[1824] | 1 | from asap.parameters import rcParams
|
---|
| 2 | from asap.selector import selector
|
---|
| 3 | from asap.scantable import scantable
|
---|
[1862] | 4 | from asap.logging import asaplog, asaplog_post_dec
|
---|
[1153] | 5 | import matplotlib.axes
|
---|
[1556] | 6 | from matplotlib.font_manager import FontProperties
|
---|
| 7 | from matplotlib.text import Text
|
---|
| 8 |
|
---|
[1317] | 9 | import re
|
---|
[203] | 10 |
|
---|
| 11 | class asapplotter:
|
---|
[226] | 12 | """
|
---|
| 13 | The ASAP plotter.
|
---|
| 14 | By default the plotter is set up to plot polarisations
|
---|
| 15 | 'colour stacked' and scantables across panels.
|
---|
[1858] | 16 |
|
---|
| 17 | .. note::
|
---|
| 18 |
|
---|
[226] | 19 | Currenly it only plots 'spectra' not Tsys or
|
---|
| 20 | other variables.
|
---|
[1858] | 21 |
|
---|
[226] | 22 | """
|
---|
[1563] | 23 | def __init__(self, visible=None , **kwargs):
|
---|
[734] | 24 | self._visible = rcParams['plotter.gui']
|
---|
| 25 | if visible is not None:
|
---|
| 26 | self._visible = visible
|
---|
[1563] | 27 | self._plotter = self._newplotter(**kwargs)
|
---|
[1819] | 28 | # additional tool bar
|
---|
| 29 | self._plotter.figmgr.casabar=self._newcasabar()
|
---|
[710] | 30 |
|
---|
[554] | 31 | self._panelling = None
|
---|
| 32 | self._stacking = None
|
---|
| 33 | self.set_panelling()
|
---|
| 34 | self.set_stacking()
|
---|
[377] | 35 | self._rows = None
|
---|
| 36 | self._cols = None
|
---|
[203] | 37 | self._autoplot = False
|
---|
[525] | 38 | self._minmaxx = None
|
---|
| 39 | self._minmaxy = None
|
---|
[710] | 40 | self._datamask = None
|
---|
[203] | 41 | self._data = None
|
---|
[607] | 42 | self._lmap = None
|
---|
[226] | 43 | self._title = None
|
---|
[257] | 44 | self._ordinate = None
|
---|
| 45 | self._abcissa = None
|
---|
[709] | 46 | self._abcunit = None
|
---|
[920] | 47 | self._usermask = []
|
---|
| 48 | self._maskselection = None
|
---|
| 49 | self._selection = selector()
|
---|
[1023] | 50 | self._hist = rcParams['plotter.histogram']
|
---|
[1556] | 51 | self._fp = FontProperties()
|
---|
[1819] | 52 | self._panellayout = self.set_panellayout(refresh=False)
|
---|
[1897] | 53 | self._offset = None
|
---|
[1913] | 54 | self._rowcount = 0
|
---|
| 55 | self._panelcnt = 0
|
---|
[1023] | 56 |
|
---|
[920] | 57 | def _translate(self, instr):
|
---|
[1910] | 58 | keys = "s b i p t r".split()
|
---|
[920] | 59 | if isinstance(instr, str):
|
---|
| 60 | for key in keys:
|
---|
| 61 | if instr.lower().startswith(key):
|
---|
| 62 | return key
|
---|
| 63 | return None
|
---|
| 64 |
|
---|
[1563] | 65 | def _newplotter(self, **kwargs):
|
---|
[1819] | 66 | backend=matplotlib.get_backend()
|
---|
| 67 | if not self._visible:
|
---|
| 68 | from asap.asaplot import asaplot
|
---|
| 69 | elif backend == 'TkAgg':
|
---|
[710] | 70 | from asap.asaplotgui import asaplotgui as asaplot
|
---|
[1819] | 71 | elif backend == 'Qt4Agg':
|
---|
| 72 | from asap.asaplotgui_qt4 import asaplotgui as asaplot
|
---|
| 73 | elif backend == 'GTkAgg':
|
---|
| 74 | from asap.asaplotgui_gtk import asaplotgui as asaplot
|
---|
[710] | 75 | else:
|
---|
| 76 | from asap.asaplot import asaplot
|
---|
[1563] | 77 | return asaplot(**kwargs)
|
---|
[710] | 78 |
|
---|
[1819] | 79 | def _newcasabar(self):
|
---|
| 80 | backend=matplotlib.get_backend()
|
---|
| 81 | if self._visible and backend == "TkAgg":
|
---|
| 82 | from asap.casatoolbar import CustomToolbarTkAgg
|
---|
| 83 | return CustomToolbarTkAgg(self)
|
---|
| 84 | else: return None
|
---|
| 85 |
|
---|
[1862] | 86 | @asaplog_post_dec
|
---|
[935] | 87 | def plot(self, scan=None):
|
---|
[203] | 88 | """
|
---|
[920] | 89 | Plot a scantable.
|
---|
[203] | 90 | Parameters:
|
---|
[920] | 91 | scan: a scantable
|
---|
[203] | 92 | Note:
|
---|
[920] | 93 | If a scantable was specified in a previous call
|
---|
[203] | 94 | to plot, no argument has to be given to 'replot'
|
---|
[920] | 95 | NO checking is done that the abcissas of the scantable
|
---|
[203] | 96 | are consistent e.g. all 'channel' or all 'velocity' etc.
|
---|
| 97 | """
|
---|
[1913] | 98 | self._rowcount = self._panelcnt = 0
|
---|
[710] | 99 | if self._plotter.is_dead:
|
---|
[1819] | 100 | if hasattr(self._plotter.figmgr,'casabar'):
|
---|
| 101 | del self._plotter.figmgr.casabar
|
---|
[710] | 102 | self._plotter = self._newplotter()
|
---|
[1819] | 103 | self._plotter.figmgr.casabar=self._newcasabar()
|
---|
[600] | 104 | self._plotter.hold()
|
---|
[1945] | 105 | #self._plotter.clear()
|
---|
[935] | 106 | if not self._data and not scan:
|
---|
[1101] | 107 | msg = "Input is not a scantable"
|
---|
| 108 | raise TypeError(msg)
|
---|
[1897] | 109 | if scan:
|
---|
| 110 | self.set_data(scan, refresh=False)
|
---|
[920] | 111 | self._plot(self._data)
|
---|
[709] | 112 | if self._minmaxy is not None:
|
---|
| 113 | self._plotter.set_limits(ylim=self._minmaxy)
|
---|
[1819] | 114 | if self._plotter.figmgr.casabar: self._plotter.figmgr.casabar.enable_button()
|
---|
[203] | 115 | self._plotter.release()
|
---|
[1153] | 116 | self._plotter.tidy()
|
---|
| 117 | self._plotter.show(hardrefresh=False)
|
---|
[203] | 118 | return
|
---|
| 119 |
|
---|
[1572] | 120 | def gca(self):
|
---|
| 121 | return self._plotter.figure.gca()
|
---|
| 122 |
|
---|
[1550] | 123 | def refresh(self):
|
---|
[1572] | 124 | """Do a soft refresh"""
|
---|
[1550] | 125 | self._plotter.figure.show()
|
---|
| 126 |
|
---|
[1555] | 127 | def create_mask(self, nwin=1, panel=0, color=None):
|
---|
[1597] | 128 | """
|
---|
[1927] | 129 | Interactively define a mask. It retruns a mask that is equivalent to
|
---|
[1597] | 130 | the one created manually with scantable.create_mask.
|
---|
| 131 | Parameters:
|
---|
| 132 | nwin: The number of mask windows to create interactively
|
---|
| 133 | default is 1.
