(nstack0)
|
---|
[1989] | 891 | # In case of row stacking
|
---|
| 892 | rowstack = False
|
---|
| 893 | titlemode = self._panelling
|
---|
| 894 | if self._stacking == "r" and self._panelling != "r":
|
---|
| 895 | rowstack = True
|
---|
| 896 | titlemode = '_r'
|
---|
[1913] | 897 | nptot = n
|
---|
[1582] | 898 | maxpanel, maxstack = 16,16
|
---|
[1913] | 899 | if nstack > maxstack:
|
---|
| 900 | msg ="Scan to be overlayed contains more than %d selections.\n" \
|
---|
| 901 | "Selecting first %d selections..." % (maxstack, maxstack)
|
---|
[920] | 902 | asaplog.push(msg)
|
---|
[1861] | 903 | asaplog.post('WARN')
|
---|
[998] | 904 | nstack = min(nstack,maxstack)
|
---|
[2038] | 905 | #n = min(n-self._ipanel-1,maxpanel)
|
---|
| 906 | n = n-self._ipanel-1
|
---|
[2011] | 907 |
|
---|
| 908 | ganged = False
|
---|
[920] | 909 | if n > 1:
|
---|
| 910 | ganged = rcParams['plotter.ganged']
|
---|
[1819] | 911 | if self._panelling == 'i':
|
---|
| 912 | ganged = False
|
---|
[920] | 913 | if self._rows and self._cols:
|
---|
| 914 | n = min(n,self._rows*self._cols)
|
---|
| 915 | self._plotter.set_panels(rows=self._rows,cols=self._cols,
|
---|
[2277] | 916 | nplots=n,margin=self._margins,ganged=ganged)
|
---|
[920] | 917 | else:
|
---|
[2038] | 918 | n = min(n,maxpanel)
|
---|
[2277] | 919 | self._plotter.set_panels(rows=n,cols=0,nplots=n,margin=self._margins,ganged=ganged)
|
---|
[920] | 920 | else:
|
---|
[2037] | 921 | self._plotter.set_panels(margin=self._margins)
|
---|
[1913] | 922 | #r = 0
|
---|
[1981] | 923 | r = self._startrow
|
---|
[920] | 924 | nr = scan.nrow()
|
---|
| 925 | a0,b0 = -1,-1
|
---|
| 926 | allxlim = []
|
---|
[1018] | 927 | allylim = []
|
---|
[1981] | 928 | #newpanel=True
|
---|
| 929 | newpanel=False
|
---|
[920] | 930 | panelcount,stackcount = 0,0
|
---|
[1981] | 931 | # If this is not the first page
|
---|
| 932 | if r > 0:
|
---|
| 933 | # panelling value of the prev page
|
---|
| 934 | a0 = d[self._panelling](r-1)
|
---|
| 935 | # set the initial stackcount large not to plot
|
---|
| 936 | # the start row automatically
|
---|
| 937 | stackcount = nstack
|
---|
| 938 |
|
---|
[1002] | 939 | while r < nr:
|
---|
[920] | 940 | a = d[self._panelling](r)
|
---|
| 941 | b = d[self._stacking](r)
|
---|
| 942 | if a > a0 and panelcount < n:
|
---|
| 943 | if n > 1:
|
---|
| 944 | self._plotter.subplot(panelcount)
|
---|
| 945 | self._plotter.palette(0)
|
---|
| 946 | #title
|
---|
| 947 | xlab = self._abcissa and self._abcissa[panelcount] \
|
---|
| 948 | or scan._getabcissalabel()
|
---|
[1897] | 949 | if self._offset and not self._abcissa:
|
---|
| 950 | xlab += " (relative)"
|
---|
[920] | 951 | ylab = self._ordinate and self._ordinate[panelcount] \
|
---|
| 952 | or scan._get_ordinate_label()
|
---|
[1547] | 953 | self._plotter.set_axes('xlabel', xlab)
|
---|
| 954 | self._plotter.set_axes('ylabel', ylab)
|
---|
[1989] | 955 | #lbl = self._get_label(scan, r, self._panelling, self._title)
|
---|
| 956 | lbl = self._get_label(scan, r, titlemode, self._title)
|
---|
[920] | 957 | if isinstance(lbl, list) or isinstance(lbl, tuple):
|
---|
| 958 | if 0 <= panelcount < len(lbl):
|
---|
| 959 | lbl = lbl[panelcount]
|
---|
| 960 | else:
|
---|
| 961 | # get default label
|
---|
[1989] | 962 | #lbl = self._get_label(scan, r, self._panelling, None)
|
---|
| 963 | lbl = self._get_label(scan, r, titlemode, None)
|
---|
[920] | 964 | self._plotter.set_axes('title',lbl)
|
---|
| 965 | newpanel = True
|
---|
[1913] | 966 | stackcount = 0
|
---|
[920] | 967 | panelcount += 1
|
---|
[1981] | 968 | # save the start row to plot this panel for future revisit.
