[947] | 1 | from asap import rcParams, print_log, selector
|
---|
[709] | 2 | from numarray import logical_and
|
---|
[203] | 3 |
|
---|
| 4 | class asapplotter:
|
---|
[226] | 5 | """
|
---|
| 6 | The ASAP plotter.
|
---|
| 7 | By default the plotter is set up to plot polarisations
|
---|
| 8 | 'colour stacked' and scantables across panels.
|
---|
| 9 | Note:
|
---|
| 10 | Currenly it only plots 'spectra' not Tsys or
|
---|
| 11 | other variables.
|
---|
| 12 | """
|
---|
[734] | 13 | def __init__(self, visible=None):
|
---|
| 14 | self._visible = rcParams['plotter.gui']
|
---|
| 15 | if visible is not None:
|
---|
| 16 | self._visible = visible
|
---|
[710] | 17 | self._plotter = self._newplotter()
|
---|
| 18 |
|
---|
[920] | 19 |
|
---|
[554] | 20 | self._panelling = None
|
---|
| 21 | self._stacking = None
|
---|
| 22 | self.set_panelling()
|
---|
| 23 | self.set_stacking()
|
---|
[377] | 24 | self._rows = None
|
---|
| 25 | self._cols = None
|
---|
[203] | 26 | self._autoplot = False
|
---|
[525] | 27 | self._minmaxx = None
|
---|
| 28 | self._minmaxy = None
|
---|
[710] | 29 | self._datamask = None
|
---|
[203] | 30 | self._data = None
|
---|
[607] | 31 | self._lmap = None
|
---|
[226] | 32 | self._title = None
|
---|
[257] | 33 | self._ordinate = None
|
---|
| 34 | self._abcissa = None
|
---|
[709] | 35 | self._abcunit = None
|
---|
[920] | 36 | self._usermask = []
|
---|
| 37 | self._maskselection = None
|
---|
| 38 | self._selection = selector()
|
---|
[1023] | 39 | self._hist = rcParams['plotter.histogram']
|
---|
| 40 |
|
---|
[920] | 41 | def _translate(self, instr):
|
---|
| 42 | keys = "s b i p t".split()
|
---|
| 43 | if isinstance(instr, str):
|
---|
| 44 | for key in keys:
|
---|
| 45 | if instr.lower().startswith(key):
|
---|
| 46 | return key
|
---|
| 47 | return None
|
---|
| 48 |
|
---|
[710] | 49 | def _newplotter(self):
|
---|
| 50 | if self._visible:
|
---|
| 51 | from asap.asaplotgui import asaplotgui as asaplot
|
---|
| 52 | else:
|
---|
| 53 | from asap.asaplot import asaplot
|
---|
| 54 | return asaplot()
|
---|
| 55 |
|
---|
| 56 |
|
---|
[935] | 57 | def plot(self, scan=None):
|
---|
[203] | 58 | """
|
---|
[920] | 59 | Plot a scantable.
|
---|
[203] | 60 | Parameters:
|
---|
[920] | 61 | scan: a scantable
|
---|
[203] | 62 | Note:
|
---|
[920] | 63 | If a scantable was specified in a previous call
|
---|
[203] | 64 | to plot, no argument has to be given to 'replot'
|
---|
[920] | 65 | NO checking is done that the abcissas of the scantable
|
---|
[203] | 66 | are consistent e.g. all 'channel' or all 'velocity' etc.