|
---|
| 134 | panel: Which panel to use for mask selection. This is useful
|
---|
| 135 | if different IFs are spread over panels (default 0)
|
---|
| 136 | """
|
---|
[1555] | 137 | if self._data is None:
|
---|
| 138 | return []
|
---|
[1547] | 139 | outmask = []
|
---|
[1549] | 140 | self._plotter.subplot(panel)
|
---|
| 141 | xmin, xmax = self._plotter.axes.get_xlim()
|
---|
[1548] | 142 | marg = 0.05*(xmax-xmin)
|
---|
[1549] | 143 | self._plotter.axes.set_xlim(xmin-marg, xmax+marg)
|
---|
[1550] | 144 | self.refresh()
|
---|
[1695] | 145 |
|
---|
[1555] | 146 | def cleanup(lines=False, texts=False, refresh=False):
|
---|
| 147 | if lines:
|
---|
| 148 | del self._plotter.axes.lines[-1]
|
---|
| 149 | if texts:
|
---|
| 150 | del self._plotter.axes.texts[-1]
|
---|
| 151 | if refresh:
|
---|
| 152 | self.refresh()
|
---|
| 153 |
|
---|
| 154 | for w in xrange(nwin):
|
---|
[1547] | 155 | wpos = []
|
---|
[1695] | 156 | self.text(0.05,1.0, "Add start boundary",
|
---|
[1555] | 157 | coords="relative", fontsize=10)
|
---|
| 158 | point = self._plotter.get_point()
|
---|
| 159 | cleanup(texts=True)
|
---|
| 160 | if point is None:
|
---|
| 161 | continue
|
---|
| 162 | wpos.append(point[0])
|
---|
[1695] | 163 | self.axvline(wpos[0], color=color)
|
---|
[1551] | 164 | self.text(0.05,1.0, "Add end boundary", coords="relative", fontsize=10)
|
---|
[1555] | 165 | point = self._plotter.get_point()
|
---|
| 166 | cleanup(texts=True, lines=True)
|
---|
| 167 | if point is None:
|
---|
| 168 | self.refresh()
|
---|
| 169 | continue
|
---|
| 170 | wpos.append(point[0])
|
---|
| 171 | self.axvspan(wpos[0], wpos[1], alpha=0.1,
|
---|
| 172 | edgecolor=color, facecolor=color)
|
---|
| 173 | ymin, ymax = self._plotter.axes.get_ylim()
|
---|
[1547] | 174 | outmask.append(wpos)
|
---|
[1153] | 175 |
|
---|
[1555] | 176 | self._plotter.axes.set_xlim(xmin, xmax)
|
---|
| 177 | self.refresh()
|
---|
| 178 | if len(outmask) > 0:
|
---|
| 179 | return self._data.create_mask(*outmask)
|
---|
| 180 | return []
|
---|
| 181 |
|
---|
[1153] | 182 | # forwards to matplotlib axes
|
---|
| 183 | def text(self, *args, **kwargs):
|
---|
[1547] | 184 | if kwargs.has_key("interactive"):
|
---|
| 185 | if kwargs.pop("interactive"):
|
---|
| 186 | pos = self._plotter.get_point()
|
---|
| 187 | args = tuple(pos)+args
|
---|
[1153] | 188 | self._axes_callback("text", *args, **kwargs)
|
---|
[1547] | 189 |
|
---|
[1358] | 190 | text.__doc__ = matplotlib.axes.Axes.text.__doc__
|
---|
[1559] | 191 |
|
---|
[1153] | 192 | def arrow(self, *args, **kwargs):
|
---|
[1547] | 193 | if kwargs.has_key("interactive"):
|
---|
| 194 | if kwargs.pop("interactive"):
|
---|
| 195 | pos = self._plotter.get_region()
|
---|
| 196 | dpos = (pos[0][0], pos[0][1],
|
---|
| 197 | pos[1][0]-pos[0][0],
|
---|
| 198 | pos[1][1] - pos[0][1])
|
---|
| 199 | args = dpos + args
|
---|
[1153] | 200 | self._axes_callback("arrow", *args, **kwargs)
|
---|
[1547] | 201 |
|
---|
[1358] | 202 | arrow.__doc__ = matplotlib.axes.Axes.arrow.__doc__
|
---|
[1559] | 203 |
|
---|
| 204 | def annotate(self, text, xy=None, xytext=None, **kwargs):
|
---|
| 205 | if kwargs.has_key("interactive"):
|
---|
| 206 | if kwargs.pop("interactive"):
|
---|
| 207 | xy = self._plotter.get_point()
|
---|
| 208 | xytext = self._plotter.get_point()
|
---|
| 209 | if not kwargs.has_key("arrowprops"):
|
---|
| 210 | kwargs["arrowprops"] = dict(arrowstyle="->")
|
---|
| 211 | self._axes_callback("annotate", text, xy, xytext, **kwargs)
|
---|
| 212 |
|
---|
| 213 | annotate.__doc__ = matplotlib.axes.Axes.annotate.__doc__
|
---|
| 214 |
|
---|
[1153] | 215 | def axvline(self, *args, **kwargs):
|
---|
[1547] | 216 | if kwargs.has_key("interactive"):
|
---|
| 217 | if kwargs.pop("interactive"):
|
---|
| 218 | pos = self._plotter.get_point()
|
---|
| 219 | args = (pos[0],)+args
|
---|
[1153] | 220 | self._axes_callback("axvline", *args, **kwargs)
|
---|
[1559] | 221 |
|
---|
[1358] | 222 | axvline.__doc__ = matplotlib.axes.Axes.axvline.__doc__
|
---|
[1547] | 223 |
|
---|
[1153] | 224 | def axhline(self, *args, **kwargs):
|
---|
[1547] | 225 | if kwargs.has_key("interactive"):
|
---|
| 226 | if kwargs.pop("interactive"):
|
---|
| 227 | pos = self._plotter.get_point()
|
---|
| 228 | args = (pos[1],)+args
|
---|
[1153] | 229 | self._axes_callback("axhline", *args, **kwargs)
|
---|
[1559] | 230 |
|
---|
[1358] | 231 | axhline.__doc__ = matplotlib.axes.Axes.axhline.__doc__
|
---|
[1547] | 232 |
|
---|
[1153] | 233 | def axvspan(self, *args, **kwargs):
|
---|
[1547] | 234 | if kwargs.has_key("interactive"):
|
---|
| 235 | if kwargs.pop("interactive"):
|
---|
| 236 | pos = self._plotter.get_region()
|
---|
| 237 | dpos = (pos[0][0], pos[1][0])
|
---|
| 238 | args = dpos + args
|
---|
[1153] | 239 | self._axes_callback("axvspan", *args, **kwargs)
|
---|
| 240 | # hack to preventy mpl from redrawing the patch
|
---|
| 241 | # it seem to convert the patch into lines on every draw.
|
---|
| 242 | # This doesn't happen in a test script???
|
---|
[1547] | 243 | #del self._plotter.axes.patches[-1]
|
---|
| 244 |
|
---|
[1358] | 245 | axvspan.__doc__ = matplotlib.axes.Axes.axvspan.__doc__
|
---|
[1232] | 246 |
|
---|
[1153] | 247 | def axhspan(self, *args, **kwargs):
|
---|
[1547] | 248 | if kwargs.has_key("interactive"):
|
---|
| 249 | if kwargs.pop("interactive"):
|
---|
| 250 | pos = self._plotter.get_region()
|
---|
| 251 | dpos = (pos[0][1], pos[1][1])
|
---|
| 252 | args = dpos + args
|
---|
[1232] | 253 | self._axes_callback("axhspan", *args, **kwargs)
|
---|
[1153] | 254 | # hack to preventy mpl from redrawing the patch
|
---|
| 255 | # it seem to convert the patch into lines on every draw.
|
---|
| 256 | # This doesn't happen in a test script???
|
---|
[1547] | 257 | #del self._plotter.axes.patches[-1]
|
---|
[1559] | 258 |
|
---|
[1358] | 259 | axhspan.__doc__ = matplotlib.axes.Axes.axhspan.__doc__
|
---|
[1153] | 260 |
|
---|
| 261 | def _axes_callback(self, axesfunc, *args, **kwargs):
|
---|
| 262 | panel = 0
|
---|
| 263 | if kwargs.has_key("panel"):
|
---|
| 264 | panel = kwargs.pop("panel")
|
---|
| 265 | coords = None
|
---|
| 266 | if kwargs.has_key("coords"):
|
---|
| 267 | coords = kwargs.pop("coords")
|
---|
| 268 | if coords.lower() == 'world':
|
---|
| 269 | kwargs["transform"] = self._plotter.axes.transData
|
---|
| 270 | elif coords.lower() == 'relative':
|
---|
| 271 | kwargs["transform"] = self._plotter.axes.transAxes
|
---|
| 272 | self._plotter.subplot(panel)
|
---|
| 273 | self._plotter.axes.set_autoscale_on(False)
|
---|
| 274 | getattr(self._plotter.axes, axesfunc)(*args, **kwargs)
|
---|
| 275 | self._plotter.show(False)
|
---|
| 276 | self._plotter.axes.set_autoscale_on(True)
|
---|
| 277 | # end matplotlib.axes fowarding functions
|
---|
| 278 |
|
---|
[1862] | 279 | @asaplog_post_dec
|
---|
[1819] | 280 | def set_data(self, scan, refresh=True):
|
---|
| 281 | """
|
---|
[1824] | 282 | Set a scantable to plot.
|
---|
[1819] | 283 | Parameters:
|
---|
| 284 | scan: a scantable
|
---|
| 285 | refresh: True (default) or False. If True, the plot is
|
---|
[1824] | 286 | replotted based on the new parameter setting(s).
|
---|
[1819] | 287 | Otherwise,the parameter(s) are set without replotting.
|
---|
| 288 | Note:
|
---|
| 289 | The user specified masks and data selections will be reset
|
---|
| 290 | if a new scantable is set. This method should be called before
|
---|
[1824] | 291 | setting data selections (set_selection) and/or masks (set_mask).
|
---|
[1819] | 292 | """
|
---|
| 293 | from asap import scantable
|
---|
| 294 | if isinstance(scan, scantable):
|
---|
| 295 | if self._data is not None:
|
---|
| 296 | if scan != self._data:
|
---|
| 297 | self._data = scan
|
---|
| 298 | # reset
|
---|
| 299 | self._reset()
|
---|
[1897] | 300 | msg = "A new scantable is set to the plotter. "\
|
---|
| 301 | "The masks and data selections are reset."
|
---|
[1819] | 302 | asaplog.push( msg )
|
---|
| 303 | else:
|
---|
| 304 | self._data = scan
|
---|
| 305 | self._reset()
|
---|
| 306 | else:
|
---|
| 307 | msg = "Input is not a scantable"
|
---|
| 308 | raise TypeError(msg)
|
---|
[1547] | 309 |
|
---|
[1819] | 310 | # ranges become invalid when unit changes
|
---|
| 311 | if self._abcunit and self._abcunit != self._data.get_unit():
|
---|
| 312 | self._minmaxx = None
|
---|
| 313 | self._minmaxy = None
|
---|
| 314 | self._abcunit = self._data.get_unit()
|
---|
| 315 | self._datamask = None
|
---|
| 316 | if refresh: self.plot()
|
---|
| 317 |
|
---|
[1862] | 318 | @asaplog_post_dec
|
---|
[1819] | 319 | def set_mode(self, stacking=None, panelling=None, refresh=True):
|
---|
[203] | 320 | """
|
---|
[377] | 321 | Set the plots look and feel, i.e. what you want to see on the plot.
|
---|
[203] | 322 | Parameters:
|
---|
| 323 | stacking: tell the plotter which variable to plot
|
---|
[1217] | 324 | as line colour overlays (default 'pol')
|
---|
[203] | 325 | panelling: tell the plotter which variable to plot
|
---|
| 326 | across multiple panels (default 'scan'
|
---|
[1819] | 327 | refresh: True (default) or False. If True, the plot is
|
---|
[1824] | 328 | replotted based on the new parameter setting(s).
|
---|
[1819] | 329 | Otherwise,the parameter(s) are set without replotting.
|
---|
[203] | 330 | Note:
|
---|
| 331 | Valid modes are:
|
---|
| 332 | 'beam' 'Beam' 'b': Beams
|
---|
| 333 | 'if' 'IF' 'i': IFs
|
---|
| 334 | 'pol' 'Pol' 'p': Polarisations
|
---|
| 335 | 'scan' 'Scan' 's': Scans
|
---|
| 336 | 'time' 'Time' 't': Times
|
---|
| 337 | """
|
---|
[753] | 338 | msg = "Invalid mode"
|
---|
| 339 | if not self.set_panelling(panelling) or \
|
---|
| 340 | not self.set_stacking(stacking):
|
---|
[1859] | 341 | raise TypeError(msg)
|
---|
[1910] | 342 | if self._panelling == 'r':
|
---|
| 343 | self._stacking = '_r'
|
---|
[1913] | 344 | elif self._stacking == 'r':
|
---|
| 345 | self._panelling = '_r'
|
---|
[1819] | 346 | if refresh and self._data: self.plot(self._data)
|
---|
[203] | 347 | return
|
---|
| 348 |
|
---|
[554] | 349 | def set_panelling(self, what=None):
|
---|
[1858] | 350 | """Set the 'panelling' mode i.e. which type of spectra should be
|
---|
| 351 | spread across different panels.