|
---|
| 969 | if self._panelling != 'r' and \
|
---|
| 970 | len(self._panelrows) < self._ipanel+1+panelcount:
|
---|
| 971 | self._panelrows += [r]
|
---|
| 972 |
|
---|
[1944] | 973 | #if (b > b0 or newpanel) and stackcount < nstack:
|
---|
[2277] | 974 | if stackcount < nstack and (newpanel or rowstack or (a == a0 and b > b0)):
|
---|
[920] | 975 | y = []
|
---|
| 976 | if len(polmodes):
|
---|
| 977 | y = scan._getspectrum(r, polmodes[scan.getpol(r)])
|
---|
| 978 | else:
|
---|
| 979 | y = scan._getspectrum(r)
|
---|
[1995] | 980 | # flag application
|
---|
| 981 | mr = scan._getflagrow(r)
|
---|
[1739] | 982 | from numpy import ma, array
|
---|
[1995] | 983 | if mr:
|
---|
| 984 | y = ma.masked_array(y,mask=mr)
|
---|
| 985 | else:
|
---|
| 986 | m = scan._getmask(r)
|
---|
| 987 | from numpy import logical_not, logical_and
|
---|
| 988 | if self._maskselection and len(self._usermask) == len(m):
|
---|
[2277] | 989 | if d[self._stacking](r) in self._maskselection[self._stacking]:
|
---|
[1995] | 990 | m = logical_and(m, self._usermask)
|
---|
[2277] | 991 | y = ma.masked_array(y,mask=logical_not(array(m,copy=False)))
|
---|
[1995] | 992 |
|
---|
[1897] | 993 | x = array(scan._getabcissa(r))
|
---|
| 994 | if self._offset:
|
---|
| 995 | x += self._offset
|
---|
[920] | 996 | if self._minmaxx is not None:
|
---|
| 997 | s,e = self._slice_indeces(x)
|
---|
| 998 | x = x[s:e]
|
---|
| 999 | y = y[s:e]
|
---|
[1096] | 1000 | if len(x) > 1024 and rcParams['plotter.decimate']:
|
---|
| 1001 | fac = len(x)/1024
|
---|
[920] | 1002 | x = x[::fac]
|
---|
| 1003 | y = y[::fac]
|
---|
| 1004 | llbl = self._get_label(scan, r, self._stacking, self._lmap)
|
---|
| 1005 | if isinstance(llbl, list) or isinstance(llbl, tuple):
|
---|
| 1006 | if 0 <= stackcount < len(llbl):
|
---|
| 1007 | # use user label
|
---|
| 1008 | llbl = llbl[stackcount]
|
---|
| 1009 | else:
|
---|
| 1010 | # get default label
|
---|
| 1011 | llbl = self._get_label(scan, r, self._stacking, None)
|
---|
| 1012 | self._plotter.set_line(label=llbl)
|
---|
[1023] | 1013 | plotit = self._plotter.plot
|
---|
| 1014 | if self._hist: plotit = self._plotter.hist
|
---|
[1995] | 1015 | if len(x) > 0 and not mr:
|
---|
[1146] | 1016 | plotit(x,y)
|
---|
| 1017 | xlim= self._minmaxx or [min(x),max(x)]
|
---|
| 1018 | allxlim += xlim
|
---|
| 1019 | ylim= self._minmaxy or [ma.minimum(y),ma.maximum(y)]
|
---|
| 1020 | allylim += ylim
|
---|
[1819] | 1021 | else:
|
---|
| 1022 | xlim = self._minmaxx or []
|
---|
| 1023 | allxlim += xlim
|
---|
| 1024 | ylim= self._minmaxy or []
|
---|
| 1025 | allylim += ylim
|
---|
[920] | 1026 | stackcount += 1
|
---|
[1981] | 1027 | a0=a
|
---|
| 1028 | b0=b
|
---|
[920] | 1029 | # last in colour stack -> autoscale x
|
---|
[1819] | 1030 | if stackcount == nstack and len(allxlim) > 0:
|
---|
[920] | 1031 | allxlim.sort()
|
---|
[1819] | 1032 | self._plotter.subplots[panelcount-1]['axes'].set_xlim([allxlim[0],allxlim[-1]])
|
---|
[1989] | 1033 | if ganged:
|
---|
| 1034 | allxlim = [allxlim[0],allxlim[-1]]
|
---|
| 1035 | else:
|
---|
| 1036 | # clear
|
---|
| 1037 | allxlim =[]
|
---|
[920] | 1038 |
|
---|
| 1039 | newpanel = False
|
---|
[1981] | 1040 | #a0=a
|
---|
| 1041 | #b0=b
|
---|
[920] | 1042 | # ignore following rows
|
---|
[1981] | 1043 | if (panelcount == n and stackcount == nstack) or (r == nr-1):
|
---|
[1018] | 1044 | # last panel -> autoscale y if ganged
|
---|
[1989] | 1045 | #if rcParams['plotter.ganged'] and len(allylim) > 0:
|
---|
| 1046 | if ganged and len(allylim) > 0:
|
---|
[1018] | 1047 | allylim.sort()
|
---|
| 1048 | self._plotter.set_limits(ylim=[allylim[0],allylim[-1]])
|
---|
[998] | 1049 | break
|
---|
[920] | 1050 | r+=1 # next row
|
---|
[1981] | 1051 |
|
---|
| 1052 | # save the current counter for multi-page plotting
|
---|
| 1053 | self._startrow = r+1
|
---|
| 1054 | self._ipanel += panelcount
|
---|
[2147] | 1055 | if self.casabar_exists():
|
---|
[1981] | 1056 | if self._ipanel >= nptot-1:
|
---|
[1913] | 1057 | self._plotter.figmgr.casabar.disable_next()
|
---|
| 1058 | else:
|
---|
| 1059 | self._plotter.figmgr.casabar.enable_next()
|
---|
[1981] | 1060 | if self._ipanel + 1 - panelcount > 0:
|
---|
| 1061 | self._plotter.figmgr.casabar.enable_prev()
|
---|
| 1062 | else:
|
---|
| 1063 | self._plotter.figmgr.casabar.disable_prev()
|
---|
| 1064 |
|
---|
[947] | 1065 | #reset the selector to the scantable's original
|
---|
| 1066 | scan.set_selection(savesel)
|
---|
[1824] | 1067 |
|
---|
[1819] | 1068 | #temporary switch-off for older matplotlib
|
---|
| 1069 | #if self._fp is not None:
|
---|
| 1070 | if self._fp is not None and getattr(self._plotter.figure,'findobj',False):
|
---|
[1556] | 1071 | for o in self._plotter.figure.findobj(Text):
|
---|
| 1072 | o.set_fontproperties(self._fp)
|
---|
[920] | 1073 |
|
---|
[1910] | 1074 | def _get_sortstring(self, lorders):
|
---|
| 1075 | d0 = {'s': 'SCANNO', 'b': 'BEAMNO', 'i':'IFNO',
|
---|
| 1076 | 'p': 'POLNO', 'c': 'CYCLENO', 't' : 'TIME', 'r':None, '_r':None }
|
---|
[1944] | 1077 | if not (type(lorders) == list) and not (type(lorders) == tuple):
|
---|
[1910] | 1078 | return None
|
---|
| 1079 | if len(lorders) > 0:
|
---|
| 1080 | lsorts = []
|
---|
| 1081 | for order in lorders:
|
---|
[1989] | 1082 | if order == "r":
|
---|
| 1083 | # don't sort if row panelling/stacking
|
---|
| 1084 | return None
|
---|
[1910] | 1085 | ssort = d0[order]
|
---|
| 1086 | if ssort:
|
---|
| 1087 | lsorts.append(ssort)
|
---|
| 1088 | return lsorts
|
---|
| 1089 | return None
|
---|
| 1090 |
|
---|
[1582] | 1091 | def set_selection(self, selection=None, refresh=True, **kw):
|
---|
[1819] | 1092 | """
|
---|
| 1093 | Parameters:
|
---|
| 1094 | selection: a selector object (default unset the selection)
|
---|
| 1095 | refresh: True (default) or False. If True, the plot is
|
---|
[1824] | 1096 | replotted based on the new parameter setting(s).
|
---|
[1819] | 1097 | Otherwise,the parameter(s) are set without replotting.