|
---|
| 67 | """
|
---|
[710] | 68 | if self._plotter.is_dead:
|
---|
| 69 | self._plotter = self._newplotter()
|
---|
[600] | 70 | self._plotter.hold()
|
---|
[203] | 71 | self._plotter.clear()
|
---|
[920] | 72 | from asap import scantable
|
---|
[935] | 73 | if not self._data and not scan:
|
---|
| 74 | print "please provide a scantable to plot"
|
---|
[920] | 75 | if isinstance(scan, scantable):
|
---|
[709] | 76 | if self._data is not None:
|
---|
[920] | 77 | if scan != self._data:
|
---|
| 78 | self._data = scan
|
---|
[710] | 79 | # reset
|
---|
| 80 | self._reset()
|
---|
[525] | 81 | else:
|
---|
[920] | 82 | self._data = scan
|
---|
[710] | 83 | self._reset()
|
---|
[709] | 84 | # ranges become invalid when unit changes
|
---|
[935] | 85 | if self._abcunit and self._abcunit != self._data.get_unit():
|
---|
[709] | 86 | self._minmaxx = None
|
---|
| 87 | self._minmaxy = None
|
---|
[920] | 88 | self._abcunit = self._data.get_unit()
|
---|
[710] | 89 | self._datamask = None
|
---|
[920] | 90 | self._plot(self._data)
|
---|
[709] | 91 | if self._minmaxy is not None:
|
---|
| 92 | self._plotter.set_limits(ylim=self._minmaxy)
|
---|
[203] | 93 | self._plotter.release()
|
---|
[753] | 94 | print_log()
|
---|
[203] | 95 | return
|
---|
| 96 |
|
---|
[226] | 97 | def set_mode(self, stacking=None, panelling=None):
|
---|
[203] | 98 | """
|
---|
[377] | 99 | Set the plots look and feel, i.e. what you want to see on the plot.
|
---|
[203] | 100 | Parameters:
|
---|
| 101 | stacking: tell the plotter which variable to plot
|
---|
[710] | 102 | as line color overlays (default 'pol')
|
---|
[203] | 103 | panelling: tell the plotter which variable to plot
|
---|
| 104 | across multiple panels (default 'scan'
|
---|
| 105 | Note:
|
---|
| 106 | Valid modes are:
|
---|
| 107 | 'beam' 'Beam' 'b': Beams
|
---|
| 108 | 'if' 'IF' 'i': IFs
|
---|
| 109 | 'pol' 'Pol' 'p': Polarisations
|
---|
| 110 | 'scan' 'Scan' 's': Scans
|
---|
| 111 | 'time' 'Time' 't': Times
|
---|
| 112 | """
|
---|
[753] | 113 | msg = "Invalid mode"
|
---|
| 114 | if not self.set_panelling(panelling) or \
|
---|
| 115 | not self.set_stacking(stacking):
|
---|
| 116 | if rcParams['verbose']:
|
---|
| 117 | print msg
|
---|
| 118 | return
|
---|
| 119 | else:
|
---|
| 120 | raise TypeError(msg)
|
---|
[920] | 121 | if self._data: self.plot(self._data)
|
---|
[203] | 122 | return
|
---|
| 123 |
|
---|
[554] | 124 | def set_panelling(self, what=None):
|
---|
| 125 | mode = what
|
---|
| 126 | if mode is None:
|
---|
| 127 | mode = rcParams['plotter.panelling']
|
---|
| 128 | md = self._translate(mode)
|
---|
[203] | 129 | if md:
|
---|
[554] | 130 | self._panelling = md
|
---|
[226] | 131 | self._title = None
|
---|
[203] | 132 | return True
|
---|
| 133 | return False
|
---|
| 134 |
|
---|
[377] | 135 | def set_layout(self,rows=None,cols=None):
|
---|
| 136 | """
|
---|
| 137 | Set the multi-panel layout, i.e. how many rows and columns plots
|
---|
| 138 | are visible.
|
---|
| 139 | Parameters:
|
---|
| 140 | rows: The number of rows of plots
|
---|
| 141 | cols: The number of columns of plots
|
---|
| 142 | Note:
|
---|
| 143 | If no argument is given, the potter reverts to its auto-plot
|
---|
| 144 | behaviour.