|
---|
| 352 | """
|
---|
| 353 |
|
---|
[554] | 354 | mode = what
|
---|
| 355 | if mode is None:
|
---|
| 356 | mode = rcParams['plotter.panelling']
|
---|
| 357 | md = self._translate(mode)
|
---|
[203] | 358 | if md:
|
---|
[554] | 359 | self._panelling = md
|
---|
[226] | 360 | self._title = None
|
---|
[1913] | 361 | if md == 'r':
|
---|
[1910] | 362 | self._stacking = '_r'
|
---|
[203] | 363 | return True
|
---|
| 364 | return False
|
---|
| 365 |
|
---|
[1819] | 366 | def set_layout(self,rows=None,cols=None,refresh=True):
|
---|
[377] | 367 | """
|
---|
| 368 | Set the multi-panel layout, i.e. how many rows and columns plots
|
---|
| 369 | are visible.
|
---|
| 370 | Parameters:
|
---|
| 371 | rows: The number of rows of plots
|
---|
| 372 | cols: The number of columns of plots
|
---|
[1819] | 373 | refresh: True (default) or False. If True, the plot is
|
---|
[1824] | 374 | replotted based on the new parameter setting(s).
|
---|
[1819] | 375 | Otherwise,the parameter(s) are set without replotting.
|
---|
[377] | 376 | Note:
|
---|
| 377 | If no argument is given, the potter reverts to its auto-plot
|
---|
| 378 | behaviour.
|
---|
| 379 | """
|
---|
| 380 | self._rows = rows
|
---|
| 381 | self._cols = cols
|
---|
[1819] | 382 | if refresh and self._data: self.plot(self._data)
|
---|
[377] | 383 | return
|
---|
| 384 |
|
---|
[709] | 385 | def set_stacking(self, what=None):
|
---|
[1858] | 386 | """Set the 'stacking' mode i.e. which type of spectra should be
|
---|
| 387 | overlayed.
|
---|
| 388 | """
|
---|
[554] | 389 | mode = what
|
---|
[709] | 390 | if mode is None:
|
---|
| 391 | mode = rcParams['plotter.stacking']
|
---|
[554] | 392 | md = self._translate(mode)
|
---|
[203] | 393 | if md:
|
---|
| 394 | self._stacking = md
|
---|
[226] | 395 | self._lmap = None
|
---|
[1913] | 396 | if md == 'r':
|
---|
| 397 | self._panelling = '_r'
|
---|
[203] | 398 | return True
|
---|
| 399 | return False
|
---|
| 400 |
|
---|
[1897] | 401 | def set_range(self,xstart=None,xend=None,ystart=None,yend=None,refresh=True, offset=None):
|
---|
[203] | 402 | """
|
---|
| 403 | Set the range of interest on the abcissa of the plot
|
---|
| 404 | Parameters:
|
---|
[525] | 405 | [x,y]start,[x,y]end: The start and end points of the 'zoom' window
|
---|
[1819] | 406 | refresh: True (default) or False. If True, the plot is
|
---|
[1824] | 407 | replotted based on the new parameter setting(s).
|
---|
[1819] | 408 | Otherwise,the parameter(s) are set without replotting.
|
---|
[1897] | 409 | offset: shift the abcissa by the given amount. The abcissa label will
|
---|
| 410 | have '(relative)' appended to it.
|
---|
[203] | 411 | Note:
|
---|
| 412 | These become non-sensical when the unit changes.
|
---|
| 413 | use plotter.set_range() without parameters to reset
|
---|
| 414 |
|
---|
| 415 | """
|
---|
[1897] | 416 | self._offset = offset
|
---|
[525] | 417 | if xstart is None and xend is None:
|
---|
| 418 | self._minmaxx = None
|
---|
[600] | 419 | else:
|
---|
| 420 | self._minmaxx = [xstart,xend]
|
---|
[525] | 421 | if ystart is None and yend is None:
|
---|
| 422 | self._minmaxy = None
|
---|
[600] | 423 | else:
|
---|
[709] | 424 | self._minmaxy = [ystart,yend]
|
---|
[1819] | 425 | if refresh and self._data: self.plot(self._data)
|
---|
[203] | 426 | return
|
---|
[709] | 427 |
|
---|
[1819] | 428 | def set_legend(self, mp=None, fontsize = None, mode = 0, refresh=True):
|
---|
[203] | 429 | """
|
---|
| 430 | Specify a mapping for the legend instead of using the default
|
---|
| 431 | indices:
|
---|
| 432 | Parameters:
|
---|
[1101] | 433 | mp: a list of 'strings'. This should have the same length
|
---|
| 434 | as the number of elements on the legend and then maps
|
---|
| 435 | to the indeces in order. It is possible to uses latex
|
---|
| 436 | math expression. These have to be enclosed in r'',
|
---|
| 437 | e.g. r'$x^{2}$'
|
---|
| 438 | fontsize: The font size of the label (default None)
|
---|
| 439 | mode: where to display the legend
|
---|
| 440 | Any other value for loc else disables the legend:
|
---|
[1096] | 441 | 0: auto
|
---|
| 442 | 1: upper right
|
---|
| 443 | 2: upper left
|
---|
| 444 | 3: lower left
|
---|
| 445 | 4: lower right
|
---|
| 446 | 5: right
|
---|
| 447 | 6: center left
|
---|
| 448 | 7: center right
|
---|
| 449 | 8: lower center
|
---|
| 450 | 9: upper center
|
---|
| 451 | 10: center
|
---|
[1819] | 452 | refresh: True (default) or False. If True, the plot is
|
---|
[1824] | 453 | replotted based on the new parameter setting(s).
|
---|
[1819] | 454 | Otherwise,the parameter(s) are set without replotting.
|
---|
[203] | 455 |
|
---|
| 456 | Example:
|
---|
[485] | 457 | If the data has two IFs/rest frequencies with index 0 and 1
|
---|
[203] | 458 | for CO and SiO:
|
---|
| 459 | plotter.set_stacking('i')
|
---|
[710] | 460 | plotter.set_legend(['CO','SiO'])
|
---|
[203] | 461 | plotter.plot()
|
---|
[710] | 462 | plotter.set_legend([r'$^{12}CO$', r'SiO'])
|
---|
[203] | 463 | """
|
---|
| 464 | self._lmap = mp
|
---|
[1096] | 465 | self._plotter.legend(mode)
|
---|
[1101] | 466 | if isinstance(fontsize, int):
|
---|
| 467 | from matplotlib import rc as rcp
|
---|
| 468 | rcp('legend', fontsize=fontsize)
|
---|
[1819] | 469 | if refresh and self._data: self.plot(self._data)
|
---|
[226] | 470 | return
|
---|
| 471 |
|
---|
[1819] | 472 | def set_title(self, title=None, fontsize=None, refresh=True):
|
---|
[710] | 473 | """
|
---|
| 474 | Set the title of the plot. If multiple panels are plotted,
|
---|
| 475 | multiple titles have to be specified.
|
---|
[1819] | 476 | Parameters:
|
---|
| 477 | refresh: True (default) or False. If True, the plot is
|
---|
[1824] | 478 | replotted based on the new parameter setting(s).
|
---|
[1819] | 479 | Otherwise,the parameter(s) are set without replotting.
|
---|
[710] | 480 | Example:
|
---|
| 481 | # two panels are visible on the plotter
|
---|
| 482 | plotter.set_title(["First Panel","Second Panel"])
|
---|
| 483 | """
|
---|
[226] | 484 | self._title = title
|
---|
[1101] | 485 | if isinstance(fontsize, int):
|
---|
| 486 | from matplotlib import rc as rcp
|
---|
| 487 | rcp('axes', titlesize=fontsize)
|
---|
[1819] | 488 | if refresh and self._data: self.plot(self._data)
|
---|
[226] | 489 | return
|
---|
| 490 |
|
---|
[1819] | 491 | def set_ordinate(self, ordinate=None, fontsize=None, refresh=True):
|
---|
[710] | 492 | """
|
---|
| 493 | Set the y-axis label of the plot. If multiple panels are plotted,
|
---|
| 494 | multiple labels have to be specified.
|
---|
[1021] | 495 | Parameters:
|
---|
| 496 | ordinate: a list of ordinate labels. None (default) let
|
---|
| 497 | data determine the labels
|
---|
[1819] | 498 | refresh: True (default) or False. If True, the plot is
|
---|
[1824] | 499 | replotted based on the new parameter setting(s).
|
---|
[1819] | 500 | Otherwise,the parameter(s) are set without replotting.
|
---|
[710] | 501 | Example:
|
---|
| 502 | # two panels are visible on the plotter
|
---|
| 503 | plotter.set_ordinate(["First Y-Axis","Second Y-Axis"])
|
---|
| 504 | """
|
---|
[257] | 505 | self._ordinate = ordinate
|
---|
[1101] | 506 | if isinstance(fontsize, int):
|
---|
| 507 | from matplotlib import rc as rcp
|
---|
| 508 | rcp('axes', labelsize=fontsize)
|
---|
| 509 | rcp('ytick', labelsize=fontsize)
|
---|
[1819] | 510 | if refresh and self._data: self.plot(self._data)
|
---|
[257] | 511 | return
|
---|
| 512 |
|
---|
[1819] | 513 | def set_abcissa(self, abcissa=None, fontsize=None, refresh=True):
|
---|
[710] | 514 | """
|
---|
| 515 | Set the x-axis label of the plot. If multiple panels are plotted,
|
---|
| 516 | multiple labels have to be specified.
|
---|
[1021] | 517 | Parameters:
|
---|
| 518 | abcissa: a list of abcissa labels. None (default) let
|
---|
| 519 | data determine the labels
|
---|
[1819] | 520 | refresh: True (default) or False. If True, the plot is
|
---|
[1824] | 521 | replotted based on the new parameter setting(s).
|
---|
[1819] | 522 | Otherwise,the parameter(s) are set without replotting.
|
---|
[710] | 523 | Example:
|
---|
| 524 | # two panels are visible on the plotter
|
---|
| 525 | plotter.set_ordinate(["First X-Axis","Second X-Axis"])
|
---|
| 526 | """
|
---|
[257] | 527 | self._abcissa = abcissa
|
---|
[1101] | 528 | if isinstance(fontsize, int):
|
---|
| 529 | from matplotlib import rc as rcp
|
---|
| 530 | rcp('axes', labelsize=fontsize)
|
---|
| 531 | rcp('xtick', labelsize=fontsize)
|
---|
[1819] | 532 | if refresh and self._data: self.plot(self._data)
|
---|
[257] | 533 | return
|
---|
| 534 |
|
---|
[1819] | 535 | def set_colors(self, colmap, refresh=True):
|
---|
[377] | 536 | """
|
---|
[1217] | 537 | Set the colours to be used. The plotter will cycle through
|
---|
| 538 | these colours when lines are overlaid (stacking mode).
