[1547] | 1 | from asap import rcParams, print_log, selector, scantable
|
---|
[1153] | 2 | import matplotlib.axes
|
---|
[1556] | 3 | from matplotlib.font_manager import FontProperties
|
---|
| 4 | from matplotlib.text import Text
|
---|
| 5 |
|
---|
[1317] | 6 | import re
|
---|
[203] | 7 |
|
---|
| 8 | class asapplotter:
|
---|
[226] | 9 | """
|
---|
| 10 | The ASAP plotter.
|
---|
| 11 | By default the plotter is set up to plot polarisations
|
---|
| 12 | 'colour stacked' and scantables across panels.
|
---|
| 13 | Note:
|
---|
| 14 | Currenly it only plots 'spectra' not Tsys or
|
---|
| 15 | other variables.
|
---|
| 16 | """
|
---|
[1563] | 17 | def __init__(self, visible=None , **kwargs):
|
---|
[734] | 18 | self._visible = rcParams['plotter.gui']
|
---|
| 19 | if visible is not None:
|
---|
| 20 | self._visible = visible
|
---|
[1563] | 21 | self._plotter = self._newplotter(**kwargs)
|
---|
[710] | 22 |
|
---|
[554] | 23 | self._panelling = None
|
---|
| 24 | self._stacking = None
|
---|
| 25 | self.set_panelling()
|
---|
| 26 | self.set_stacking()
|
---|
[377] | 27 | self._rows = None
|
---|
| 28 | self._cols = None
|
---|
[203] | 29 | self._autoplot = False
|
---|
[525] | 30 | self._minmaxx = None
|
---|
| 31 | self._minmaxy = None
|
---|
[710] | 32 | self._datamask = None
|
---|
[203] | 33 | self._data = None
|
---|
[607] | 34 | self._lmap = None
|
---|
[226] | 35 | self._title = None
|
---|
[257] | 36 | self._ordinate = None
|
---|
| 37 | self._abcissa = None
|
---|
[709] | 38 | self._abcunit = None
|
---|
[920] | 39 | self._usermask = []
|
---|
| 40 | self._maskselection = None
|
---|
| 41 | self._selection = selector()
|
---|
[1023] | 42 | self._hist = rcParams['plotter.histogram']
|
---|
[1556] | 43 | self._fp = FontProperties()
|
---|
[1023] | 44 |
|
---|
[920] | 45 | def _translate(self, instr):
|
---|
| 46 | keys = "s b i p t".split()
|
---|
| 47 | if isinstance(instr, str):
|
---|
| 48 | for key in keys:
|
---|
| 49 | if instr.lower().startswith(key):
|
---|
| 50 | return key
|
---|
| 51 | return None
|
---|
| 52 |
|
---|
[1563] | 53 | def _newplotter(self, **kwargs):
|
---|
[710] | 54 | if self._visible:
|
---|
| 55 | from asap.asaplotgui import asaplotgui as asaplot
|
---|
| 56 | else:
|
---|
| 57 | from asap.asaplot import asaplot
|
---|
[1563] | 58 | return asaplot(**kwargs)
|
---|
[710] | 59 |
|
---|
| 60 |
|
---|
[935] | 61 | def plot(self, scan=None):
|
---|
[203] | 62 | """
|
---|
[920] | 63 | Plot a scantable.
|
---|
[203] | 64 | Parameters:
|
---|
[920] | 65 | scan: a scantable
|
---|
[203] | 66 | Note:
|
---|
[920] | 67 | If a scantable was specified in a previous call
|
---|
[203] | 68 | to plot, no argument has to be given to 'replot'
|
---|
[920] | 69 | NO checking is done that the abcissas of the scantable
|
---|
[203] | 70 | are consistent e.g. all 'channel' or all 'velocity' etc.
|
---|
| 71 | """
|
---|
[710] | 72 | if self._plotter.is_dead:
|
---|
| 73 | self._plotter = self._newplotter()
|
---|
[600] | 74 | self._plotter.hold()
|
---|
[203] | 75 | self._plotter.clear()
|
---|
[920] | 76 | from asap import scantable
|
---|
[935] | 77 | if not self._data and not scan:
|
---|
[1101] | 78 | msg = "Input is not a scantable"
|
---|
| 79 | if rcParams['verbose']:
|
---|
| 80 | print msg
|
---|
| 81 | return
|
---|
| 82 | raise TypeError(msg)
|
---|
[920] | 83 | if isinstance(scan, scantable):
|
---|
[709] | 84 | if self._data is not None:
|
---|
[920] | 85 | if scan != self._data:
|
---|
| 86 | self._data = scan
|
---|
[710] | 87 | # reset
|
---|
| 88 | self._reset()
|
---|
[525] | 89 | else:
|
---|
[920] | 90 | self._data = scan
|
---|
[710] | 91 | self._reset()
|
---|
[709] | 92 | # ranges become invalid when unit changes
|
---|
[935] | 93 | if self._abcunit and self._abcunit != self._data.get_unit():
|
---|
[709] | 94 | self._minmaxx = None
|
---|
| 95 | self._minmaxy = None
|
---|
[920] | 96 | self._abcunit = self._data.get_unit()
|
---|
[710] | 97 | self._datamask = None
|
---|
[920] | 98 | self._plot(self._data)
|
---|
[709] | 99 | if self._minmaxy is not None:
|
---|
| 100 | self._plotter.set_limits(ylim=self._minmaxy)
|
---|
[203] | 101 | self._plotter.release()
|
---|
[1153] | 102 | self._plotter.tidy()
|
---|
| 103 | self._plotter.show(hardrefresh=False)
|
---|
[753] | 104 | print_log()
|
---|
[203] | 105 | return
|
---|
| 106 |
|
---|
[1550] | 107 | def refresh(self):
|
---|
| 108 | self._plotter.figure.show()
|
---|
| 109 |
|
---|
[1555] | 110 | def create_mask(self, nwin=1, panel=0, color=None):
|
---|
| 111 | if self._data is None:
|
---|
| 112 | return []
|
---|
[1547] | 113 | outmask = []
|
---|
[1549] | 114 | self._plotter.subplot(panel)
|
---|
| 115 | xmin, xmax = self._plotter.axes.get_xlim()
|
---|
[1548] | 116 | marg = 0.05*(xmax-xmin)
|
---|
[1549] | 117 | self._plotter.axes.set_xlim(xmin-marg, xmax+marg)
|
---|
[1550] | 118 | self.refresh()
|
---|
| 119 |
|
---|
[1555] | 120 | def cleanup(lines=False, texts=False, refresh=False):
|
---|
| 121 | if lines:
|
---|
| 122 | del self._plotter.axes.lines[-1]