|
---|
| 1098 | """
|
---|
[1582] | 1099 | if selection is None:
|
---|
| 1100 | # reset
|
---|
| 1101 | if len(kw) == 0:
|
---|
| 1102 | self._selection = selector()
|
---|
| 1103 | else:
|
---|
| 1104 | # try keywords
|
---|
| 1105 | for k in kw:
|
---|
| 1106 | if k not in selector.fields:
|
---|
| 1107 | raise KeyError("Invalid selection key '%s', valid keys are %s" % (k, selector.fields))
|
---|
| 1108 | self._selection = selector(**kw)
|
---|
| 1109 | elif isinstance(selection, selector):
|
---|
| 1110 | self._selection = selection
|
---|
| 1111 | else:
|
---|
| 1112 | raise TypeError("'selection' is not of type selector")
|
---|
| 1113 |
|
---|
[1910] | 1114 | order = self._get_sortstring([self._panelling,self._stacking])
|
---|
| 1115 | if order:
|
---|
| 1116 | self._selection.set_order(order)
|
---|
[1819] | 1117 | if refresh and self._data: self.plot(self._data)
|
---|
[920] | 1118 |
|
---|
| 1119 | def _get_selected_n(self, scan):
|
---|
[1148] | 1120 | d1 = {'b': scan.getbeamnos, 's': scan.getscannos,
|
---|
[1910] | 1121 | 'i': scan.getifnos, 'p': scan.getpolnos, 't': scan.ncycle,
|
---|
[1989] | 1122 | 'r': scan.nrow}#, '_r': False}
|
---|
[1148] | 1123 | d2 = { 'b': self._selection.get_beams(),
|
---|
| 1124 | 's': self._selection.get_scans(),
|
---|
| 1125 | 'i': self._selection.get_ifs(),
|
---|
| 1126 | 'p': self._selection.get_pols(),
|
---|
[1910] | 1127 | 't': self._selection.get_cycles(),
|
---|
[1989] | 1128 | 'r': False}#, '_r': 1}
|
---|
[920] | 1129 | n = d2[self._panelling] or d1[self._panelling]()
|
---|
| 1130 | nstack = d2[self._stacking] or d1[self._stacking]()
|
---|
[1989] | 1131 | # handle row panelling/stacking
|
---|
| 1132 | if self._panelling == 'r':
|
---|
| 1133 | nstack = 1
|
---|
| 1134 | elif self._stacking == 'r':
|
---|
| 1135 | n = 1
|
---|
[920] | 1136 | return n,nstack
|
---|
| 1137 |
|
---|
| 1138 | def _get_label(self, scan, row, mode, userlabel=None):
|
---|
[1153] | 1139 | if isinstance(userlabel, list) and len(userlabel) == 0:
|
---|
| 1140 | userlabel = " "
|
---|
[947] | 1141 | pms = dict(zip(self._selection.get_pols(),self._selection.get_poltypes()))
|
---|
[920] | 1142 | if len(pms):
|
---|
| 1143 | poleval = scan._getpollabel(scan.getpol(row),pms[scan.getpol(row)])
|
---|
| 1144 | else:
|
---|
| 1145 | poleval = scan._getpollabel(scan.getpol(row),scan.poltype())
|
---|
| 1146 | d = {'b': "Beam "+str(scan.getbeam(row)),
|
---|
[1819] | 1147 | #'s': scan._getsourcename(row),
|
---|
| 1148 | 's': "Scan "+str(scan.getscan(row))+\
|
---|
| 1149 | " ("+str(scan._getsourcename(row))+")",
|
---|
[920] | 1150 | 'i': "IF"+str(scan.getif(row)),
|
---|
[964] | 1151 | 'p': poleval,
|
---|
[1910] | 1152 | 't': str(scan.get_time(row)),
|
---|
| 1153 | 'r': "row "+str(row),
|
---|
[1913] | 1154 | #'_r': str(scan.get_time(row))+",\nIF"+str(scan.getif(row))+", "+poleval+", Beam"+str(scan.getbeam(row)) }
|
---|
| 1155 | '_r': "" }
|
---|
[920] | 1156 | return userlabel or d[mode]
|
---|
[1153] | 1157 |
|
---|
[1819] | 1158 | def plotazel(self, scan=None, outfile=None):
|
---|
[1391] | 1159 | """
|
---|
[1696] | 1160 | plot azimuth and elevation versus time of a scantable
|
---|
[1391] | 1161 | """
|
---|
[1923] | 1162 | visible = rcParams['plotter.gui']
|
---|
[1696] | 1163 | from matplotlib import pylab as PL
|
---|
| 1164 | from matplotlib.dates import DateFormatter, timezone
|
---|
| 1165 | from matplotlib.dates import HourLocator, MinuteLocator,SecondLocator, DayLocator
|
---|
[1391] | 1166 | from matplotlib.ticker import MultipleLocator
|
---|
[1739] | 1167 | from numpy import array, pi
|
---|
[1923] | 1168 | if not visible or not self._visible:
|
---|
| 1169 | PL.ioff()
|
---|
| 1170 | from matplotlib.backends.backend_agg import FigureCanvasAgg
|
---|
| 1171 | PL.gcf().canvas.switch_backends(FigureCanvasAgg)
|
---|
[1819] | 1172 | self._data = scan
|
---|
| 1173 | self._outfile = outfile
|
---|
[1556] | 1174 | dates = self._data.get_time(asdatetime=True)
|
---|
[1391] | 1175 | t = PL.date2num(dates)
|
---|
| 1176 | tz = timezone('UTC')
|
---|
| 1177 | PL.cla()
|
---|
| 1178 | PL.ioff()
|
---|
| 1179 | PL.clf()
|
---|
[2037] | 1180 | # Adjust subplot margins
|
---|
| 1181 | if len(self._margins) != 6:
|
---|
| 1182 | self.set_margin(refresh=False)
|
---|
| 1183 | lef, bot, rig, top, wsp, hsp = self._margins
|
---|
[1819] | 1184 | PL.gcf().subplots_adjust(left=lef,bottom=bot,right=rig,top=top,
|
---|
| 1185 | wspace=wsp,hspace=hsp)
|
---|
[1824] | 1186 |
|
---|
[1391] | 1187 | tdel = max(t) - min(t)
|
---|
| 1188 | ax = PL.subplot(2,1,1)
|
---|
| 1189 | el = array(self._data.get_elevation())*180./pi
|
---|
| 1190 | PL.ylabel('El [deg.]')