|
---|
[1021] | 539 | Parameters:
|
---|
[1217] | 540 | colmap: a list of colour names
|
---|
[1819] | 541 | refresh: True (default) or False. If True, the plot is
|
---|
[1824] | 542 | replotted based on the new parameter setting(s).
|
---|
[1819] | 543 | Otherwise,the parameter(s) are set without replotting.
|
---|
[710] | 544 | Example:
|
---|
| 545 | plotter.set_colors("red green blue")
|
---|
| 546 | # If for example four lines are overlaid e.g I Q U V
|
---|
| 547 | # 'I' will be 'red', 'Q' will be 'green', U will be 'blue'
|
---|
| 548 | # and 'V' will be 'red' again.
|
---|
| 549 | """
|
---|
[1217] | 550 | if isinstance(colmap,str):
|
---|
| 551 | colmap = colmap.split()
|
---|
| 552 | self._plotter.palette(0, colormap=colmap)
|
---|
[1819] | 553 | if refresh and self._data: self.plot(self._data)
|
---|
[710] | 554 |
|
---|
[1217] | 555 | # alias for english speakers
|
---|
| 556 | set_colours = set_colors
|
---|
| 557 |
|
---|
[1819] | 558 | def set_histogram(self, hist=True, linewidth=None, refresh=True):
|
---|
[1021] | 559 | """
|
---|
| 560 | Enable/Disable histogram-like plotting.
|
---|
| 561 | Parameters:
|
---|
| 562 | hist: True (default) or False. The fisrt default
|
---|
| 563 | is taken from the .asaprc setting
|
---|
| 564 | plotter.histogram
|
---|
[1819] | 565 | refresh: True (default) or False. If True, the plot is
|
---|
[1824] | 566 | replotted based on the new parameter setting(s).
|
---|
[1819] | 567 | Otherwise,the parameter(s) are set without replotting.
|
---|
[1021] | 568 | """
|
---|
[1023] | 569 | self._hist = hist
|
---|
[1101] | 570 | if isinstance(linewidth, float) or isinstance(linewidth, int):
|
---|
| 571 | from matplotlib import rc as rcp
|
---|
| 572 | rcp('lines', linewidth=linewidth)
|
---|
[1819] | 573 | if refresh and self._data: self.plot(self._data)
|
---|
[1023] | 574 |
|
---|
[1819] | 575 | def set_linestyles(self, linestyles=None, linewidth=None, refresh=True):
|
---|
[710] | 576 | """
|
---|
[734] | 577 | Set the linestyles to be used. The plotter will cycle through
|
---|
| 578 | these linestyles when lines are overlaid (stacking mode) AND
|
---|
| 579 | only one color has been set.
|
---|
[710] | 580 | Parameters:
|
---|
| 581 | linestyles: a list of linestyles to use.
|
---|
| 582 | 'line', 'dashed', 'dotted', 'dashdot',
|
---|
| 583 | 'dashdotdot' and 'dashdashdot' are
|
---|
| 584 | possible
|
---|
[1819] | 585 | refresh: True (default) or False. If True, the plot is
|
---|
[1824] | 586 | replotted based on the new parameter setting(s).
|
---|
[1819] | 587 | Otherwise,the parameter(s) are set without replotting.
|
---|
[710] | 588 | Example:
|
---|
| 589 | plotter.set_colors("black")
|
---|
| 590 | plotter.set_linestyles("line dashed dotted dashdot")
|
---|
| 591 | # If for example four lines are overlaid e.g I Q U V
|
---|
| 592 | # 'I' will be 'solid', 'Q' will be 'dashed',
|
---|
| 593 | # U will be 'dotted' and 'V' will be 'dashdot'.
|
---|
| 594 | """
|
---|
| 595 | if isinstance(linestyles,str):
|
---|
| 596 | linestyles = linestyles.split()
|
---|
| 597 | self._plotter.palette(color=0,linestyle=0,linestyles=linestyles)
|
---|
[1101] | 598 | if isinstance(linewidth, float) or isinstance(linewidth, int):
|
---|
| 599 | from matplotlib import rc as rcp
|
---|
| 600 | rcp('lines', linewidth=linewidth)
|
---|
[1819] | 601 | if refresh and self._data: self.plot(self._data)
|
---|
[710] | 602 |
|
---|
[1819] | 603 | def set_font(self, refresh=True,**kwargs):
|
---|
[1101] | 604 | """
|
---|
| 605 | Set font properties.
|
---|
| 606 | Parameters:
|
---|
| 607 | family: one of 'sans-serif', 'serif', 'cursive', 'fantasy', 'monospace'
|
---|
| 608 | style: one of 'normal' (or 'roman'), 'italic' or 'oblique'
|
---|
| 609 | weight: one of 'normal or 'bold'
|
---|
| 610 | size: the 'general' font size, individual elements can be adjusted
|
---|
| 611 | seperately
|
---|
[1819] | 612 | refresh: True (default) or False. If True, the plot is
|
---|
[1824] | 613 | replotted based on the new parameter setting(s).
|
---|
[1819] | 614 | Otherwise,the parameter(s) are set without replotting.
|
---|
[1101] | 615 | """
|
---|
| 616 | from matplotlib import rc as rcp
|
---|
[1547] | 617 | fdict = {}
|
---|
| 618 | for k,v in kwargs.iteritems():
|
---|
| 619 | if v:
|
---|
| 620 | fdict[k] = v
|
---|
[1556] | 621 | self._fp = FontProperties(**fdict)
|
---|
[1819] | 622 | if refresh and self._data: self.plot(self._data)
|
---|
[1101] | 623 |
|
---|
[1819] | 624 | def set_panellayout(self,layout=[],refresh=True):
|
---|
| 625 | """
|
---|
| 626 | Set the layout of subplots.
|
---|
| 627 | Parameters:
|
---|
| 628 | layout: a list of subplots layout in figure coordinate (0-1),
|
---|
[1824] | 629 | i.e., fraction of the figure width or height.
|
---|
[1819] | 630 | The order of elements should be:
|
---|
| 631 | [left, bottom, right, top, horizontal space btw panels,
|
---|
[1824] | 632 | vertical space btw panels].
|
---|
[1819] | 633 | refresh: True (default) or False. If True, the plot is
|
---|
[1824] | 634 | replotted based on the new parameter setting(s).
|
---|
[1819] | 635 | Otherwise,the parameter(s) are set without replotting.
|
---|
| 636 | Note
|
---|
| 637 | * When layout is not specified, the values are reset to the defaults
|
---|
| 638 | of matplotlib.
|
---|
[1824] | 639 | * If any element is set to be None, the current value is adopted.
|
---|
[1819] | 640 | """
|
---|
| 641 | if layout == []: self._panellayout=self._reset_panellayout()
|
---|
[1824] | 642 | else:
|
---|
[1819] | 643 | self._panellayout=[None]*6
|
---|
| 644 | self._panellayout[0:len(layout)]=layout
|
---|
| 645 | #print "panel layout set to ",self._panellayout
|
---|
| 646 | if refresh and self._data: self.plot(self._data)
|
---|
| 647 |
|
---|
| 648 | def _reset_panellayout(self):
|
---|
| 649 | ks=map(lambda x: 'figure.subplot.'+x,
|
---|
| 650 | ['left','bottom','right','top','hspace','wspace'])
|
---|
| 651 | return map(matplotlib.rcParams.get,ks)
|
---|
| 652 |
|
---|
[1259] | 653 | def plot_lines(self, linecat=None, doppler=0.0, deltachan=10, rotate=90.0,
|
---|
[1146] | 654 | location=None):
|
---|
| 655 | """
|
---|
[1158] | 656 | Plot a line catalog.
|
---|
| 657 | Parameters:
|
---|
| 658 | linecat: the linecatalog to plot
|
---|
[1168] | 659 | doppler: the velocity shift to apply to the frequencies
|
---|
[1158] | 660 | deltachan: the number of channels to include each side of the
|
---|
| 661 | line to determine a local maximum/minimum
|
---|
[1927] | 662 | rotate: the rotation (in degrees) for the text label (default 90.0)
|
---|
[1158] | 663 | location: the location of the line annotation from the 'top',
|
---|
| 664 | 'bottom' or alternate (None - the default)
|
---|
[1165] | 665 | Notes:
|
---|
| 666 | If the spectrum is flagged no line will be drawn in that location.
|
---|
[1146] | 667 | """
|
---|
[1259] | 668 | if not self._data:
|
---|
| 669 | raise RuntimeError("No scantable has been plotted yet.")
|
---|
[1146] | 670 | from asap._asap import linecatalog
|
---|
[1259] | 671 | if not isinstance(linecat, linecatalog):
|
---|
| 672 | raise ValueError("'linecat' isn't of type linecatalog.")
|
---|
| 673 | if not self._data.get_unit().endswith("Hz"):
|
---|
| 674 | raise RuntimeError("Can only overlay linecatalogs when data is in frequency.")