|
---|
| 123 | if texts:
|
---|
| 124 | del self._plotter.axes.texts[-1]
|
---|
| 125 | if refresh:
|
---|
| 126 | self.refresh()
|
---|
| 127 |
|
---|
| 128 | for w in xrange(nwin):
|
---|
[1547] | 129 | wpos = []
|
---|
[1555] | 130 | self.text(0.05,1.0, "Add start boundary",
|
---|
| 131 | coords="relative", fontsize=10)
|
---|
| 132 | point = self._plotter.get_point()
|
---|
| 133 | cleanup(texts=True)
|
---|
| 134 | if point is None:
|
---|
| 135 | continue
|
---|
| 136 | wpos.append(point[0])
|
---|
| 137 | self.axvline(wpos[0], color=color)
|
---|
[1551] | 138 | self.text(0.05,1.0, "Add end boundary", coords="relative", fontsize=10)
|
---|
[1555] | 139 | point = self._plotter.get_point()
|
---|
| 140 | cleanup(texts=True, lines=True)
|
---|
| 141 | if point is None:
|
---|
| 142 | self.refresh()
|
---|
| 143 | continue
|
---|
| 144 | wpos.append(point[0])
|
---|
| 145 | self.axvspan(wpos[0], wpos[1], alpha=0.1,
|
---|
| 146 | edgecolor=color, facecolor=color)
|
---|
| 147 | ymin, ymax = self._plotter.axes.get_ylim()
|
---|
[1547] | 148 | outmask.append(wpos)
|
---|
[1153] | 149 |
|
---|
[1555] | 150 | self._plotter.axes.set_xlim(xmin, xmax)
|
---|
| 151 | self.refresh()
|
---|
| 152 | if len(outmask) > 0:
|
---|
| 153 | return self._data.create_mask(*outmask)
|
---|
| 154 | return []
|
---|
| 155 |
|
---|
[1153] | 156 | # forwards to matplotlib axes
|
---|
| 157 | def text(self, *args, **kwargs):
|
---|
[1547] | 158 | if kwargs.has_key("interactive"):
|
---|
| 159 | if kwargs.pop("interactive"):
|
---|
| 160 | pos = self._plotter.get_point()
|
---|
| 161 | args = tuple(pos)+args
|
---|
[1153] | 162 | self._axes_callback("text", *args, **kwargs)
|
---|
[1547] | 163 |
|
---|
[1358] | 164 | text.__doc__ = matplotlib.axes.Axes.text.__doc__
|
---|
[1559] | 165 |
|
---|
[1153] | 166 | def arrow(self, *args, **kwargs):
|
---|
[1547] | 167 | if kwargs.has_key("interactive"):
|
---|
| 168 | if kwargs.pop("interactive"):
|
---|
| 169 | pos = self._plotter.get_region()
|
---|
| 170 | dpos = (pos[0][0], pos[0][1],
|
---|
| 171 | pos[1][0]-pos[0][0],
|
---|
| 172 | pos[1][1] - pos[0][1])
|
---|
| 173 | args = dpos + args
|
---|
[1153] | 174 | self._axes_callback("arrow", *args, **kwargs)
|
---|
[1547] | 175 |
|
---|
[1358] | 176 | arrow.__doc__ = matplotlib.axes.Axes.arrow.__doc__
|
---|
[1559] | 177 |
|
---|
| 178 | def annotate(self, text, xy=None, xytext=None, **kwargs):
|
---|
| 179 | if kwargs.has_key("interactive"):
|
---|
| 180 | if kwargs.pop("interactive"):
|
---|
| 181 | xy = self._plotter.get_point()
|
---|
| 182 | xytext = self._plotter.get_point()
|
---|
| 183 | if not kwargs.has_key("arrowprops"):
|
---|
| 184 | kwargs["arrowprops"] = dict(arrowstyle="->")
|
---|
| 185 | self._axes_callback("annotate", text, xy, xytext, **kwargs)
|
---|
| 186 |
|
---|
| 187 | annotate.__doc__ = matplotlib.axes.Axes.annotate.__doc__
|
---|
| 188 |
|
---|
[1153] | 189 | def axvline(self, *args, **kwargs):
|
---|
[1547] | 190 | if kwargs.has_key("interactive"):
|
---|
| 191 | if kwargs.pop("interactive"):
|
---|
| 192 | pos = self._plotter.get_point()
|
---|
| 193 | args = (pos[0],)+args
|
---|
[1153] | 194 | self._axes_callback("axvline", *args, **kwargs)
|
---|
[1559] | 195 |
|
---|
[1358] | 196 | axvline.__doc__ = matplotlib.axes.Axes.axvline.__doc__
|
---|
[1547] | 197 |
|
---|
[1153] | 198 | def axhline(self, *args, **kwargs):
|
---|
[1547] | 199 | if kwargs.has_key("interactive"):
|
---|
| 200 | if kwargs.pop("interactive"):
|
---|
| 201 | pos = self._plotter.get_point()
|
---|
| 202 | args = (pos[1],)+args
|
---|
[1153] | 203 | self._axes_callback("axhline", *args, **kwargs)
|
---|
[1559] | 204 |
|
---|
[1358] | 205 | axhline.__doc__ = matplotlib.axes.Axes.axhline.__doc__
|
---|
[1547] | 206 |
|
---|
[1153] | 207 | def axvspan(self, *args, **kwargs):
|
---|
[1547] | 208 | if kwargs.has_key("interactive"):
|
---|
| 209 | if kwargs.pop("interactive"):
|
---|
| 210 | pos = self._plotter.get_region()
|
---|
| 211 | dpos = (pos[0][0], pos[1][0])
|
---|
| 212 | args = dpos + args
|
---|
[1153] | 213 | self._axes_callback("axvspan", *args, **kwargs)
|
---|
| 214 | # hack to preventy mpl from redrawing the patch
|
---|
| 215 | # it seem to convert the patch into lines on every draw.
|
---|
| 216 | # This doesn't happen in a test script???
|
---|
[1547] | 217 | #del self._plotter.axes.patches[-1]
|
---|
| 218 |
|
---|
[1358] | 219 | axvspan.__doc__ = matplotlib.axes.Axes.axvspan.__doc__
|
---|
[1232] | 220 |
|
---|
[1153] | 221 | def axhspan(self, *args, **kwargs):
|
---|
[1547] | 222 | if kwargs.has_key("interactive"):
|
---|
| 223 | if kwargs.pop("interactive"):
|
---|
| 224 | pos = self._plotter.get_region()
|
---|
| 225 | dpos = (pos[0][1], pos[1][1])
|
---|
| 226 | args = dpos + args
|
---|
| 227 |
|
---|
[1232] | 228 | self._axes_callback("axhspan", *args, **kwargs)
|
---|
[1153] | 229 | # hack to preventy mpl from redrawing the patch
|
---|
| 230 | # it seem to convert the patch into lines on every draw.
|
---|
| 231 | # This doesn't happen in a test script???