|
---|
| 145 | """
|
---|
| 146 | self._rows = rows
|
---|
| 147 | self._cols = cols
|
---|
[920] | 148 | if self._data: self.plot(self._data)
|
---|
[377] | 149 | return
|
---|
| 150 |
|
---|
[709] | 151 | def set_stacking(self, what=None):
|
---|
[554] | 152 | mode = what
|
---|
[709] | 153 | if mode is None:
|
---|
| 154 | mode = rcParams['plotter.stacking']
|
---|
[554] | 155 | md = self._translate(mode)
|
---|
[203] | 156 | if md:
|
---|
| 157 | self._stacking = md
|
---|
[226] | 158 | self._lmap = None
|
---|
[203] | 159 | return True
|
---|
| 160 | return False
|
---|
| 161 |
|
---|
[525] | 162 | def set_range(self,xstart=None,xend=None,ystart=None,yend=None):
|
---|
[203] | 163 | """
|
---|
| 164 | Set the range of interest on the abcissa of the plot
|
---|
| 165 | Parameters:
|
---|
[525] | 166 | [x,y]start,[x,y]end: The start and end points of the 'zoom' window
|
---|
[203] | 167 | Note:
|
---|
| 168 | These become non-sensical when the unit changes.
|
---|
| 169 | use plotter.set_range() without parameters to reset
|
---|
| 170 |
|
---|
| 171 | """
|
---|
[525] | 172 | if xstart is None and xend is None:
|
---|
| 173 | self._minmaxx = None
|
---|
[600] | 174 | else:
|
---|
| 175 | self._minmaxx = [xstart,xend]
|
---|
[525] | 176 | if ystart is None and yend is None:
|
---|
| 177 | self._minmaxy = None
|
---|
[600] | 178 | else:
|
---|
[709] | 179 | self._minmaxy = [ystart,yend]
|
---|
[920] | 180 | if self._data: self.plot(self._data)
|
---|
[203] | 181 | return
|
---|
[709] | 182 |
|
---|
[257] | 183 | def set_legend(self, mp=None):
|
---|
[203] | 184 | """
|
---|
| 185 | Specify a mapping for the legend instead of using the default
|
---|
| 186 | indices:
|
---|
| 187 | Parameters:
|
---|
| 188 | mp: a list of 'strings'. This should have the same length
|
---|
| 189 | as the number of elements on the legend and then maps
|
---|
[710] | 190 | to the indeces in order. It is possible to uses latex
|
---|
| 191 | math expression. These have to be enclosed in r'', e.g. r'$x^{2}$'
|
---|
[203] | 192 |
|
---|
| 193 | Example:
|
---|
[485] | 194 | If the data has two IFs/rest frequencies with index 0 and 1
|
---|
[203] | 195 | for CO and SiO:
|
---|
| 196 | plotter.set_stacking('i')
|
---|
[710] | 197 | plotter.set_legend(['CO','SiO'])
|
---|
[203] | 198 | plotter.plot()
|
---|
[710] | 199 | plotter.set_legend([r'$^{12}CO$', r'SiO'])
|
---|
[203] | 200 | """
|
---|
| 201 | self._lmap = mp
|
---|
[920] | 202 | if self._data: self.plot(self._data)
|
---|
[226] | 203 | return
|
---|
| 204 |
|
---|
| 205 | def set_title(self, title=None):
|
---|
[710] | 206 | """
|
---|
| 207 | Set the title of the plot. If multiple panels are plotted,
|
---|
| 208 | multiple titles have to be specified.
|
---|
| 209 | Example:
|
---|
| 210 | # two panels are visible on the plotter
|
---|
| 211 | plotter.set_title(["First Panel","Second Panel"])
|
---|
| 212 | """
|
---|
[226] | 213 | self._title = title
|
---|
[920] | 214 | if self._data: self.plot(self._data)
|
---|
[226] | 215 | return
|
---|
| 216 |
|
---|
[257] | 217 | def set_ordinate(self, ordinate=None):
|
---|
[710] | 218 | """
|
---|
| 219 | Set the y-axis label of the plot. If multiple panels are plotted,
|
---|
| 220 | multiple labels have to be specified.