|
---|
[1739] | 675 | from numpy import ma
|
---|
[1146] | 676 | for j in range(len(self._plotter.subplots)):
|
---|
| 677 | self._plotter.subplot(j)
|
---|
| 678 | lims = self._plotter.axes.get_xlim()
|
---|
[1153] | 679 | for row in range(linecat.nrow()):
|
---|
[1259] | 680 | # get_frequency returns MHz
|
---|
| 681 | base = { "GHz": 1000.0, "MHz": 1.0, "Hz": 1.0e-6 }
|
---|
| 682 | restf = linecat.get_frequency(row)/base[self._data.get_unit()]
|
---|
[1165] | 683 | c = 299792.458
|
---|
[1174] | 684 | freq = restf*(1.0-doppler/c)
|
---|
[1146] | 685 | if lims[0] < freq < lims[1]:
|
---|
| 686 | if location is None:
|
---|
| 687 | loc = 'bottom'
|
---|
[1153] | 688 | if row%2: loc='top'
|
---|
[1146] | 689 | else: loc = location
|
---|
[1153] | 690 | maxys = []
|
---|
| 691 | for line in self._plotter.axes.lines:
|
---|
| 692 | v = line._x
|
---|
| 693 | asc = v[0] < v[-1]
|
---|
| 694 |
|
---|
| 695 | idx = None
|
---|
| 696 | if not asc:
|
---|
| 697 | if v[len(v)-1] <= freq <= v[0]:
|
---|
| 698 | i = len(v)-1
|
---|
| 699 | while i>=0 and v[i] < freq:
|
---|
| 700 | idx = i
|
---|
| 701 | i-=1
|
---|
| 702 | else:
|
---|
| 703 | if v[0] <= freq <= v[len(v)-1]:
|
---|
| 704 | i = 0
|
---|
| 705 | while i<len(v) and v[i] < freq:
|
---|
| 706 | idx = i
|
---|
| 707 | i+=1
|
---|
| 708 | if idx is not None:
|
---|
| 709 | lower = idx - deltachan
|
---|
| 710 | upper = idx + deltachan
|
---|
| 711 | if lower < 0: lower = 0
|
---|
| 712 | if upper > len(v): upper = len(v)
|
---|
| 713 | s = slice(lower, upper)
|
---|
[1167] | 714 | y = line._y[s]
|
---|
[1165] | 715 | maxy = ma.maximum(y)
|
---|
| 716 | if isinstance( maxy, float):
|
---|
| 717 | maxys.append(maxy)
|
---|
[1164] | 718 | if len(maxys):
|
---|
| 719 | peak = max(maxys)
|
---|
[1165] | 720 | if peak > self._plotter.axes.get_ylim()[1]:
|
---|
| 721 | loc = 'bottom'
|
---|
[1164] | 722 | else:
|
---|
| 723 | continue
|
---|
[1157] | 724 | self._plotter.vline_with_label(freq, peak,
|
---|
| 725 | linecat.get_name(row),
|
---|
| 726 | location=loc, rotate=rotate)
|
---|
[1153] | 727 | self._plotter.show(hardrefresh=False)
|
---|
[1146] | 728 |
|
---|
[1153] | 729 |
|
---|
[710] | 730 | def save(self, filename=None, orientation=None, dpi=None):
|
---|
| 731 | """
|
---|
[1927] | 732 | Save the plot to a file. The known formats are 'png', 'ps', 'eps'.
|
---|
[377] | 733 | Parameters:
|
---|
| 734 | filename: The name of the output file. This is optional
|
---|
| 735 | and autodetects the image format from the file
|
---|
| 736 | suffix. If non filename is specified a file
|
---|
| 737 | called 'yyyymmdd_hhmmss.png' is created in the
|
---|
| 738 | current directory.
|
---|
[709] | 739 | orientation: optional parameter for postscript only (not eps).
|
---|
| 740 | 'landscape', 'portrait' or None (default) are valid.
|
---|
| 741 | If None is choosen for 'ps' output, the plot is
|
---|
| 742 | automatically oriented to fill the page.
|
---|
[710] | 743 | dpi: The dpi of the output non-ps plot
|
---|
[377] | 744 | """
|
---|
[709] | 745 | self._plotter.save(filename,orientation,dpi)
|
---|
[377] | 746 | return
|
---|
[709] | 747 |
|
---|
[1862] | 748 | @asaplog_post_dec
|
---|
[1819] | 749 | def set_mask(self, mask=None, selection=None, refresh=True):
|
---|
[525] | 750 | """
|
---|
[734] | 751 | Set a plotting mask for a specific polarization.
|
---|
| 752 | This is useful for masking out "noise" Pangle outside a source.
|
---|
| 753 | Parameters:
|
---|
[920] | 754 | mask: a mask from scantable.create_mask
|
---|
| 755 | selection: the spectra to apply the mask to.
|
---|
[1819] | 756 | refresh: True (default) or False. If True, the plot is
|
---|
[1824] | 757 | replotted based on the new parameter setting(s).
|
---|
[1819] | 758 | Otherwise,the parameter(s) are set without replotting.
|
---|
[734] | 759 | Example:
|
---|
[920] | 760 | select = selector()
|
---|
| 761 | select.setpolstrings("Pangle")
|
---|
| 762 | plotter.set_mask(mymask, select)
|
---|
[734] | 763 | """
|
---|
[710] | 764 | if not self._data:
|
---|
[920] | 765 | msg = "Can only set mask after a first call to plot()"
|
---|
[1859] | 766 | raise RuntimeError(msg)
|
---|
[920] | 767 | if len(mask):
|
---|
| 768 | if isinstance(mask, list) or isinstance(mask, tuple):
|
---|
| 769 | self._usermask = array(mask)
|
---|
[710] | 770 | else:
|
---|
[920] | 771 | self._usermask = mask
|
---|
| 772 | if mask is None and selection is None:
|
---|
| 773 | self._usermask = []
|
---|
| 774 | self._maskselection = None
|
---|
| 775 | if isinstance(selection, selector):
|
---|
[947] | 776 | self._maskselection = {'b': selection.get_beams(),
|
---|
| 777 | 's': selection.get_scans(),
|
---|
| 778 | 'i': selection.get_ifs(),
|
---|
| 779 | 'p': selection.get_pols(),
|
---|
[920] | 780 | 't': [] }
|
---|
[710] | 781 | else:
|
---|
[920] | 782 | self._maskselection = None
|
---|
[1819] | 783 | if refresh: self.plot(self._data)
|
---|
[710] | 784 |
|
---|
[709] | 785 | def _slice_indeces(self, data):
|
---|
| 786 | mn = self._minmaxx[0]
|
---|
| 787 | mx = self._minmaxx[1]
|
---|
| 788 | asc = data[0] < data[-1]
|
---|
| 789 | start=0
|
---|
| 790 | end = len(data)-1
|
---|
| 791 | inc = 1
|
---|
| 792 | if not asc:
|
---|
| 793 | start = len(data)-1
|
---|
| 794 | end = 0
|
---|
| 795 | inc = -1
|
---|
| 796 | # find min index
|
---|
[1819] | 797 | #while start > 0 and data[start] < mn:
|
---|
| 798 | # start+= inc
|
---|
| 799 | minind=start
|
---|
| 800 | for ind in xrange(start,end+inc,inc):
|
---|
| 801 | if data[ind] > mn: break
|
---|
| 802 | minind=ind
|
---|
[709] | 803 | # find max index
|
---|
[1819] | 804 | #while end > 0 and data[end] > mx:
|
---|
| 805 | # end-=inc
|
---|
| 806 | #if end > 0: end +=1
|
---|
| 807 | maxind=end
|
---|
| 808 | for ind in xrange(end,start-inc,-inc):
|
---|
| 809 | if data[ind] < mx: break
|
---|
| 810 | maxind=ind
|
---|
| 811 | start=minind
|
---|
| 812 | end=maxind
|
---|
[709] | 813 | if start > end:
|
---|
[1819] | 814 | return end,start+1
|
---|
| 815 | elif start < end:
|
---|
| 816 | return start,end+1
|
---|
| 817 | else:
|
---|
| 818 | return start,end
|
---|
[709] | 819 |
|
---|
[710] | 820 | def _reset(self):
|
---|
[920] | 821 | self._usermask = []
|
---|
[710] | 822 | self._usermaskspectra = None
|
---|
[1897] | 823 | self._offset = None
|
---|
[920] | 824 | self.set_selection(None, False)
|
---|
| 825 |
|
---|
| 826 | def _plot(self, scan):
|
---|
[947] | 827 | savesel = scan.get_selection()
|
---|
| 828 | sel = savesel + self._selection
|
---|
[1910] | 829 | order = self._get_sortstring([self._panelling,self._stacking])
|
---|
| 830 | if order:
|
---|
| 831 | sel.set_order(order)
|
---|
[947] | 832 | scan.set_selection(sel)
|
---|
[920] | 833 | d = {'b': scan.getbeam, 's': scan.getscan,
|
---|
[1910] | 834 | 'i': scan.getif, 'p': scan.getpol, 't': scan._gettime,
|
---|
| 835 | 'r': int, '_r': int}
|
---|
[920] | 836 |
|
---|
[1148] | 837 | polmodes = dict(zip(self._selection.get_pols(),
|
---|
| 838 | self._selection.get_poltypes()))
|
---|
| 839 | # this returns either a tuple of numbers or a length (ncycles)
|
---|
| 840 | # convert this into lengths
|
---|
| 841 | n0,nstack0 = self._get_selected_n(scan)
|
---|
| 842 | if isinstance(n0, int): n = n0
|
---|
[1175] | 843 | else: n = len(n0)
|
---|
[1148] | 844 | if isinstance(nstack0, int): nstack = nstack0
|
---|
[1175] | 845 | else: nstack = len(nstack0)
|
---|
[1913] | 846 | nptot = n
|
---|
[1582] | 847 | maxpanel, maxstack = 16,16
|
---|
[1913] | 848 | if nstack > maxstack:
|
---|
| 849 | msg ="Scan to be overlayed contains more than %d selections.\n" \
|
---|
| 850 | "Selecting first %d selections..." % (maxstack, maxstack)