|
---|
[1547] | 232 | #del self._plotter.axes.patches[-1]
|
---|
[1559] | 233 |
|
---|
[1358] | 234 | axhspan.__doc__ = matplotlib.axes.Axes.axhspan.__doc__
|
---|
[1153] | 235 |
|
---|
| 236 | def _axes_callback(self, axesfunc, *args, **kwargs):
|
---|
| 237 | panel = 0
|
---|
| 238 | if kwargs.has_key("panel"):
|
---|
| 239 | panel = kwargs.pop("panel")
|
---|
| 240 | coords = None
|
---|
| 241 | if kwargs.has_key("coords"):
|
---|
| 242 | coords = kwargs.pop("coords")
|
---|
| 243 | if coords.lower() == 'world':
|
---|
| 244 | kwargs["transform"] = self._plotter.axes.transData
|
---|
| 245 | elif coords.lower() == 'relative':
|
---|
| 246 | kwargs["transform"] = self._plotter.axes.transAxes
|
---|
| 247 | self._plotter.subplot(panel)
|
---|
| 248 | self._plotter.axes.set_autoscale_on(False)
|
---|
| 249 | getattr(self._plotter.axes, axesfunc)(*args, **kwargs)
|
---|
| 250 | self._plotter.show(False)
|
---|
| 251 | self._plotter.axes.set_autoscale_on(True)
|
---|
| 252 | # end matplotlib.axes fowarding functions
|
---|
| 253 |
|
---|
[1547] | 254 |
|
---|
[226] | 255 | def set_mode(self, stacking=None, panelling=None):
|
---|
[203] | 256 | """
|
---|
[377] | 257 | Set the plots look and feel, i.e. what you want to see on the plot.
|
---|
[203] | 258 | Parameters:
|
---|
| 259 | stacking: tell the plotter which variable to plot
|
---|
[1217] | 260 | as line colour overlays (default 'pol')
|
---|
[203] | 261 | panelling: tell the plotter which variable to plot
|
---|
| 262 | across multiple panels (default 'scan'
|
---|
| 263 | Note:
|
---|
| 264 | Valid modes are:
|
---|
| 265 | 'beam' 'Beam' 'b': Beams
|
---|
| 266 | 'if' 'IF' 'i': IFs
|
---|
| 267 | 'pol' 'Pol' 'p': Polarisations
|
---|
| 268 | 'scan' 'Scan' 's': Scans
|
---|
| 269 | 'time' 'Time' 't': Times
|
---|
| 270 | """
|
---|
[753] | 271 | msg = "Invalid mode"
|
---|
| 272 | if not self.set_panelling(panelling) or \
|
---|
| 273 | not self.set_stacking(stacking):
|
---|
| 274 | if rcParams['verbose']:
|
---|
| 275 | print msg
|
---|
| 276 | return
|
---|
| 277 | else:
|
---|
| 278 | raise TypeError(msg)
|
---|
[920] | 279 | if self._data: self.plot(self._data)
|
---|
[203] | 280 | return
|
---|
| 281 |
|
---|
[554] | 282 | def set_panelling(self, what=None):
|
---|
| 283 | mode = what
|
---|
| 284 | if mode is None:
|
---|
| 285 | mode = rcParams['plotter.panelling']
|
---|
| 286 | md = self._translate(mode)
|
---|
[203] | 287 | if md:
|
---|
[554] | 288 | self._panelling = md
|
---|
[226] | 289 | self._title = None
|
---|
[203] | 290 | return True
|
---|
| 291 | return False
|
---|
| 292 |
|
---|
[377] | 293 | def set_layout(self,rows=None,cols=None):
|
---|
| 294 | """
|
---|
| 295 | Set the multi-panel layout, i.e. how many rows and columns plots
|
---|
| 296 | are visible.
|
---|
| 297 | Parameters:
|
---|
| 298 | rows: The number of rows of plots
|
---|
| 299 | cols: The number of columns of plots
|
---|
| 300 | Note:
|
---|
| 301 | If no argument is given, the potter reverts to its auto-plot
|
---|
| 302 | behaviour.
|
---|
| 303 | """
|
---|
| 304 | self._rows = rows
|
---|
| 305 | self._cols = cols
|
---|
[920] | 306 | if self._data: self.plot(self._data)
|
---|
[377] | 307 | return
|
---|
| 308 |
|
---|
[709] | 309 | def set_stacking(self, what=None):
|
---|
[554] | 310 | mode = what
|
---|
[709] | 311 | if mode is None:
|
---|
| 312 | mode = rcParams['plotter.stacking']
|
---|
[554] | 313 | md = self._translate(mode)
|
---|
[203] | 314 | if md:
|
---|
| 315 | self._stacking = md
|
---|
[226] | 316 | self._lmap = None
|
---|
[203] | 317 | return True
|
---|
| 318 | return False
|
---|
| 319 |
|
---|
[525] | 320 | def set_range(self,xstart=None,xend=None,ystart=None,yend=None):
|
---|
[203] | 321 | """
|
---|
| 322 | Set the range of interest on the abcissa of the plot
|
---|
| 323 | Parameters:
|
---|
[525] | 324 | [x,y]start,[x,y]end: The start and end points of the 'zoom' window
|
---|
[203] | 325 | Note:
|
---|
| 326 | These become non-sensical when the unit changes.
|
---|
| 327 | use plotter.set_range() without parameters to reset
|
---|
| 328 |
|
---|
| 329 | """
|
---|
[525] | 330 | if xstart is None and xend is None:
|
---|
| 331 | self._minmaxx = None
|
---|
[600] | 332 | else:
|
---|
| 333 | self._minmaxx = [xstart,xend]
|
---|
[525] | 334 | if ystart is None and yend is None:
|
---|
| 335 | self._minmaxy = None
|
---|
[600] | 336 | else:
|
---|
[709] | 337 | self._minmaxy = [ystart,yend]
|
---|
[920] | 338 | if self._data: self.plot(self._data)
|
---|
[203] | 339 | return
|
---|
[709] | 340 |
|
---|
[1101] | 341 | def set_legend(self, mp=None, fontsize = None, mode = 0):
|
---|
[203] | 342 | """
|
---|
| 343 | Specify a mapping for the legend instead of using the default
|
---|
| 344 | indices:
|
---|
| 345 | Parameters:
|
---|
[1101] | 346 | mp: a list of 'strings'. This should have the same length
|
---|
| 347 | as the number of elements on the legend and then maps
|
---|
| 348 | to the indeces in order. It is possible to uses latex
|
---|
| 349 | math expression. These have to be enclosed in r'',
|
---|
| 350 | e.g. r'$x^{2}$'
|
---|
| 351 | fontsize: The font size of the label (default None)
|
---|
| 352 | mode: where to display the legend
|
---|
| 353 | Any other value for loc else disables the legend:
|
---|
[1096] | 354 | 0: auto
|
---|
| 355 | 1: upper right
|
---|
| 356 | 2: upper left
|
---|
| 357 | 3: lower left
|
---|
| 358 | 4: lower right
|
---|
| 359 | 5: right
|
---|
| 360 | 6: center left
|
---|
| 361 | 7: center right
|
---|
| 362 | 8: lower center
|
---|
| 363 | 9: upper center
|
---|
| 364 | 10: center
|
---|
[203] | 365 |
|
---|
| 366 | Example:
|
---|
[485] | 367 | If the data has two IFs/rest frequencies with index 0 and 1
|
---|
[203] | 368 | for CO and SiO:
|
---|
| 369 | plotter.set_stacking('i')
|
---|
[710] | 370 | plotter.set_legend(['CO','SiO'])
|
---|
[203] | 371 | plotter.plot()
|
---|
[710] | 372 | plotter.set_legend([r'$^{12}CO$', r'SiO'])
|
---|
[203] | 373 | """
|
---|
| 374 | self._lmap = mp
|
---|
[1096] | 375 | self._plotter.legend(mode)
|
---|
[1101] | 376 | if isinstance(fontsize, int):
|
---|
| 377 | from matplotlib import rc as rcp
|
---|
| 378 | rcp('legend', fontsize=fontsize)
|
---|
[1096] | 379 | if self._data:
|
---|
| 380 | self.plot(self._data)
|
---|
[226] | 381 | return
|
---|
| 382 |
|
---|
[1101] | 383 | def set_title(self, title=None, fontsize=None):
|
---|
[710] | 384 | """
|
---|
| 385 | Set the title of the plot. If multiple panels are plotted,
|
---|
| 386 | multiple titles have to be specified.