|
---|
[1021] | 221 | Parameters:
|
---|
| 222 | ordinate: a list of ordinate labels. None (default) let
|
---|
| 223 | data determine the labels
|
---|
[710] | 224 | Example:
|
---|
| 225 | # two panels are visible on the plotter
|
---|
| 226 | plotter.set_ordinate(["First Y-Axis","Second Y-Axis"])
|
---|
| 227 | """
|
---|
[257] | 228 | self._ordinate = ordinate
|
---|
[920] | 229 | if self._data: self.plot(self._data)
|
---|
[257] | 230 | return
|
---|
| 231 |
|
---|
| 232 | def set_abcissa(self, abcissa=None):
|
---|
[710] | 233 | """
|
---|
| 234 | Set the x-axis label of the plot. If multiple panels are plotted,
|
---|
| 235 | multiple labels have to be specified.
|
---|
[1021] | 236 | Parameters:
|
---|
| 237 | abcissa: a list of abcissa labels. None (default) let
|
---|
| 238 | data determine the labels
|
---|
[710] | 239 | Example:
|
---|
| 240 | # two panels are visible on the plotter
|
---|
| 241 | plotter.set_ordinate(["First X-Axis","Second X-Axis"])
|
---|
| 242 | """
|
---|
[257] | 243 | self._abcissa = abcissa
|
---|
[920] | 244 | if self._data: self.plot(self._data)
|
---|
[257] | 245 | return
|
---|
| 246 |
|
---|
[710] | 247 | def set_colors(self, colormap):
|
---|
[377] | 248 | """
|
---|
[710] | 249 | Set the colors to be used. The plotter will cycle through
|
---|
| 250 | these colors when lines are overlaid (stacking mode).
|
---|
[1021] | 251 | Parameters:
|
---|
| 252 | colormap: a list of colour names
|
---|
[710] | 253 | Example:
|
---|
| 254 | plotter.set_colors("red green blue")
|
---|
| 255 | # If for example four lines are overlaid e.g I Q U V
|
---|
| 256 | # 'I' will be 'red', 'Q' will be 'green', U will be 'blue'
|
---|
| 257 | # and 'V' will be 'red' again.
|
---|
| 258 | """
|
---|
| 259 | if isinstance(colormap,str):
|
---|
| 260 | colormap = colormap.split()
|
---|
| 261 | self._plotter.palette(0,colormap=colormap)
|
---|
[920] | 262 | if self._data: self.plot(self._data)
|
---|
[710] | 263 |
|
---|
[1021] | 264 | def set_histogram(self, hist=True):
|
---|
| 265 | """
|
---|
| 266 | Enable/Disable histogram-like plotting.
|
---|
| 267 | Parameters:
|
---|
| 268 | hist: True (default) or False. The fisrt default
|
---|
| 269 | is taken from the .asaprc setting
|
---|
| 270 | plotter.histogram
|
---|
| 271 | """
|
---|
[1023] | 272 | self._hist = hist
|
---|
[1021] | 273 | if self._data: self.plot(self._data)
|
---|
[1023] | 274 |
|
---|
[710] | 275 | def set_linestyles(self, linestyles):
|
---|
| 276 | """
|
---|
[734] | 277 | Set the linestyles to be used. The plotter will cycle through
|
---|
| 278 | these linestyles when lines are overlaid (stacking mode) AND
|
---|
| 279 | only one color has been set.
|
---|
[710] | 280 | Parameters:
|
---|
| 281 | linestyles: a list of linestyles to use.
|
---|
| 282 | 'line', 'dashed', 'dotted', 'dashdot',
|
---|
| 283 | 'dashdotdot' and 'dashdashdot' are
|
---|
| 284 | possible
|
---|
| 285 |
|
---|
| 286 | Example:
|
---|
| 287 | plotter.set_colors("black")
|
---|
| 288 | plotter.set_linestyles("line dashed dotted dashdot")
|
---|
| 289 | # If for example four lines are overlaid e.g I Q U V
|
---|
| 290 | # 'I' will be 'solid', 'Q' will be 'dashed',
|
---|
| 291 | # U will be 'dotted' and 'V' will be 'dashdot'.