|
---|
[920] | 851 | asaplog.push(msg)
|
---|
[1861] | 852 | asaplog.post('WARN')
|
---|
[998] | 853 | nstack = min(nstack,maxstack)
|
---|
[1913] | 854 | n = min(n,maxpanel)
|
---|
[1910] | 855 |
|
---|
[920] | 856 | if n > 1:
|
---|
| 857 | ganged = rcParams['plotter.ganged']
|
---|
[1819] | 858 | if self._panelling == 'i':
|
---|
| 859 | ganged = False
|
---|
[920] | 860 | if self._rows and self._cols:
|
---|
| 861 | n = min(n,self._rows*self._cols)
|
---|
| 862 | self._plotter.set_panels(rows=self._rows,cols=self._cols,
|
---|
[1819] | 863 | # nplots=n,ganged=ganged)
|
---|
| 864 | nplots=n,layout=self._panellayout,ganged=ganged)
|
---|
[920] | 865 | else:
|
---|
[1819] | 866 | # self._plotter.set_panels(rows=n,cols=0,nplots=n,ganged=ganged)
|
---|
| 867 | self._plotter.set_panels(rows=n,cols=0,nplots=n,layout=self._panellayout,ganged=ganged)
|
---|
[920] | 868 | else:
|
---|
[1819] | 869 | # self._plotter.set_panels()
|
---|
| 870 | self._plotter.set_panels(layout=self._panellayout)
|
---|
[1913] | 871 | #r = 0
|
---|
| 872 | r = self._rowcount
|
---|
[920] | 873 | nr = scan.nrow()
|
---|
| 874 | a0,b0 = -1,-1
|
---|
| 875 | allxlim = []
|
---|
[1018] | 876 | allylim = []
|
---|
[920] | 877 | newpanel=True
|
---|
| 878 | panelcount,stackcount = 0,0
|
---|
[1002] | 879 | while r < nr:
|
---|
[920] | 880 | a = d[self._panelling](r)
|
---|
| 881 | b = d[self._stacking](r)
|
---|
| 882 | if a > a0 and panelcount < n:
|
---|
| 883 | if n > 1:
|
---|
| 884 | self._plotter.subplot(panelcount)
|
---|
| 885 | self._plotter.palette(0)
|
---|
| 886 | #title
|
---|
| 887 | xlab = self._abcissa and self._abcissa[panelcount] \
|
---|
| 888 | or scan._getabcissalabel()
|
---|
[1897] | 889 | if self._offset and not self._abcissa:
|
---|
| 890 | xlab += " (relative)"
|
---|
[920] | 891 | ylab = self._ordinate and self._ordinate[panelcount] \
|
---|
| 892 | or scan._get_ordinate_label()
|
---|
[1547] | 893 | self._plotter.set_axes('xlabel', xlab)
|
---|
| 894 | self._plotter.set_axes('ylabel', ylab)
|
---|
[920] | 895 | lbl = self._get_label(scan, r, self._panelling, self._title)
|
---|
[1913] | 896 | #if self._panelling == 'r': lbl = ''
|
---|
[920] | 897 | if isinstance(lbl, list) or isinstance(lbl, tuple):
|
---|
| 898 | if 0 <= panelcount < len(lbl):
|
---|
| 899 | lbl = lbl[panelcount]
|
---|
| 900 | else:
|
---|
| 901 | # get default label
|
---|
| 902 | lbl = self._get_label(scan, r, self._panelling, None)
|
---|
| 903 | self._plotter.set_axes('title',lbl)
|
---|
| 904 | newpanel = True
|
---|
[1913] | 905 | stackcount = 0
|
---|
[920] | 906 | panelcount += 1
|
---|
[1944] | 907 | #if (b > b0 or newpanel) and stackcount < nstack:
|
---|
| 908 | if stackcount < nstack and (newpanel or (a == a0 and b > b0)):
|
---|
[920] | 909 | y = []
|
---|
| 910 | if len(polmodes):
|
---|
| 911 | y = scan._getspectrum(r, polmodes[scan.getpol(r)])
|
---|
| 912 | else:
|
---|
| 913 | y = scan._getspectrum(r)
|
---|
| 914 | m = scan._getmask(r)
|
---|
[1739] | 915 | from numpy import logical_not, logical_and
|
---|
[920] | 916 | if self._maskselection and len(self._usermask) == len(m):
|
---|
| 917 | if d[self._stacking](r) in self._maskselection[self._stacking]:
|
---|
| 918 | m = logical_and(m, self._usermask)
|
---|
[1739] | 919 | from numpy import ma, array
|
---|
[1897] | 920 | x = array(scan._getabcissa(r))
|
---|
| 921 | if self._offset:
|
---|
| 922 | x += self._offset
|
---|
[1116] | 923 | y = ma.masked_array(y,mask=logical_not(array(m,copy=False)))
|
---|
[920] | 924 | if self._minmaxx is not None:
|
---|
| 925 | s,e = self._slice_indeces(x)
|
---|
| 926 | x = x[s:e]
|
---|
| 927 | y = y[s:e]
|
---|
[1096] | 928 | if len(x) > 1024 and rcParams['plotter.decimate']:
|
---|
| 929 | fac = len(x)/1024
|
---|
[920] | 930 | x = x[::fac]
|
---|
| 931 | y = y[::fac]
|
---|
| 932 | llbl = self._get_label(scan, r, self._stacking, self._lmap)
|
---|
| 933 | if isinstance(llbl, list) or isinstance(llbl, tuple):
|
---|
| 934 | if 0 <= stackcount < len(llbl):
|
---|
| 935 | # use user label
|
---|
| 936 | llbl = llbl[stackcount]
|
---|
| 937 | else:
|
---|
| 938 | # get default label
|
---|
| 939 | llbl = self._get_label(scan, r, self._stacking, None)
|
---|
| 940 | self._plotter.set_line(label=llbl)
|
---|
[1023] | 941 | plotit = self._plotter.plot
|
---|
| 942 | if self._hist: plotit = self._plotter.hist
|
---|
[1146] | 943 | if len(x) > 0:
|
---|
| 944 | plotit(x,y)
|
---|
| 945 | xlim= self._minmaxx or [min(x),max(x)]
|
---|
| 946 | allxlim += xlim
|
---|
| 947 | ylim= self._minmaxy or [ma.minimum(y),ma.maximum(y)]
|
---|
| 948 | allylim += ylim
|
---|
[1819] | 949 | else:
|
---|
| 950 | xlim = self._minmaxx or []
|
---|
| 951 | allxlim += xlim
|
---|
| 952 | ylim= self._minmaxy or []
|
---|
| 953 | allylim += ylim
|
---|
[920] | 954 | stackcount += 1
|
---|
| 955 | # last in colour stack -> autoscale x
|
---|
[1819] | 956 | if stackcount == nstack and len(allxlim) > 0:
|
---|
[920] | 957 | allxlim.sort()
|
---|
[1819] | 958 | self._plotter.subplots[panelcount-1]['axes'].set_xlim([allxlim[0],allxlim[-1]])
|
---|
[920] | 959 | # clear
|
---|
| 960 | allxlim =[]
|
---|
| 961 |
|
---|
| 962 | newpanel = False
|
---|
| 963 | a0=a
|
---|
| 964 | b0=b
|
---|
| 965 | # ignore following rows
|
---|
| 966 | if (panelcount == n) and (stackcount == nstack):
|
---|
[1018] | 967 | # last panel -> autoscale y if ganged
|
---|
[1819] | 968 | if rcParams['plotter.ganged'] and len(allylim) > 0:
|
---|
[1018] | 969 | allylim.sort()
|
---|
| 970 | self._plotter.set_limits(ylim=[allylim[0],allylim[-1]])
|
---|
[998] | 971 | break
|
---|
[920] | 972 | r+=1 # next row
|
---|
[1910] | 973 | ###-S
|
---|
[1913] | 974 | self._rowcount = r+1
|
---|
| 975 | self._panelcnt += panelcount
|
---|
| 976 | if self._plotter.figmgr.casabar:
|
---|
| 977 | if self._panelcnt >= nptot-1:
|
---|
| 978 | self._plotter.figmgr.casabar.disable_next()
|
---|
| 979 | else:
|
---|
| 980 | self._plotter.figmgr.casabar.enable_next()
|
---|
| 981 | #if self._panelcnt - panelcount > 0:
|
---|
| 982 | # self._plotter.figmgr.casabar.enable_prev()
|
---|
| 983 | #else:
|
---|
| 984 | # self._plotter.figmgr.casabar.disable_prev()
|
---|
[1910] | 985 | ###-E
|
---|
[947] | 986 | #reset the selector to the scantable's original
|
---|
| 987 | scan.set_selection(savesel)
|
---|
[1824] | 988 |
|
---|
[1819] | 989 | #temporary switch-off for older matplotlib
|
---|
| 990 | #if self._fp is not None:
|
---|
| 991 | if self._fp is not None and getattr(self._plotter.figure,'findobj',False):
|
---|
[1556] | 992 | for o in self._plotter.figure.findobj(Text):
|
---|
| 993 | o.set_fontproperties(self._fp)
|
---|
[920] | 994 |
|
---|
[1910] | 995 | def _get_sortstring(self, lorders):
|
---|
| 996 | d0 = {'s': 'SCANNO', 'b': 'BEAMNO', 'i':'IFNO',
|
---|
| 997 | 'p': 'POLNO', 'c': 'CYCLENO', 't' : 'TIME', 'r':None, '_r':None }
|
---|
[1944] | 998 | if not (type(lorders) == list) and not (type(lorders) == tuple):
|
---|
[1910] | 999 | return None
|
---|
| 1000 | if len(lorders) > 0:
|
---|
| 1001 | lsorts = []
|
---|
| 1002 | for order in lorders:
|
---|
| 1003 | ssort = d0[order]
|
---|
| 1004 | if ssort:
|
---|
| 1005 | lsorts.append(ssort)
|
---|
| 1006 | return lsorts
|
---|
| 1007 | return None
|
---|
| 1008 |
|
---|
[1582] | 1009 | def set_selection(self, selection=None, refresh=True, **kw):
|
---|
[1819] | 1010 | """
|
---|
| 1011 | Parameters:
|
---|
| 1012 | selection: a selector object (default unset the selection)
|
---|
| 1013 | refresh: True (default) or False. If True, the plot is
|
---|
[1824] | 1014 | replotted based on the new parameter setting(s).
|
---|
[1819] | 1015 | Otherwise,the parameter(s) are set without replotting.