|
---|
| 387 | Example:
|
---|
| 388 | # two panels are visible on the plotter
|
---|
| 389 | plotter.set_title(["First Panel","Second Panel"])
|
---|
| 390 | """
|
---|
[226] | 391 | self._title = title
|
---|
[1101] | 392 | if isinstance(fontsize, int):
|
---|
| 393 | from matplotlib import rc as rcp
|
---|
| 394 | rcp('axes', titlesize=fontsize)
|
---|
[920] | 395 | if self._data: self.plot(self._data)
|
---|
[226] | 396 | return
|
---|
| 397 |
|
---|
[1101] | 398 | def set_ordinate(self, ordinate=None, fontsize=None):
|
---|
[710] | 399 | """
|
---|
| 400 | Set the y-axis label of the plot. If multiple panels are plotted,
|
---|
| 401 | multiple labels have to be specified.
|
---|
[1021] | 402 | Parameters:
|
---|
| 403 | ordinate: a list of ordinate labels. None (default) let
|
---|
| 404 | data determine the labels
|
---|
[710] | 405 | Example:
|
---|
| 406 | # two panels are visible on the plotter
|
---|
| 407 | plotter.set_ordinate(["First Y-Axis","Second Y-Axis"])
|
---|
| 408 | """
|
---|
[257] | 409 | self._ordinate = ordinate
|
---|
[1101] | 410 | if isinstance(fontsize, int):
|
---|
| 411 | from matplotlib import rc as rcp
|
---|
| 412 | rcp('axes', labelsize=fontsize)
|
---|
| 413 | rcp('ytick', labelsize=fontsize)
|
---|
[920] | 414 | if self._data: self.plot(self._data)
|
---|
[257] | 415 | return
|
---|
| 416 |
|
---|
[1101] | 417 | def set_abcissa(self, abcissa=None, fontsize=None):
|
---|
[710] | 418 | """
|
---|
| 419 | Set the x-axis label of the plot. If multiple panels are plotted,
|
---|
| 420 | multiple labels have to be specified.
|
---|
[1021] | 421 | Parameters:
|
---|
| 422 | abcissa: a list of abcissa labels. None (default) let
|
---|
| 423 | data determine the labels
|
---|
[710] | 424 | Example:
|
---|
| 425 | # two panels are visible on the plotter
|
---|
| 426 | plotter.set_ordinate(["First X-Axis","Second X-Axis"])
|
---|
| 427 | """
|
---|
[257] | 428 | self._abcissa = abcissa
|
---|
[1101] | 429 | if isinstance(fontsize, int):
|
---|
| 430 | from matplotlib import rc as rcp
|
---|
| 431 | rcp('axes', labelsize=fontsize)
|
---|
| 432 | rcp('xtick', labelsize=fontsize)
|
---|
[920] | 433 | if self._data: self.plot(self._data)
|
---|
[257] | 434 | return
|
---|
| 435 |
|
---|
[1217] | 436 | def set_colors(self, colmap):
|
---|
[377] | 437 | """
|
---|
[1217] | 438 | Set the colours to be used. The plotter will cycle through
|
---|
| 439 | these colours when lines are overlaid (stacking mode).
|
---|
[1021] | 440 | Parameters:
|
---|
[1217] | 441 | colmap: a list of colour names
|
---|
[710] | 442 | Example:
|
---|
| 443 | plotter.set_colors("red green blue")
|
---|
| 444 | # If for example four lines are overlaid e.g I Q U V
|
---|
| 445 | # 'I' will be 'red', 'Q' will be 'green', U will be 'blue'
|
---|
| 446 | # and 'V' will be 'red' again.
|
---|
| 447 | """
|
---|
[1217] | 448 | if isinstance(colmap,str):
|
---|
| 449 | colmap = colmap.split()
|
---|
| 450 | self._plotter.palette(0, colormap=colmap)
|
---|
[920] | 451 | if self._data: self.plot(self._data)
|
---|
[710] | 452 |
|
---|
[1217] | 453 | # alias for english speakers
|
---|
| 454 | set_colours = set_colors
|
---|
| 455 |
|
---|
[1101] | 456 | def set_histogram(self, hist=True, linewidth=None):
|
---|
[1021] | 457 | """
|
---|
| 458 | Enable/Disable histogram-like plotting.
|
---|
| 459 | Parameters:
|
---|
| 460 | hist: True (default) or False. The fisrt default
|
---|
| 461 | is taken from the .asaprc setting
|
---|
| 462 | plotter.histogram
|
---|
| 463 | """
|
---|
[1023] | 464 | self._hist = hist
|
---|
[1101] | 465 | if isinstance(linewidth, float) or isinstance(linewidth, int):
|
---|
| 466 | from matplotlib import rc as rcp
|
---|
| 467 | rcp('lines', linewidth=linewidth)
|
---|
[1021] | 468 | if self._data: self.plot(self._data)
|
---|
[1023] | 469 |
|
---|
[1101] | 470 | def set_linestyles(self, linestyles=None, linewidth=None):
|
---|
[710] | 471 | """
|
---|
[734] | 472 | Set the linestyles to be used. The plotter will cycle through
|
---|
| 473 | these linestyles when lines are overlaid (stacking mode) AND
|
---|
| 474 | only one color has been set.
|
---|
[710] | 475 | Parameters:
|
---|
| 476 | linestyles: a list of linestyles to use.
|
---|
| 477 | 'line', 'dashed', 'dotted', 'dashdot',
|
---|
| 478 | 'dashdotdot' and 'dashdashdot' are
|
---|
| 479 | possible
|
---|
| 480 |
|
---|
| 481 | Example:
|
---|
| 482 | plotter.set_colors("black")
|
---|
| 483 | plotter.set_linestyles("line dashed dotted dashdot")
|
---|
| 484 | # If for example four lines are overlaid e.g I Q U V
|
---|
| 485 | # 'I' will be 'solid', 'Q' will be 'dashed',
|
---|
| 486 | # U will be 'dotted' and 'V' will be 'dashdot'.