|
---|
| 1191 | dstr = dates[0].strftime('%Y/%m/%d')
|
---|
| 1192 | if tdel > 1.0:
|
---|
| 1193 | dstr2 = dates[len(dates)-1].strftime('%Y/%m/%d')
|
---|
| 1194 | dstr = dstr + " - " + dstr2
|
---|
| 1195 | majloc = DayLocator()
|
---|
| 1196 | minloc = HourLocator(range(0,23,12))
|
---|
| 1197 | timefmt = DateFormatter("%b%d")
|
---|
[1696] | 1198 | elif tdel > 24./60.:
|
---|
| 1199 | timefmt = DateFormatter('%H:%M')
|
---|
| 1200 | majloc = HourLocator()
|
---|
| 1201 | minloc = MinuteLocator(30)
|
---|
[1391] | 1202 | else:
|
---|
[1696] | 1203 | timefmt = DateFormatter('%H:%M')
|
---|
| 1204 | majloc = MinuteLocator(interval=5)
|
---|
| 1205 | minloc = SecondLocator(30)
|
---|
| 1206 |
|
---|
[1391] | 1207 | PL.title(dstr)
|
---|
[1819] | 1208 | if tdel == 0.0:
|
---|
| 1209 | th = (t - PL.floor(t))*24.0
|
---|
| 1210 | PL.plot(th,el,'o',markersize=2, markerfacecolor='b', markeredgecolor='b')
|
---|
| 1211 | else:
|
---|
| 1212 | PL.plot_date(t,el,'o', markersize=2, markerfacecolor='b', markeredgecolor='b',tz=tz)
|
---|
| 1213 | #ax.grid(True)
|
---|
| 1214 | ax.xaxis.set_major_formatter(timefmt)
|
---|
| 1215 | ax.xaxis.set_major_locator(majloc)
|
---|
| 1216 | ax.xaxis.set_minor_locator(minloc)
|
---|
[1391] | 1217 | ax.yaxis.grid(True)
|
---|
[1819] | 1218 | yloc = MultipleLocator(30)
|
---|
| 1219 | ax.set_ylim(0,90)
|
---|
| 1220 | ax.yaxis.set_major_locator(yloc)
|
---|
[1391] | 1221 | if tdel > 1.0:
|
---|
| 1222 | labels = ax.get_xticklabels()
|
---|
| 1223 | # PL.setp(labels, fontsize=10, rotation=45)
|
---|
| 1224 | PL.setp(labels, fontsize=10)
|
---|
[1819] | 1225 |
|
---|
[1391] | 1226 | # Az plot
|
---|
| 1227 | az = array(self._data.get_azimuth())*180./pi
|
---|
| 1228 | if min(az) < 0:
|
---|
| 1229 | for irow in range(len(az)):
|
---|
| 1230 | if az[irow] < 0: az[irow] += 360.0
|
---|
| 1231 |
|
---|
[1819] | 1232 | ax2 = PL.subplot(2,1,2)
|
---|
| 1233 | #PL.xlabel('Time (UT [hour])')
|
---|
| 1234 | PL.ylabel('Az [deg.]')
|
---|
| 1235 | if tdel == 0.0:
|
---|
| 1236 | PL.plot(th,az,'o',markersize=2, markeredgecolor='b',markerfacecolor='b')
|
---|
| 1237 | else:
|
---|
| 1238 | PL.plot_date(t,az,'o', markersize=2,markeredgecolor='b',markerfacecolor='b',tz=tz)
|
---|
| 1239 | ax2.xaxis.set_major_formatter(timefmt)
|
---|
| 1240 | ax2.xaxis.set_major_locator(majloc)
|
---|
| 1241 | ax2.xaxis.set_minor_locator(minloc)
|
---|
| 1242 | #ax2.grid(True)
|
---|
| 1243 | ax2.set_ylim(0,360)
|
---|
[1696] | 1244 | ax2.yaxis.grid(True)
|
---|
[1819] | 1245 | #hfmt = DateFormatter('%H')
|
---|
| 1246 | #hloc = HourLocator()
|
---|
| 1247 | yloc = MultipleLocator(60)
|
---|
| 1248 | ax2.yaxis.set_major_locator(yloc)
|
---|
| 1249 | if tdel > 1.0:
|
---|
| 1250 | labels = ax2.get_xticklabels()
|
---|
| 1251 | PL.setp(labels, fontsize=10)
|
---|
| 1252 | PL.xlabel('Time (UT [day])')
|
---|
| 1253 | else:
|
---|
| 1254 | PL.xlabel('Time (UT [hour])')
|
---|
| 1255 |
|
---|
[1391] | 1256 | PL.ion()
|
---|
| 1257 | PL.draw()
|
---|
[2155] | 1258 | PL.gcf().show()
|
---|
[1819] | 1259 | if (self._outfile is not None):