|
---|
| 1016 | """
|
---|
[1582] | 1017 | if selection is None:
|
---|
| 1018 | # reset
|
---|
| 1019 | if len(kw) == 0:
|
---|
| 1020 | self._selection = selector()
|
---|
| 1021 | else:
|
---|
| 1022 | # try keywords
|
---|
| 1023 | for k in kw:
|
---|
| 1024 | if k not in selector.fields:
|
---|
| 1025 | raise KeyError("Invalid selection key '%s', valid keys are %s" % (k, selector.fields))
|
---|
| 1026 | self._selection = selector(**kw)
|
---|
| 1027 | elif isinstance(selection, selector):
|
---|
| 1028 | self._selection = selection
|
---|
| 1029 | else:
|
---|
| 1030 | raise TypeError("'selection' is not of type selector")
|
---|
| 1031 |
|
---|
[1910] | 1032 | order = self._get_sortstring([self._panelling,self._stacking])
|
---|
| 1033 | if order:
|
---|
| 1034 | self._selection.set_order(order)
|
---|
[1819] | 1035 | if refresh and self._data: self.plot(self._data)
|
---|
[920] | 1036 |
|
---|
| 1037 | def _get_selected_n(self, scan):
|
---|
[1148] | 1038 | d1 = {'b': scan.getbeamnos, 's': scan.getscannos,
|
---|
[1910] | 1039 | 'i': scan.getifnos, 'p': scan.getpolnos, 't': scan.ncycle,
|
---|
| 1040 | 'r': scan.nrow, '_r': False}
|
---|
[1148] | 1041 | d2 = { 'b': self._selection.get_beams(),
|
---|
| 1042 | 's': self._selection.get_scans(),
|
---|
| 1043 | 'i': self._selection.get_ifs(),
|
---|
| 1044 | 'p': self._selection.get_pols(),
|
---|
[1910] | 1045 | 't': self._selection.get_cycles(),
|
---|
| 1046 | 'r': False, '_r': 1}
|
---|
[920] | 1047 | n = d2[self._panelling] or d1[self._panelling]()
|
---|
| 1048 | nstack = d2[self._stacking] or d1[self._stacking]()
|
---|
| 1049 | return n,nstack
|
---|
| 1050 |
|
---|
| 1051 | def _get_label(self, scan, row, mode, userlabel=None):
|
---|
[1153] | 1052 | if isinstance(userlabel, list) and len(userlabel) == 0:
|
---|
| 1053 | userlabel = " "
|
---|
[947] | 1054 | pms = dict(zip(self._selection.get_pols(),self._selection.get_poltypes()))
|
---|
[920] | 1055 | if len(pms):
|
---|
| 1056 | poleval = scan._getpollabel(scan.getpol(row),pms[scan.getpol(row)])
|
---|
| 1057 | else:
|
---|
| 1058 | poleval = scan._getpollabel(scan.getpol(row),scan.poltype())
|
---|
| 1059 | d = {'b': "Beam "+str(scan.getbeam(row)),
|
---|
[1819] | 1060 | #'s': scan._getsourcename(row),
|
---|
| 1061 | 's': "Scan "+str(scan.getscan(row))+\
|
---|
| 1062 | " ("+str(scan._getsourcename(row))+")",
|
---|
[920] | 1063 | 'i': "IF"+str(scan.getif(row)),
|
---|
[964] | 1064 | 'p': poleval,
|
---|
[1910] | 1065 | 't': str(scan.get_time(row)),
|
---|
| 1066 | 'r': "row "+str(row),
|
---|
[1913] | 1067 | #'_r': str(scan.get_time(row))+",\nIF"+str(scan.getif(row))+", "+poleval+", Beam"+str(scan.getbeam(row)) }
|
---|
| 1068 | '_r': "" }
|
---|
[920] | 1069 | return userlabel or d[mode]
|
---|
[1153] | 1070 |
|
---|
[1819] | 1071 | def plotazel(self, scan=None, outfile=None):
|
---|
[1391] | 1072 | """
|
---|
[1696] | 1073 | plot azimuth and elevation versus time of a scantable
|
---|
[1391] | 1074 | """
|
---|
[1923] | 1075 | visible = rcParams['plotter.gui']
|
---|
[1696] | 1076 | from matplotlib import pylab as PL
|
---|
| 1077 | from matplotlib.dates import DateFormatter, timezone
|
---|
| 1078 | from matplotlib.dates import HourLocator, MinuteLocator,SecondLocator, DayLocator
|
---|
[1391] | 1079 | from matplotlib.ticker import MultipleLocator
|
---|
[1739] | 1080 | from numpy import array, pi
|
---|
[1923] | 1081 | if not visible or not self._visible:
|
---|
| 1082 | PL.ioff()
|
---|
| 1083 | from matplotlib.backends.backend_agg import FigureCanvasAgg
|
---|
| 1084 | PL.gcf().canvas.switch_backends(FigureCanvasAgg)
|
---|
[1819] | 1085 | self._data = scan
|
---|
| 1086 | self._outfile = outfile
|
---|
[1556] | 1087 | dates = self._data.get_time(asdatetime=True)
|
---|
[1391] | 1088 | t = PL.date2num(dates)
|
---|
| 1089 | tz = timezone('UTC')
|
---|
| 1090 | PL.cla()
|
---|
| 1091 | PL.ioff()
|
---|
| 1092 | PL.clf()
|
---|
[1819] | 1093 | # Adjust subplot layouts
|
---|
[1923] | 1094 | if len(self._panellayout) != 6:
|
---|
| 1095 | self.set_panellayout(refresh=False)
|
---|
[1819] | 1096 | lef, bot, rig, top, wsp, hsp = self._panellayout
|
---|
| 1097 | PL.gcf().subplots_adjust(left=lef,bottom=bot,right=rig,top=top,
|
---|
| 1098 | wspace=wsp,hspace=hsp)
|
---|
[1824] | 1099 |
|
---|
[1391] | 1100 | tdel = max(t) - min(t)
|
---|
| 1101 | ax = PL.subplot(2,1,1)
|
---|
| 1102 | el = array(self._data.get_elevation())*180./pi
|
---|
| 1103 | PL.ylabel('El [deg.]')
|
---|
| 1104 | dstr = dates[0].strftime('%Y/%m/%d')
|
---|
| 1105 | if tdel > 1.0:
|
---|
| 1106 | dstr2 = dates[len(dates)-1].strftime('%Y/%m/%d')
|
---|
| 1107 | dstr = dstr + " - " + dstr2
|
---|
| 1108 | majloc = DayLocator()
|
---|
| 1109 | minloc = HourLocator(range(0,23,12))
|
---|
| 1110 | timefmt = DateFormatter("%b%d")
|
---|
[1696] | 1111 | elif tdel > 24./60.:
|
---|
| 1112 | timefmt = DateFormatter('%H:%M')
|
---|
| 1113 | majloc = HourLocator()
|
---|
| 1114 | minloc = MinuteLocator(30)
|
---|
[1391] | 1115 | else:
|
---|
[1696] | 1116 | timefmt = DateFormatter('%H:%M')
|
---|
| 1117 | majloc = MinuteLocator(interval=5)
|
---|
| 1118 | minloc = SecondLocator(30)
|
---|
| 1119 |
|
---|
[1391] | 1120 | PL.title(dstr)
|
---|
[1819] | 1121 | if tdel == 0.0:
|
---|
| 1122 | th = (t - PL.floor(t))*24.0
|
---|
| 1123 | PL.plot(th,el,'o',markersize=2, markerfacecolor='b', markeredgecolor='b')
|
---|
| 1124 | else:
|
---|
| 1125 | PL.plot_date(t,el,'o', markersize=2, markerfacecolor='b', markeredgecolor='b',tz=tz)
|
---|
| 1126 | #ax.grid(True)
|
---|
| 1127 | ax.xaxis.set_major_formatter(timefmt)
|
---|
| 1128 | ax.xaxis.set_major_locator(majloc)
|
---|
| 1129 | ax.xaxis.set_minor_locator(minloc)
|
---|
[1391] | 1130 | ax.yaxis.grid(True)
|
---|
[1819] | 1131 | yloc = MultipleLocator(30)
|
---|
| 1132 | ax.set_ylim(0,90)
|
---|
| 1133 | ax.yaxis.set_major_locator(yloc)
|
---|
[1391] | 1134 | if tdel > 1.0:
|
---|
| 1135 | labels = ax.get_xticklabels()
|
---|
| 1136 | # PL.setp(labels, fontsize=10, rotation=45)
|
---|
| 1137 | PL.setp(labels, fontsize=10)
|
---|
[1819] | 1138 |
|
---|
[1391] | 1139 | # Az plot
|
---|
| 1140 | az = array(self._data.get_azimuth())*180./pi
|
---|
| 1141 | if min(az) < 0:
|
---|
| 1142 | for irow in range(len(az)):
|
---|
| 1143 | if az[irow] < 0: az[irow] += 360.0
|
---|
| 1144 |
|
---|
[1819] | 1145 | ax2 = PL.subplot(2,1,2)
|
---|
| 1146 | #PL.xlabel('Time (UT [hour])')
|
---|
| 1147 | PL.ylabel('Az [deg.]')
|
---|
| 1148 | if tdel == 0.0:
|
---|
| 1149 | PL.plot(th,az,'o',markersize=2, markeredgecolor='b',markerfacecolor='b')
|
---|
| 1150 | else:
|
---|
| 1151 | PL.plot_date(t,az,'o', markersize=2,markeredgecolor='b',markerfacecolor='b',tz=tz)
|
---|
| 1152 | ax2.xaxis.set_major_formatter(timefmt)
|
---|
| 1153 | ax2.xaxis.set_major_locator(majloc)
|
---|
| 1154 | ax2.xaxis.set_minor_locator(minloc)
|
---|
| 1155 | #ax2.grid(True)
|
---|
| 1156 | ax2.set_ylim(0,360)
|
---|
[1696] | 1157 | ax2.yaxis.grid(True)
|
---|
[1819] | 1158 | #hfmt = DateFormatter('%H')
|
---|
| 1159 | #hloc = HourLocator()
|
---|
| 1160 | yloc = MultipleLocator(60)
|
---|
| 1161 | ax2.yaxis.set_major_locator(yloc)
|
---|
| 1162 | if tdel > 1.0:
|
---|
| 1163 | labels = ax2.get_xticklabels()
|
---|
| 1164 | PL.setp(labels, fontsize=10)
|
---|
| 1165 | PL.xlabel('Time (UT [day])')
|
---|
| 1166 | else:
|
---|
| 1167 | PL.xlabel('Time (UT [hour])')
|
---|
| 1168 |
|
---|
[1391] | 1169 | PL.ion()
|
---|
| 1170 | PL.draw()
|
---|
[1819] | 1171 | if (self._outfile is not None):
|
---|
| 1172 | PL.savefig(self._outfile)
|
---|
[1391] | 1173 |
|
---|
[1819] | 1174 | def plotpointing(self, scan=None, outfile=None):
|
---|
[1391] | 1175 | """
|
---|
| 1176 | plot telescope pointings
|
---|
| 1177 | """
|
---|
[1923] | 1178 | visible = rcParams['plotter.gui']
|
---|
[1696] | 1179 | from matplotlib import pylab as PL
|
---|
[1819] | 1180 | from numpy import array, pi
|
---|
[1923] | 1181 | if not visible or not self._visible:
|
---|
| 1182 | PL.ioff()
|
---|
| 1183 | from matplotlib.backends.backend_agg import FigureCanvasAgg
|
---|
| 1184 | PL.gcf().canvas.switch_backends(FigureCanvasAgg)
|
---|
[1819] | 1185 | self._data = scan
|
---|
| 1186 | self._outfile = outfile
|
---|
[1391] | 1187 | dir = array(self._data.get_directionval()).transpose()
|
---|
| 1188 | ra = dir[0]*180./pi
|
---|
| 1189 | dec = dir[1]*180./pi
|
---|
| 1190 | PL.cla()
|
---|
[1819] | 1191 | #PL.ioff()
|
---|
[1391] | 1192 | PL.clf()
|
---|
[1819] | 1193 | # Adjust subplot layouts
|
---|
[1923] | 1194 | if len(self._panellayout) != 6:
|
---|
| 1195 | self.set_panellayout(refresh=False)
|
---|
[1819] | 1196 | lef, bot, rig, top, wsp, hsp = self._panellayout
|
---|
| 1197 | PL.gcf().subplots_adjust(left=lef,bottom=bot,right=rig,top=top,
|
---|
| 1198 | wspace=wsp,hspace=hsp)
|
---|
| 1199 | ax = PL.gca()
|
---|
| 1200 | #ax = PL.axes([0.1,0.1,0.8,0.8])
|
---|
| 1201 | #ax = PL.axes([0.1,0.1,0.8,0.8])
|
---|
[1391] | 1202 | ax.set_aspect('equal')
|
---|
[1696] | 1203 | PL.plot(ra, dec, 'b,')
|
---|
[1391] | 1204 | PL.xlabel('RA [deg.]')