|
---|
| 487 | """
|
---|
| 488 | if isinstance(linestyles,str):
|
---|
| 489 | linestyles = linestyles.split()
|
---|
| 490 | self._plotter.palette(color=0,linestyle=0,linestyles=linestyles)
|
---|
[1101] | 491 | if isinstance(linewidth, float) or isinstance(linewidth, int):
|
---|
| 492 | from matplotlib import rc as rcp
|
---|
| 493 | rcp('lines', linewidth=linewidth)
|
---|
[920] | 494 | if self._data: self.plot(self._data)
|
---|
[710] | 495 |
|
---|
[1547] | 496 | def set_font(self, **kwargs):
|
---|
[1101] | 497 | """
|
---|
| 498 | Set font properties.
|
---|
| 499 | Parameters:
|
---|
| 500 | family: one of 'sans-serif', 'serif', 'cursive', 'fantasy', 'monospace'
|
---|
| 501 | style: one of 'normal' (or 'roman'), 'italic' or 'oblique'
|
---|
| 502 | weight: one of 'normal or 'bold'
|
---|
| 503 | size: the 'general' font size, individual elements can be adjusted
|
---|
| 504 | seperately
|
---|
| 505 | """
|
---|
| 506 | from matplotlib import rc as rcp
|
---|
[1547] | 507 | fdict = {}
|
---|
| 508 | for k,v in kwargs.iteritems():
|
---|
| 509 | if v:
|
---|
| 510 | fdict[k] = v
|
---|
[1556] | 511 | self._fp = FontProperties(**fdict)
|
---|
[1547] | 512 | if self._data:
|
---|
[1556] | 513 | self.plot()
|
---|
[1101] | 514 |
|
---|
[1259] | 515 | def plot_lines(self, linecat=None, doppler=0.0, deltachan=10, rotate=90.0,
|
---|
[1146] | 516 | location=None):
|
---|
| 517 | """
|
---|
[1158] | 518 | Plot a line catalog.
|
---|
| 519 | Parameters:
|
---|
| 520 | linecat: the linecatalog to plot
|
---|
[1168] | 521 | doppler: the velocity shift to apply to the frequencies
|
---|
[1158] | 522 | deltachan: the number of channels to include each side of the
|
---|
| 523 | line to determine a local maximum/minimum
|
---|
[1259] | 524 | rotate: the rotation (in degrees) )for the text label (default 90.0)
|
---|
[1158] | 525 | location: the location of the line annotation from the 'top',
|
---|
| 526 | 'bottom' or alternate (None - the default)
|
---|
[1165] | 527 | Notes:
|
---|
| 528 | If the spectrum is flagged no line will be drawn in that location.
|
---|
[1146] | 529 | """
|
---|
[1259] | 530 | if not self._data:
|
---|
| 531 | raise RuntimeError("No scantable has been plotted yet.")
|
---|
[1146] | 532 | from asap._asap import linecatalog
|
---|
[1259] | 533 | if not isinstance(linecat, linecatalog):
|
---|
| 534 | raise ValueError("'linecat' isn't of type linecatalog.")
|
---|
| 535 | if not self._data.get_unit().endswith("Hz"):
|
---|
| 536 | raise RuntimeError("Can only overlay linecatalogs when data is in frequency.")
|
---|
[1153] | 537 | from matplotlib.numerix import ma
|
---|
[1146] | 538 | for j in range(len(self._plotter.subplots)):
|
---|
| 539 | self._plotter.subplot(j)
|
---|
| 540 | lims = self._plotter.axes.get_xlim()
|
---|
[1153] | 541 | for row in range(linecat.nrow()):
|
---|
[1259] | 542 | # get_frequency returns MHz
|
---|
| 543 | base = { "GHz": 1000.0, "MHz": 1.0, "Hz": 1.0e-6 }
|
---|
| 544 | restf = linecat.get_frequency(row)/base[self._data.get_unit()]
|
---|
[1165] | 545 | c = 299792.458
|
---|
[1174] | 546 | freq = restf*(1.0-doppler/c)
|
---|
[1146] | 547 | if lims[0] < freq < lims[1]:
|
---|
| 548 | if location is None:
|
---|
| 549 | loc = 'bottom'
|
---|
[1153] | 550 | if row%2: loc='top'
|
---|
[1146] | 551 | else: loc = location
|
---|
[1153] | 552 | maxys = []
|
---|
| 553 | for line in self._plotter.axes.lines:
|
---|
| 554 | v = line._x
|
---|
| 555 | asc = v[0] < v[-1]
|
---|
| 556 |
|
---|
| 557 | idx = None
|
---|
| 558 | if not asc:
|
---|
| 559 | if v[len(v)-1] <= freq <= v[0]:
|
---|
| 560 | i = len(v)-1
|
---|
| 561 | while i>=0 and v[i] < freq:
|
---|
| 562 | idx = i
|
---|
| 563 | i-=1
|
---|
| 564 | else:
|
---|
| 565 | if v[0] <= freq <= v[len(v)-1]:
|
---|
| 566 | i = 0
|
---|
| 567 | while i<len(v) and v[i] < freq:
|
---|
| 568 | idx = i
|
---|
| 569 | i+=1
|
---|
| 570 | if idx is not None:
|
---|
| 571 | lower = idx - deltachan
|
---|
| 572 | upper = idx + deltachan
|
---|
| 573 | if lower < 0: lower = 0
|
---|
| 574 | if upper > len(v): upper = len(v)
|
---|
| 575 | s = slice(lower, upper)
|
---|
[1167] | 576 | y = line._y[s]
|
---|
[1165] | 577 | maxy = ma.maximum(y)
|
---|
| 578 | if isinstance( maxy, float):
|
---|
| 579 | maxys.append(maxy)
|
---|
[1164] | 580 | if len(maxys):
|
---|
| 581 | peak = max(maxys)
|
---|
[1165] | 582 | if peak > self._plotter.axes.get_ylim()[1]:
|
---|
| 583 | loc = 'bottom'
|
---|
[1164] | 584 | else:
|
---|
| 585 | continue
|
---|
[1157] | 586 | self._plotter.vline_with_label(freq, peak,
|
---|
| 587 | linecat.get_name(row),
|
---|
| 588 | location=loc, rotate=rotate)
|
---|
[1153] | 589 | self._plotter.show(hardrefresh=False)
|
---|
[1146] | 590 |
|
---|
[1153] | 591 |
|
---|
[710] | 592 | def save(self, filename=None, orientation=None, dpi=None):
|
---|
| 593 | """
|
---|
[377] | 594 | Save the plot to a file. The know formats are 'png', 'ps', 'eps'.
|
---|
| 595 | Parameters:
|
---|
| 596 | filename: The name of the output file. This is optional
|
---|
| 597 | and autodetects the image format from the file
|
---|
| 598 | suffix. If non filename is specified a file
|
---|
| 599 | called 'yyyymmdd_hhmmss.png' is created in the
|
---|
| 600 | current directory.
|
---|
[709] | 601 | orientation: optional parameter for postscript only (not eps).
|
---|
| 602 | 'landscape', 'portrait' or None (default) are valid.