|
---|
| 1260 | PL.savefig(self._outfile)
|
---|
[1391] | 1261 |
|
---|
[1819] | 1262 | def plotpointing(self, scan=None, outfile=None):
|
---|
[1391] | 1263 | """
|
---|
| 1264 | plot telescope pointings
|
---|
| 1265 | """
|
---|
[1923] | 1266 | visible = rcParams['plotter.gui']
|
---|
[1696] | 1267 | from matplotlib import pylab as PL
|
---|
[1819] | 1268 | from numpy import array, pi
|
---|
[1923] | 1269 | if not visible or not self._visible:
|
---|
| 1270 | PL.ioff()
|
---|
| 1271 | from matplotlib.backends.backend_agg import FigureCanvasAgg
|
---|
| 1272 | PL.gcf().canvas.switch_backends(FigureCanvasAgg)
|
---|
[1819] | 1273 | self._data = scan
|
---|
| 1274 | self._outfile = outfile
|
---|
[1391] | 1275 | dir = array(self._data.get_directionval()).transpose()
|
---|
| 1276 | ra = dir[0]*180./pi
|
---|
| 1277 | dec = dir[1]*180./pi
|
---|
| 1278 | PL.cla()
|
---|
[1819] | 1279 | #PL.ioff()
|
---|
[1391] | 1280 | PL.clf()
|
---|
[2037] | 1281 | # Adjust subplot margins
|
---|
| 1282 | if len(self._margins) != 6:
|
---|
| 1283 | self.set_margin(refresh=False)
|
---|
| 1284 | lef, bot, rig, top, wsp, hsp = self._margins
|
---|
[1819] | 1285 | PL.gcf().subplots_adjust(left=lef,bottom=bot,right=rig,top=top,
|
---|
| 1286 | wspace=wsp,hspace=hsp)
|
---|
| 1287 | ax = PL.gca()
|
---|
| 1288 | #ax = PL.axes([0.1,0.1,0.8,0.8])
|
---|
| 1289 | #ax = PL.axes([0.1,0.1,0.8,0.8])
|
---|
[1391] | 1290 | ax.set_aspect('equal')
|
---|
[1696] | 1291 | PL.plot(ra, dec, 'b,')
|
---|
[1391] | 1292 | PL.xlabel('RA [deg.]')
|
---|
| 1293 | PL.ylabel('Declination [deg.]')
|
---|
| 1294 | PL.title('Telescope pointings')
|
---|
| 1295 | [xmin,xmax,ymin,ymax] = PL.axis()
|
---|
| 1296 | PL.axis([xmax,xmin,ymin,ymax])
|
---|
[1819] | 1297 | #PL.ion()
|
---|
[1391] | 1298 | PL.draw()
|
---|
[2155] | 1299 | PL.gcf().show()
|
---|
[1819] | 1300 | if (self._outfile is not None):
|
---|
| 1301 | PL.savefig(self._outfile)
|
---|
| 1302 |
|
---|
| 1303 | # plot total power data
|
---|
| 1304 | # plotting in time is not yet implemented..
|
---|
[1862] | 1305 | @asaplog_post_dec
|
---|
[1819] | 1306 | def plottp(self, scan=None, outfile=None):
|
---|
| 1307 | if self._plotter.is_dead:
|
---|
[2147] | 1308 | if self.casabar_exists():
|
---|
[1819] | 1309 | del self._plotter.figmgr.casabar
|
---|
| 1310 | self._plotter = self._newplotter()
|
---|
[2173] | 1311 | self._plotter.figmgr.casabar=self._new_custombar()
|
---|
[1819] | 1312 | self._plotter.hold()
|
---|
| 1313 | self._plotter.clear()
|
---|
| 1314 | from asap import scantable
|
---|
| 1315 | if not self._data and not scan:
|
---|
| 1316 | msg = "Input is not a scantable"
|
---|
| 1317 | raise TypeError(msg)
|
---|
| 1318 | if isinstance(scan, scantable):
|
---|
| 1319 | if self._data is not None:
|
---|
| 1320 | if scan != self._data:
|
---|
| 1321 | self._data = scan
|
---|
| 1322 | # reset
|
---|
| 1323 | self._reset()
|
---|
| 1324 | else:
|
---|
| 1325 | self._data = scan
|
---|
| 1326 | self._reset()
|
---|
| 1327 | # ranges become invalid when abcissa changes?