|
---|
| 1205 | PL.ylabel('Declination [deg.]')
|
---|
| 1206 | PL.title('Telescope pointings')
|
---|
| 1207 | [xmin,xmax,ymin,ymax] = PL.axis()
|
---|
| 1208 | PL.axis([xmax,xmin,ymin,ymax])
|
---|
[1819] | 1209 | #PL.ion()
|
---|
[1391] | 1210 | PL.draw()
|
---|
[1819] | 1211 | if (self._outfile is not None):
|
---|
| 1212 | PL.savefig(self._outfile)
|
---|
| 1213 |
|
---|
| 1214 | # plot total power data
|
---|
| 1215 | # plotting in time is not yet implemented..
|
---|
[1862] | 1216 | @asaplog_post_dec
|
---|
[1819] | 1217 | def plottp(self, scan=None, outfile=None):
|
---|
| 1218 | if self._plotter.is_dead:
|
---|
| 1219 | if hasattr(self._plotter.figmgr,'casabar'):
|
---|
| 1220 | del self._plotter.figmgr.casabar
|
---|
| 1221 | self._plotter = self._newplotter()
|
---|
| 1222 | self._plotter.figmgr.casabar=self._newcasabar()
|
---|
| 1223 | self._plotter.hold()
|
---|
| 1224 | self._plotter.clear()
|
---|
| 1225 | from asap import scantable
|
---|
| 1226 | if not self._data and not scan:
|
---|
| 1227 | msg = "Input is not a scantable"
|
---|
| 1228 | raise TypeError(msg)
|
---|
| 1229 | if isinstance(scan, scantable):
|
---|
| 1230 | if self._data is not None:
|
---|
| 1231 | if scan != self._data:
|
---|
| 1232 | self._data = scan
|
---|
| 1233 | # reset
|
---|
| 1234 | self._reset()
|
---|
| 1235 | else:
|
---|
| 1236 | self._data = scan
|
---|
| 1237 | self._reset()
|
---|
| 1238 | # ranges become invalid when abcissa changes?
|
---|
| 1239 | #if self._abcunit and self._abcunit != self._data.get_unit():
|
---|
| 1240 | # self._minmaxx = None
|
---|
| 1241 | # self._minmaxy = None
|
---|
| 1242 | # self._abcunit = self._data.get_unit()
|
---|
| 1243 | # self._datamask = None
|
---|
| 1244 |
|
---|
| 1245 | # Adjust subplot layouts
|
---|
| 1246 | if len(self._panellayout) !=6: self.set_panellayout(refresh=False)
|
---|
| 1247 | lef, bot, rig, top, wsp, hsp = self._panellayout
|
---|
| 1248 | self._plotter.figure.subplots_adjust(
|
---|
| 1249 | left=lef,bottom=bot,right=rig,top=top,wspace=wsp,hspace=hsp)
|
---|
| 1250 | if self._plotter.figmgr.casabar: self._plotter.figmgr.casabar.disable_button()
|
---|
| 1251 | self._plottp(self._data)
|
---|
| 1252 | if self._minmaxy is not None:
|
---|
| 1253 | self._plotter.set_limits(ylim=self._minmaxy)
|
---|
| 1254 | self._plotter.release()
|
---|
| 1255 | self._plotter.tidy()
|
---|
| 1256 | self._plotter.show(hardrefresh=False)
|
---|
| 1257 | return
|
---|
| 1258 |
|
---|
| 1259 | def _plottp(self,scan):
|
---|
| 1260 | """
|
---|
| 1261 | private method for plotting total power data
|
---|
| 1262 | """
|
---|
| 1263 | from numpy import ma, array, arange, logical_not
|
---|
| 1264 | r=0
|
---|
| 1265 | nr = scan.nrow()
|
---|
| 1266 | a0,b0 = -1,-1
|
---|
| 1267 | allxlim = []
|
---|
| 1268 | allylim = []
|
---|
| 1269 | y=[]
|
---|
| 1270 | self._plotter.set_panels()
|
---|
| 1271 | self._plotter.palette(0)
|
---|
| 1272 | #title
|
---|
| 1273 | #xlab = self._abcissa and self._abcissa[panelcount] \
|
---|
| 1274 | # or scan._getabcissalabel()
|
---|
| 1275 | #ylab = self._ordinate and self._ordinate[panelcount] \
|
---|
| 1276 | # or scan._get_ordinate_label()
|
---|
| 1277 | xlab = self._abcissa or 'row number' #or Time
|
---|
| 1278 | ylab = self._ordinate or scan._get_ordinate_label()
|
---|
| 1279 | self._plotter.set_axes('xlabel',xlab)
|
---|
| 1280 | self._plotter.set_axes('ylabel',ylab)
|
---|
| 1281 | lbl = self._get_label(scan, r, 's', self._title)
|
---|
| 1282 | if isinstance(lbl, list) or isinstance(lbl, tuple):
|
---|
| 1283 | # if 0 <= panelcount < len(lbl):
|
---|
| 1284 | # lbl = lbl[panelcount]
|
---|
| 1285 | # else:
|
---|
| 1286 | # get default label
|
---|
| 1287 | lbl = self._get_label(scan, r, self._panelling, None)
|
---|
| 1288 | self._plotter.set_axes('title',lbl)
|
---|
| 1289 | y=array(scan._get_column(scan._getspectrum,-1))
|
---|
| 1290 | m = array(scan._get_column(scan._getmask,-1))
|
---|
| 1291 | y = ma.masked_array(y,mask=logical_not(array(m,copy=False)))
|
---|
| 1292 | x = arange(len(y))
|
---|
| 1293 | # try to handle spectral data somewhat...
|
---|
| 1294 | l,m = y.shape
|
---|
| 1295 | if m > 1:
|
---|
| 1296 | y=y.mean(axis=1)
|
---|
| 1297 | plotit = self._plotter.plot
|
---|
| 1298 | llbl = self._get_label(scan, r, self._stacking, None)
|
---|
| 1299 | self._plotter.set_line(label=llbl)
|
---|
| 1300 | if len(x) > 0:
|
---|
| 1301 | plotit(x,y)
|
---|
| 1302 |
|
---|
| 1303 |
|
---|
| 1304 | # forwards to matplotlib.Figure.text
|
---|
| 1305 | def figtext(self, *args, **kwargs):
|
---|
| 1306 | """
|
---|
| 1307 | Add text to figure at location x,y (relative 0-1 coords).
|
---|
| 1308 | This method forwards *args and **kwargs to a Matplotlib method,
|
---|
| 1309 | matplotlib.Figure.text.
|
---|
| 1310 | See the method help for detailed information.
|
---|
| 1311 | """
|
---|
| 1312 | self._plotter.text(*args, **kwargs)
|
---|
| 1313 | # end matplotlib.Figure.text forwarding function
|
---|
| 1314 |
|
---|
| 1315 |
|
---|
| 1316 | # printing header information
|
---|
[1862] | 1317 | @asaplog_post_dec
|
---|
[1819] | 1318 | def print_header(self, plot=True, fontsize=9, logger=False, selstr='', extrastr=''):
|
---|
| 1319 | """
|
---|
| 1320 | print data (scantable) header on the plot and/or logger.
|
---|
| 1321 | Parameters:
|
---|
[1824] | 1322 | plot: whether or not print header info on the plot.
|
---|
[1819] | 1323 | fontsize: header font size (valid only plot=True)
|
---|
| 1324 | logger: whether or not print header info on the logger.
|
---|
| 1325 | selstr: additional selection string (not verified)
|
---|
| 1326 | extrastr: additional string to print (not verified)
|
---|
| 1327 | """
|
---|
[1859] | 1328 | if not plot and not logger:
|
---|
| 1329 | return
|
---|
| 1330 | if not self._data:
|
---|
| 1331 | raise RuntimeError("No scantable has been set yet.")
|
---|
[1824] | 1332 | # Now header will be printed on plot and/or logger.
|
---|
| 1333 | # Get header information and format it.
|
---|
[1819] | 1334 | ssum=self._data.__str__()
|
---|
| 1335 | # Print Observation header to the upper-left corner of plot
|
---|
| 1336 | if plot:
|
---|
| 1337 | headstr=[ssum[ssum.find('Observer:'):ssum.find('Flux Unit:')]]
|
---|
| 1338 | headstr.append(ssum[ssum.find('Beams:'):ssum.find('Observer:')]
|
---|
| 1339 | +ssum[ssum.find('Rest Freqs:'):ssum.find('Abcissa:')])
|
---|
| 1340 | if extrastr != '': headstr[0]=extrastr+'\n'+headstr[0]
|
---|
| 1341 | #headstr[1]='Data File: '+(filestr or 'unknown')+'\n'+headstr[1]
|
---|
| 1342 | ssel='***Selections***\n'+(selstr+self._data.get_selection().__str__() or 'none')
|
---|
| 1343 | headstr.append(ssel)
|
---|
| 1344 | nstcol=len(headstr)
|
---|
[1824] | 1345 |
|
---|
[1819] | 1346 | self._plotter.hold()
|
---|
| 1347 | for i in range(nstcol):
|
---|
| 1348 | self._plotter.figure.text(0.03+float(i)/nstcol,0.98,
|
---|
| 1349 | headstr[i],
|
---|
| 1350 | horizontalalignment='left',
|
---|
| 1351 | verticalalignment='top',
|
---|
| 1352 | fontsize=fontsize)
|
---|
| 1353 | import time
|
---|
| 1354 | self._plotter.figure.text(0.99,0.0,
|
---|
| 1355 | time.strftime("%a %d %b %Y %H:%M:%S %Z"),
|
---|
| 1356 | horizontalalignment='right',
|
---|
| 1357 | verticalalignment='bottom',fontsize=8)
|
---|
| 1358 | self._plotter.release()
|
---|
| 1359 | del headstr, ssel
|
---|
| 1360 | if logger:
|
---|
| 1361 | asaplog.push("----------------\n Plot Summary\n----------------")
|
---|
| 1362 | asaplog.push(extrastr)
|
---|
| 1363 | asaplog.push(ssum[ssum.find('Beams:'):])
|
---|
| 1364 | del ssum
|
---|