|
---|
| 603 | If None is choosen for 'ps' output, the plot is
|
---|
| 604 | automatically oriented to fill the page.
|
---|
[710] | 605 | dpi: The dpi of the output non-ps plot
|
---|
[377] | 606 | """
|
---|
[709] | 607 | self._plotter.save(filename,orientation,dpi)
|
---|
[377] | 608 | return
|
---|
[709] | 609 |
|
---|
[257] | 610 |
|
---|
[920] | 611 | def set_mask(self, mask=None, selection=None):
|
---|
[525] | 612 | """
|
---|
[734] | 613 | Set a plotting mask for a specific polarization.
|
---|
| 614 | This is useful for masking out "noise" Pangle outside a source.
|
---|
| 615 | Parameters:
|
---|
[920] | 616 | mask: a mask from scantable.create_mask
|
---|
| 617 | selection: the spectra to apply the mask to.
|
---|
[734] | 618 | Example:
|
---|
[920] | 619 | select = selector()
|
---|
| 620 | select.setpolstrings("Pangle")
|
---|
| 621 | plotter.set_mask(mymask, select)
|
---|
[734] | 622 | """
|
---|
[710] | 623 | if not self._data:
|
---|
[920] | 624 | msg = "Can only set mask after a first call to plot()"
|
---|
[753] | 625 | if rcParams['verbose']:
|
---|
| 626 | print msg
|
---|
[762] | 627 | return
|
---|
[753] | 628 | else:
|
---|
[762] | 629 | raise RuntimeError(msg)
|
---|
[920] | 630 | if len(mask):
|
---|
| 631 | if isinstance(mask, list) or isinstance(mask, tuple):
|
---|
| 632 | self._usermask = array(mask)
|
---|
[710] | 633 | else:
|
---|
[920] | 634 | self._usermask = mask
|
---|
| 635 | if mask is None and selection is None:
|
---|
| 636 | self._usermask = []
|
---|
| 637 | self._maskselection = None
|
---|
| 638 | if isinstance(selection, selector):
|
---|
[947] | 639 | self._maskselection = {'b': selection.get_beams(),
|
---|
| 640 | 's': selection.get_scans(),
|
---|
| 641 | 'i': selection.get_ifs(),
|
---|
| 642 | 'p': selection.get_pols(),
|
---|
[920] | 643 | 't': [] }
|
---|
[710] | 644 | else:
|
---|
[920] | 645 | self._maskselection = None
|
---|
| 646 | self.plot(self._data)
|
---|
[710] | 647 |
|
---|
[709] | 648 | def _slice_indeces(self, data):
|
---|
| 649 | mn = self._minmaxx[0]
|
---|
| 650 | mx = self._minmaxx[1]
|
---|
| 651 | asc = data[0] < data[-1]
|
---|
| 652 | start=0
|
---|
| 653 | end = len(data)-1
|
---|
| 654 | inc = 1
|
---|
| 655 | if not asc:
|
---|
| 656 | start = len(data)-1
|
---|
| 657 | end = 0
|
---|
| 658 | inc = -1
|
---|
| 659 | # find min index
|
---|
[1101] | 660 | while start > 0 and data[start] < mn:
|
---|
[709] | 661 | start+= inc
|
---|
| 662 | # find max index
|
---|
[1101] | 663 | while end > 0 and data[end] > mx:
|
---|
[709] | 664 | end-=inc
|
---|
[1101] | 665 | if end > 0: end +=1
|
---|
[709] | 666 | if start > end:
|
---|
| 667 | return end,start
|
---|
| 668 | return start,end
|
---|
| 669 |
|
---|
[710] | 670 | def _reset(self):
|
---|
[920] | 671 | self._usermask = []
|
---|
[710] | 672 | self._usermaskspectra = None
|
---|
[920] | 673 | self.set_selection(None, False)
|
---|
| 674 |
|
---|
| 675 | def _plot(self, scan):
|
---|
[947] | 676 | savesel = scan.get_selection()
|
---|
| 677 | sel = savesel + self._selection
|
---|
| 678 | d0 = {'s': 'SCANNO', 'b': 'BEAMNO', 'i':'IFNO',
|
---|
| 679 | 'p': 'POLNO', 'c': 'CYCLENO', 't' : 'TIME' }
|
---|
| 680 | order = [d0[self._panelling],d0[self._stacking]]
|
---|
| 681 | sel.set_order(order)
|
---|
| 682 | scan.set_selection(sel)
|
---|
[920] | 683 | d = {'b': scan.getbeam, 's': scan.getscan,
|
---|
| 684 | 'i': scan.getif, 'p': scan.getpol, 't': scan._gettime }
|
---|
| 685 |
|
---|
[1148] | 686 | polmodes = dict(zip(self._selection.get_pols(),
|
---|
| 687 | self._selection.get_poltypes()))
|
---|
| 688 | # this returns either a tuple of numbers or a length (ncycles)
|
---|
| 689 | # convert this into lengths
|
---|
| 690 | n0,nstack0 = self._get_selected_n(scan)
|
---|
| 691 | if isinstance(n0, int): n = n0
|
---|
[1175] | 692 | else: n = len(n0)
|
---|
[1148] | 693 | if isinstance(nstack0, int): nstack = nstack0
|
---|
[1175] | 694 | else: nstack = len(nstack0)
|
---|
[998] | 695 | maxpanel, maxstack = 16,8
|
---|
[920] | 696 | if n > maxpanel or nstack > maxstack:
|
---|
| 697 | from asap import asaplog
|
---|
[1148] | 698 | maxn = 0
|
---|
| 699 | if nstack > maxstack: maxn = maxstack
|
---|
| 700 | if n > maxpanel: maxn = maxpanel
|
---|
[920] | 701 | msg ="Scan to be plotted contains more than %d selections.\n" \
|
---|
[1148] | 702 | "Selecting first %d selections..." % (maxn, maxn)
|
---|
[920] | 703 | asaplog.push(msg)
|
---|
| 704 | print_log()
|
---|
| 705 | n = min(n,maxpanel)
|
---|
[998] | 706 | nstack = min(nstack,maxstack)
|
---|
[920] | 707 | if n > 1:
|
---|
| 708 | ganged = rcParams['plotter.ganged']
|
---|
| 709 | if self._rows and self._cols:
|
---|
| 710 | n = min(n,self._rows*self._cols)
|
---|
| 711 | self._plotter.set_panels(rows=self._rows,cols=self._cols,
|
---|
| 712 | nplots=n,ganged=ganged)
|
---|
| 713 | else:
|
---|
| 714 | self._plotter.set_panels(rows=n,cols=0,nplots=n,ganged=ganged)
|
---|
| 715 | else:
|
---|
| 716 | self._plotter.set_panels()
|
---|
| 717 | r=0
|
---|