|
---|
| 292 | """
|
---|
| 293 | if isinstance(linestyles,str):
|
---|
| 294 | linestyles = linestyles.split()
|
---|
| 295 | self._plotter.palette(color=0,linestyle=0,linestyles=linestyles)
|
---|
[920] | 296 | if self._data: self.plot(self._data)
|
---|
[710] | 297 |
|
---|
| 298 | def save(self, filename=None, orientation=None, dpi=None):
|
---|
| 299 | """
|
---|
[377] | 300 | Save the plot to a file. The know formats are 'png', 'ps', 'eps'.
|
---|
| 301 | Parameters:
|
---|
| 302 | filename: The name of the output file. This is optional
|
---|
| 303 | and autodetects the image format from the file
|
---|
| 304 | suffix. If non filename is specified a file
|
---|
| 305 | called 'yyyymmdd_hhmmss.png' is created in the
|
---|
| 306 | current directory.
|
---|
[709] | 307 | orientation: optional parameter for postscript only (not eps).
|
---|
| 308 | 'landscape', 'portrait' or None (default) are valid.
|
---|
| 309 | If None is choosen for 'ps' output, the plot is
|
---|
| 310 | automatically oriented to fill the page.
|
---|
[710] | 311 | dpi: The dpi of the output non-ps plot
|
---|
[377] | 312 | """
|
---|
[709] | 313 | self._plotter.save(filename,orientation,dpi)
|
---|
[377] | 314 | return
|
---|
[709] | 315 |
|
---|
[257] | 316 |
|
---|
[920] | 317 | def set_mask(self, mask=None, selection=None):
|
---|
[525] | 318 | """
|
---|
[734] | 319 | Set a plotting mask for a specific polarization.
|
---|
| 320 | This is useful for masking out "noise" Pangle outside a source.
|
---|
| 321 | Parameters:
|
---|
[920] | 322 | mask: a mask from scantable.create_mask
|
---|
| 323 | selection: the spectra to apply the mask to.
|
---|
[734] | 324 | Example:
|
---|
[920] | 325 | select = selector()
|
---|
| 326 | select.setpolstrings("Pangle")
|
---|
| 327 | plotter.set_mask(mymask, select)
|
---|
[734] | 328 | """
|
---|
[710] | 329 | if not self._data:
|
---|
[920] | 330 | msg = "Can only set mask after a first call to plot()"
|
---|
[753] | 331 | if rcParams['verbose']:
|
---|
| 332 | print msg
|
---|
[762] | 333 | return
|
---|
[753] | 334 | else:
|
---|
[762] | 335 | raise RuntimeError(msg)
|
---|
[920] | 336 | if len(mask):
|
---|
| 337 | if isinstance(mask, list) or isinstance(mask, tuple):
|
---|
| 338 | self._usermask = array(mask)
|
---|
[710] | 339 | else:
|
---|
[920] | 340 | self._usermask = mask
|
---|
| 341 | if mask is None and selection is None:
|
---|
| 342 | self._usermask = []
|
---|
| 343 | self._maskselection = None
|
---|
| 344 | if isinstance(selection, selector):
|
---|
[947] | 345 | self._maskselection = {'b': selection.get_beams(),
|
---|
| 346 | 's': selection.get_scans(),
|
---|
| 347 | 'i': selection.get_ifs(),
|
---|
| 348 | 'p': selection.get_pols(),
|
---|
[920] | 349 | 't': [] }
|
---|
[710] | 350 | else:
|
---|
[920] | 351 | self._maskselection = None