|
---|
| 1328 | #if self._abcunit and self._abcunit != self._data.get_unit():
|
---|
| 1329 | # self._minmaxx = None
|
---|
| 1330 | # self._minmaxy = None
|
---|
| 1331 | # self._abcunit = self._data.get_unit()
|
---|
| 1332 | # self._datamask = None
|
---|
| 1333 |
|
---|
[2037] | 1334 | # Adjust subplot margins
|
---|
| 1335 | if len(self._margins) !=6: self.set_margin(refresh=False)
|
---|
| 1336 | lef, bot, rig, top, wsp, hsp = self._margins
|
---|
[1819] | 1337 | self._plotter.figure.subplots_adjust(
|
---|
| 1338 | left=lef,bottom=bot,right=rig,top=top,wspace=wsp,hspace=hsp)
|
---|
[2147] | 1339 | if self.casabar_exists(): self._plotter.figmgr.casabar.disable_button()
|
---|
[1819] | 1340 | self._plottp(self._data)
|
---|
| 1341 | if self._minmaxy is not None:
|
---|
| 1342 | self._plotter.set_limits(ylim=self._minmaxy)
|
---|
| 1343 | self._plotter.release()
|
---|
| 1344 | self._plotter.tidy()
|
---|
| 1345 | self._plotter.show(hardrefresh=False)
|
---|
| 1346 | return
|
---|
| 1347 |
|
---|
| 1348 | def _plottp(self,scan):
|
---|
| 1349 | """
|
---|
| 1350 | private method for plotting total power data
|
---|
| 1351 | """
|
---|
| 1352 | from numpy import ma, array, arange, logical_not
|
---|
| 1353 | r=0
|
---|
| 1354 | nr = scan.nrow()
|
---|
| 1355 | a0,b0 = -1,-1
|
---|
| 1356 | allxlim = []
|
---|
| 1357 | allylim = []
|
---|
| 1358 | y=[]
|
---|
| 1359 | self._plotter.set_panels()
|
---|
| 1360 | self._plotter.palette(0)
|
---|
| 1361 | #title
|
---|
| 1362 | #xlab = self._abcissa and self._abcissa[panelcount] \
|
---|
| 1363 | # or scan._getabcissalabel()
|
---|
| 1364 | #ylab = self._ordinate and self._ordinate[panelcount] \
|
---|
| 1365 | # or scan._get_ordinate_label()
|
---|
| 1366 | xlab = self._abcissa or 'row number' #or Time
|
---|
| 1367 | ylab = self._ordinate or scan._get_ordinate_label()
|
---|
| 1368 | self._plotter.set_axes('xlabel',xlab)
|
---|
| 1369 | self._plotter.set_axes('ylabel',ylab)
|
---|
| 1370 | lbl = self._get_label(scan, r, 's', self._title)
|
---|
| 1371 | if isinstance(lbl, list) or isinstance(lbl, tuple):
|
---|
| 1372 | # if 0 <= panelcount < len(lbl):
|
---|
| 1373 | # lbl = lbl[panelcount]
|
---|
| 1374 | # else:
|
---|
| 1375 | # get default label
|
---|
| 1376 | lbl = self._get_label(scan, r, self._panelling, None)
|
---|
| 1377 | self._plotter.set_axes('title',lbl)
|
---|
| 1378 | y=array(scan._get_column(scan._getspectrum,-1))
|
---|
| 1379 | m = array(scan._get_column(scan._getmask,-1))
|
---|
| 1380 | y = ma.masked_array(y,mask=logical_not(array(m,copy=False)))
|
---|
| 1381 | x = arange(len(y))
|
---|
| 1382 | # try to handle spectral data somewhat...
|
---|
| 1383 | l,m = y.shape
|
---|
| 1384 | if m > 1:
|
---|
| 1385 | y=y.mean(axis=1)
|
---|
| 1386 | plotit = self._plotter.plot
|
---|
| 1387 | llbl = self._get_label(scan, r, self._stacking, None)
|
---|
| 1388 | self._plotter.set_line(label=llbl)
|
---|
| 1389 | if len(x) > 0:
|
---|
| 1390 | plotit(x,y)
|
---|
| 1391 |
|
---|
| 1392 |
|
---|
| 1393 | # forwards to matplotlib.Figure.text
|
---|
| 1394 | def figtext(self, *args, **kwargs):
|
---|
| 1395 | """
|
---|
| 1396 | Add text to figure at location x,y (relative 0-1 coords).
|
---|
| 1397 | This method forwards *args and **kwargs to a Matplotlib method,
|
---|
| 1398 | matplotlib.Figure.text.
|
---|
| 1399 | See the method help for detailed information.
|
---|
| 1400 | """
|
---|
| 1401 | self._plotter.text(*args, **kwargs)
|
---|
| 1402 | # end matplotlib.Figure.text forwarding function
|
---|
| 1403 |
|
---|
| 1404 |
|
---|
| 1405 | # printing header information
|
---|
[1862] | 1406 | @asaplog_post_dec
|
---|
[2053] | 1407 | def print_header(self, plot=True, fontsize=9, logger=False, selstr='', extrastr=''):
|
---|
[1819] | 1408 | """
|
---|
| 1409 | print data (scantable) header on the plot and/or logger.