| 718 | nr = scan.nrow()
|
---|
| 719 | a0,b0 = -1,-1
|
---|
| 720 | allxlim = []
|
---|
[1018] | 721 | allylim = []
|
---|
[920] | 722 | newpanel=True
|
---|
| 723 | panelcount,stackcount = 0,0
|
---|
[1002] | 724 | while r < nr:
|
---|
[920] | 725 | a = d[self._panelling](r)
|
---|
| 726 | b = d[self._stacking](r)
|
---|
| 727 | if a > a0 and panelcount < n:
|
---|
| 728 | if n > 1:
|
---|
| 729 | self._plotter.subplot(panelcount)
|
---|
| 730 | self._plotter.palette(0)
|
---|
| 731 | #title
|
---|
| 732 | xlab = self._abcissa and self._abcissa[panelcount] \
|
---|
| 733 | or scan._getabcissalabel()
|
---|
| 734 | ylab = self._ordinate and self._ordinate[panelcount] \
|
---|
| 735 | or scan._get_ordinate_label()
|
---|
[1547] | 736 | self._plotter.set_axes('xlabel', xlab)
|
---|
| 737 | self._plotter.set_axes('ylabel', ylab)
|
---|
[920] | 738 | lbl = self._get_label(scan, r, self._panelling, self._title)
|
---|
| 739 | if isinstance(lbl, list) or isinstance(lbl, tuple):
|
---|
| 740 | if 0 <= panelcount < len(lbl):
|
---|
| 741 | lbl = lbl[panelcount]
|
---|
| 742 | else:
|
---|
| 743 | # get default label
|
---|
| 744 | lbl = self._get_label(scan, r, self._panelling, None)
|
---|
| 745 | self._plotter.set_axes('title',lbl)
|
---|
| 746 | newpanel = True
|
---|
| 747 | stackcount =0
|
---|
| 748 | panelcount += 1
|
---|
| 749 | if (b > b0 or newpanel) and stackcount < nstack:
|
---|
| 750 | y = []
|
---|
| 751 | if len(polmodes):
|
---|
| 752 | y = scan._getspectrum(r, polmodes[scan.getpol(r)])
|
---|
| 753 | else:
|
---|
| 754 | y = scan._getspectrum(r)
|
---|
| 755 | m = scan._getmask(r)
|
---|
[1146] | 756 | from matplotlib.numerix import logical_not, logical_and
|
---|
[920] | 757 | if self._maskselection and len(self._usermask) == len(m):
|
---|
| 758 | if d[self._stacking](r) in self._maskselection[self._stacking]:
|
---|
| 759 | m = logical_and(m, self._usermask)
|
---|
| 760 | x = scan._getabcissa(r)
|
---|
[1146] | 761 | from matplotlib.numerix import ma, array
|
---|
[1116] | 762 | y = ma.masked_array(y,mask=logical_not(array(m,copy=False)))
|
---|
[920] | 763 | if self._minmaxx is not None:
|
---|
| 764 | s,e = self._slice_indeces(x)
|
---|
| 765 | x = x[s:e]
|
---|
| 766 | y = y[s:e]
|
---|
[1096] | 767 | if len(x) > 1024 and rcParams['plotter.decimate']:
|
---|
| 768 | fac = len(x)/1024
|
---|
[920] | 769 | x = x[::fac]
|
---|
| 770 | y = y[::fac]
|
---|
| 771 | llbl = self._get_label(scan, r, self._stacking, self._lmap)
|
---|
| 772 | if isinstance(llbl, list) or isinstance(llbl, tuple):
|
---|
| 773 | if 0 <= stackcount < len(llbl):
|
---|
| 774 | # use user label
|
---|
| 775 | llbl = llbl[stackcount]
|
---|
| 776 | else:
|
---|
| 777 | # get default label
|
---|
| 778 | llbl = self._get_label(scan, r, self._stacking, None)
|
---|
| 779 | self._plotter.set_line(label=llbl)
|
---|
[1023] | 780 | plotit = self._plotter.plot
|
---|
| 781 | if self._hist: plotit = self._plotter.hist
|
---|
[1146] | 782 | if len(x) > 0:
|
---|
| 783 | plotit(x,y)
|
---|
| 784 | xlim= self._minmaxx or [min(x),max(x)]
|
---|
| 785 | allxlim += xlim
|
---|
| 786 | ylim= self._minmaxy or [ma.minimum(y),ma.maximum(y)]
|
---|
| 787 | allylim += ylim
|
---|
[920] | 788 | stackcount += 1
|
---|
| 789 | # last in colour stack -> autoscale x
|
---|
| 790 | if stackcount == nstack:
|
---|
| 791 | allxlim.sort()
|
---|
| 792 | self._plotter.axes.set_xlim([allxlim[0],allxlim[-1]])
|
---|
| 793 | # clear
|
---|
| 794 | allxlim =[]
|
---|
| 795 |
|
---|
| 796 | newpanel = False
|
---|
| 797 | a0=a
|
---|
| 798 | b0=b
|
---|
| 799 | # ignore following rows
|
---|
| 800 | if (panelcount == n) and (stackcount == nstack):
|
---|
[1018] | 801 | # last panel -> autoscale y if ganged
|
---|
| 802 | if rcParams['plotter.ganged']:
|
---|
| 803 | allylim.sort()
|
---|
| 804 | self._plotter.set_limits(ylim=[allylim[0],allylim[-1]])
|
---|
[998] | 805 | break
|
---|
[920] | 806 | r+=1 # next row
|
---|
[947] | 807 | #reset the selector to the scantable's original
|
---|
| 808 | scan.set_selection(savesel)
|
---|
[1556] | 809 | if self._fp is not None:
|
---|
| 810 | for o in self._plotter.figure.findobj(Text):
|
---|
| 811 | o.set_fontproperties(self._fp)
|
---|
[920] | 812 |
|
---|
[1556] | 813 |
|
---|
[920] | 814 | def set_selection(self, selection=None, refresh=True):
|
---|
[947] | 815 | self._selection = isinstance(selection,selector) and selection or selector()
|
---|
[920] | 816 | d0 = {'s': 'SCANNO', 'b': 'BEAMNO', 'i':'IFNO',
|
---|
| 817 | 'p': 'POLNO', 'c': 'CYCLENO', 't' : 'TIME' }
|
---|
| 818 | order = [d0[self._panelling],d0[self._stacking]]
|
---|
[947] | 819 | self._selection.set_order(order)
|
---|
[920] | 820 | if self._data and refresh: self.plot(self._data)
|
---|
| 821 |
|
---|
| 822 | def _get_selected_n(self, scan):
|
---|
[1148] | 823 | d1 = {'b': scan.getbeamnos, 's': scan.getscannos,
|
---|
| 824 | 'i': scan.getifnos, 'p': scan.getpolnos, 't': scan.ncycle }
|
---|
| 825 | d2 = { 'b': self._selection.get_beams(),
|
---|
| 826 | 's': self._selection.get_scans(),