|
---|
[2056] | 1410 | To plot the header on the plot, this method should be called after
|
---|
| 1411 | plotting spectra by the method, asapplotter.plot.
|
---|
[1819] | 1412 | Parameters:
|
---|
[1824] | 1413 | plot: whether or not print header info on the plot.
|
---|
[2053] | 1414 | fontsize: header font size (valid only plot=True)
|
---|
[1819] | 1415 | logger: whether or not print header info on the logger.
|
---|
| 1416 | selstr: additional selection string (not verified)
|
---|
[2053] | 1417 | extrastr: additional string to print at the beginning (not verified)
|
---|
[1819] | 1418 | """
|
---|
[1859] | 1419 | if not plot and not logger:
|
---|
| 1420 | return
|
---|
| 1421 | if not self._data:
|
---|
| 1422 | raise RuntimeError("No scantable has been set yet.")
|
---|
[1824] | 1423 | # Now header will be printed on plot and/or logger.
|
---|
| 1424 | # Get header information and format it.
|
---|
[2112] | 1425 | ssum=self._data._list_header()
|
---|
[1819] | 1426 | # Print Observation header to the upper-left corner of plot
|
---|
[2290] | 1427 | headstr=[ssum[0:ssum.find('Obs. Type:')]]
|
---|
| 1428 | headstr.append(ssum[ssum.find('Obs. Type:'):ssum.find('Flux Unit:')])
|
---|
[2053] | 1429 | if extrastr != '':
|
---|
| 1430 | headstr[0]=extrastr+'\n'+headstr[0]
|
---|
| 1431 | self._headtext['extrastr'] = extrastr
|
---|
[2112] | 1432 | if selstr != '':
|
---|
| 1433 | selstr += '\n'
|
---|
| 1434 | self._headtext['selstr'] = selstr
|
---|
[2056] | 1435 | ssel=(selstr+self._data.get_selection().__str__()+self._selection.__str__() or 'none')
|
---|
[2053] | 1436 | headstr.append('***Selections***\n'+ssel)
|
---|
[1824] | 1437 |
|
---|
[2051] | 1438 | if plot:
|
---|
[1819] | 1439 | self._plotter.hold()
|
---|
[2053] | 1440 | self._header_plot(headstr,fontsize=fontsize)
|
---|
[1819] | 1441 | import time
|
---|
[2106] | 1442 | self._plotter.figure.text(0.99,0.01,
|
---|
[1819] | 1443 | time.strftime("%a %d %b %Y %H:%M:%S %Z"),
|
---|
| 1444 | horizontalalignment='right',
|
---|
| 1445 | verticalalignment='bottom',fontsize=8)
|
---|
| 1446 | self._plotter.release()
|
---|
| 1447 | if logger:
|
---|
[2053] | 1448 | selstr = "Selections: "+ssel
|
---|
[1819] | 1449 | asaplog.push("----------------\n Plot Summary\n----------------")
|
---|
[2053] | 1450 | asaplog.push(extrastr)
|
---|
[2290] | 1451 | asaplog.push(ssum[0:ssum.find('Selection:')]\
|
---|
[2112] | 1452 | + selstr)
|
---|
[2053] | 1453 | self._headtext['string'] = headstr
|
---|
| 1454 | del ssel, ssum, headstr
|
---|
[2051] | 1455 |
|
---|
[2053] | 1456 | def _header_plot(self, texts, fontsize=9):
|
---|
| 1457 | self._headtext['textobj']=[]
|
---|
| 1458 | nstcol=len(texts)
|
---|
| 1459 | for i in range(nstcol):
|
---|
| 1460 | self._headtext['textobj'].append(
|
---|
| 1461 | self._plotter.figure.text(0.03+float(i)/nstcol,0.98,
|
---|
| 1462 | texts[i],
|
---|
| 1463 | horizontalalignment='left',
|
---|
| 1464 | verticalalignment='top',
|
---|
| 1465 | fontsize=fontsize))
|
---|
| 1466 |
|
---|
| 1467 | def clear_header(self):
|
---|
| 1468 | if not self._headtext['textobj']:
|
---|
| 1469 | asaplog.push("No header has been plotted. Exit without any operation")
|
---|
| 1470 | asaplog.post("WARN")
|
---|
| 1471 | else:
|
---|
| 1472 | self._plotter.hold()
|
---|
| 1473 | for textobj in self._headtext['textobj']:
|
---|
| 1474 | #if textobj.get_text() in self._headstring:
|
---|
| 1475 | try:
|
---|
| 1476 | textobj.remove()
|
---|
| 1477 | except NotImplementedError:
|
---|
| 1478 | self._plotter.figure.texts.pop(self._plotter.figure.texts.index(textobj))
|
---|
| 1479 | self._plotter.release()
|
---|
| 1480 | self._reset_header()
|
---|