|
---|
| 827 | 'i': self._selection.get_ifs(),
|
---|
| 828 | 'p': self._selection.get_pols(),
|
---|
| 829 | 't': self._selection.get_cycles() }
|
---|
[920] | 830 | n = d2[self._panelling] or d1[self._panelling]()
|
---|
| 831 | nstack = d2[self._stacking] or d1[self._stacking]()
|
---|
| 832 | return n,nstack
|
---|
| 833 |
|
---|
| 834 | def _get_label(self, scan, row, mode, userlabel=None):
|
---|
[1153] | 835 | if isinstance(userlabel, list) and len(userlabel) == 0:
|
---|
| 836 | userlabel = " "
|
---|
[947] | 837 | pms = dict(zip(self._selection.get_pols(),self._selection.get_poltypes()))
|
---|
[920] | 838 | if len(pms):
|
---|
| 839 | poleval = scan._getpollabel(scan.getpol(row),pms[scan.getpol(row)])
|
---|
| 840 | else:
|
---|
| 841 | poleval = scan._getpollabel(scan.getpol(row),scan.poltype())
|
---|
| 842 | d = {'b': "Beam "+str(scan.getbeam(row)),
|
---|
| 843 | 's': scan._getsourcename(row),
|
---|
| 844 | 'i': "IF"+str(scan.getif(row)),
|
---|
[964] | 845 | 'p': poleval,
|
---|
[1175] | 846 | 't': str(scan.get_time(row)) }
|
---|
[920] | 847 | return userlabel or d[mode]
|
---|
[1153] | 848 |
|
---|
[1556] | 849 | def plotazel(self):
|
---|
[1391] | 850 | """
|
---|
| 851 | plot azimuth and elevation versus time of a scantable
|
---|
| 852 | """
|
---|
| 853 | import pylab as PL
|
---|
| 854 | from matplotlib.dates import DateFormatter, timezone, HourLocator, MinuteLocator, DayLocator
|
---|
| 855 | from matplotlib.ticker import MultipleLocator
|
---|
| 856 | from matplotlib.numerix import array, pi
|
---|
[1556] | 857 | dates = self._data.get_time(asdatetime=True)
|
---|
[1391] | 858 | t = PL.date2num(dates)
|
---|
| 859 | tz = timezone('UTC')
|
---|
| 860 | PL.cla()
|
---|
| 861 | PL.ioff()
|
---|
| 862 | PL.clf()
|
---|
| 863 | tdel = max(t) - min(t)
|
---|
| 864 | ax = PL.subplot(2,1,1)
|
---|
| 865 | el = array(self._data.get_elevation())*180./pi
|
---|
| 866 | PL.ylabel('El [deg.]')
|
---|
| 867 | dstr = dates[0].strftime('%Y/%m/%d')
|
---|
| 868 | if tdel > 1.0:
|
---|
| 869 | dstr2 = dates[len(dates)-1].strftime('%Y/%m/%d')
|
---|
| 870 | dstr = dstr + " - " + dstr2
|
---|
| 871 | majloc = DayLocator()
|
---|
| 872 | minloc = HourLocator(range(0,23,12))
|
---|
| 873 | timefmt = DateFormatter("%b%d")
|
---|
| 874 | else:
|
---|
| 875 | timefmt = DateFormatter('%H')
|
---|
| 876 | majloc = HourLocator()
|
---|
| 877 | minloc = MinuteLocator(20)
|
---|
| 878 | PL.title(dstr)
|
---|
| 879 | PL.plot_date(t,el,'b,', tz=tz)
|
---|
| 880 | #ax.grid(True)
|
---|
| 881 | ax.yaxis.grid(True)
|
---|
| 882 | yloc = MultipleLocator(30)
|
---|
| 883 | ax.set_ylim(0,90)
|
---|
| 884 | ax.xaxis.set_major_formatter(timefmt)
|
---|
| 885 | ax.xaxis.set_major_locator(majloc)
|
---|
| 886 | ax.xaxis.set_minor_locator(minloc)
|
---|
| 887 | ax.yaxis.set_major_locator(yloc)
|
---|
| 888 | if tdel > 1.0:
|
---|
| 889 | labels = ax.get_xticklabels()
|
---|
| 890 | # PL.setp(labels, fontsize=10, rotation=45)
|
---|
| 891 | PL.setp(labels, fontsize=10)
|
---|
| 892 | # Az plot
|
---|
| 893 | az = array(self._data.get_azimuth())*180./pi
|
---|
| 894 | if min(az) < 0:
|
---|
| 895 | for irow in range(len(az)):
|
---|
| 896 | if az[irow] < 0: az[irow] += 360.0
|
---|
| 897 |
|
---|
| 898 | ax = PL.subplot(2,1,2)
|
---|
| 899 | PL.xlabel('Time (UT)')
|
---|
| 900 | PL.ylabel('Az [deg.]')
|
---|
| 901 | PL.plot_date(t,az,'b,', tz=tz)
|
---|
| 902 | ax.set_ylim(0,360)
|
---|
| 903 | #ax.grid(True)
|
---|
| 904 | ax.yaxis.grid(True)
|
---|
| 905 | #hfmt = DateFormatter('%H')
|
---|
| 906 | #hloc = HourLocator()
|
---|
| 907 | yloc = MultipleLocator(60)
|
---|
| 908 | ax.xaxis.set_major_formatter(timefmt)
|
---|
| 909 | ax.xaxis.set_major_locator(majloc)
|
---|
| 910 | ax.xaxis.set_minor_locator(minloc)
|
---|
| 911 | ax.yaxis.set_major_locator(yloc)
|
---|
| 912 | if tdel > 1.0:
|
---|
| 913 | labels = ax.get_xticklabels()
|
---|
| 914 | PL.setp(labels, fontsize=10)
|
---|
| 915 | PL.ion()
|
---|
| 916 | PL.draw()
|
---|
| 917 |
|
---|
[1556] | 918 | def plotpointing(self):
|
---|
[1391] | 919 | """
|
---|
| 920 | plot telescope pointings
|
---|
| 921 | """
|
---|
| 922 | import pylab as PL
|
---|
| 923 | from matplotlib.dates import DateFormatter, timezone
|
---|
| 924 | from matplotlib.ticker import MultipleLocator
|
---|
| 925 | from matplotlib.numerix import array, pi, zeros
|
---|
| 926 | dir = array(self._data.get_directionval()).transpose()
|
---|
| 927 | ra = dir[0]*180./pi
|
---|
| 928 | dec = dir[1]*180./pi
|
---|
| 929 | PL.cla()
|
---|
| 930 | PL.ioff()
|
---|
| 931 | PL.clf()
|
---|
| 932 | ax = PL.axes([0.1,0.1,0.8,0.8])
|
---|
| 933 | ax = PL.axes([0.1,0.1,0.8,0.8])
|
---|
| 934 | ax.set_aspect('equal')
|
---|
| 935 | PL.plot(ra,dec, 'b,')
|
---|
| 936 | PL.xlabel('RA [deg.]')
|
---|
| 937 | PL.ylabel('Declination [deg.]')
|
---|
| 938 | PL.title('Telescope pointings')
|
---|
| 939 | [xmin,xmax,ymin,ymax] = PL.axis()
|
---|
| 940 | PL.axis([xmax,xmin,ymin,ymax])
|
---|
| 941 | PL.ion()
|
---|
| 942 | PL.draw()
|
---|
| 943 |
|
---|