|
---|
| 352 | self.plot(self._data)
|
---|
[710] | 353 |
|
---|
[709] | 354 | def _slice_indeces(self, data):
|
---|
| 355 | mn = self._minmaxx[0]
|
---|
| 356 | mx = self._minmaxx[1]
|
---|
| 357 | asc = data[0] < data[-1]
|
---|
| 358 | start=0
|
---|
| 359 | end = len(data)-1
|
---|
| 360 | inc = 1
|
---|
| 361 | if not asc:
|
---|
| 362 | start = len(data)-1
|
---|
| 363 | end = 0
|
---|
| 364 | inc = -1
|
---|
| 365 | # find min index
|
---|
| 366 | while data[start] < mn:
|
---|
| 367 | start+= inc
|
---|
| 368 | # find max index
|
---|
| 369 | while data[end] > mx:
|
---|
| 370 | end-=inc
|
---|
| 371 | end +=1
|
---|
| 372 | if start > end:
|
---|
| 373 | return end,start
|
---|
| 374 | return start,end
|
---|
| 375 |
|
---|
[710] | 376 | def _reset(self):
|
---|
[920] | 377 | self._usermask = []
|
---|
[710] | 378 | self._usermaskspectra = None
|
---|
[920] | 379 | self.set_selection(None, False)
|
---|
| 380 |
|
---|
| 381 | def _plot(self, scan):
|
---|
[947] | 382 | savesel = scan.get_selection()
|
---|
| 383 | sel = savesel + self._selection
|
---|
| 384 | d0 = {'s': 'SCANNO', 'b': 'BEAMNO', 'i':'IFNO',
|
---|
| 385 | 'p': 'POLNO', 'c': 'CYCLENO', 't' : 'TIME' }
|
---|
| 386 | order = [d0[self._panelling],d0[self._stacking]]
|
---|
| 387 | sel.set_order(order)
|
---|
| 388 | scan.set_selection(sel)
|
---|
[920] | 389 | d = {'b': scan.getbeam, 's': scan.getscan,
|
---|
| 390 | 'i': scan.getif, 'p': scan.getpol, 't': scan._gettime }
|
---|
| 391 |
|
---|
[947] | 392 | polmodes = dict(zip(self._selection.get_pols(),self._selection.get_poltypes()))
|
---|
[920] | 393 | n,nstack = self._get_selected_n(scan)
|
---|
[998] | 394 | maxpanel, maxstack = 16,8
|
---|
[920] | 395 | if n > maxpanel or nstack > maxstack:
|
---|
| 396 | from asap import asaplog
|
---|
| 397 | msg ="Scan to be plotted contains more than %d selections.\n" \
|
---|
| 398 | "Selecting first %d selections..." % (maxpanel,maxpanel)
|
---|
| 399 | asaplog.push(msg)
|
---|
| 400 | print_log()
|
---|
| 401 | n = min(n,maxpanel)
|
---|
[998] | 402 | nstack = min(nstack,maxstack)
|
---|
[920] | 403 |
|
---|
| 404 | if n > 1:
|
---|
| 405 | ganged = rcParams['plotter.ganged']
|
---|
| 406 | if self._rows and self._cols:
|
---|
| 407 | n = min(n,self._rows*self._cols)
|
---|
| 408 | self._plotter.set_panels(rows=self._rows,cols=self._cols,
|
---|
| 409 | nplots=n,ganged=ganged)
|
---|
| 410 | else:
|
---|
| 411 | self._plotter.set_panels(rows=n,cols=0,nplots=n,ganged=ganged)
|
---|
| 412 | else:
|
---|
| 413 | self._plotter.set_panels()
|
---|
| 414 | r=0
|
---|
| 415 | nr = scan.nrow()
|
---|
| 416 | a0,b0 = -1,-1
|
---|
| 417 | allxlim = []
|
---|
[1018] | 418 | allylim = []
|
---|
[920] | 419 | newpanel=True
|
---|
| 420 | panelcount,stackcount = 0,0
|
---|
[1002] | 421 | while r < nr:
|
---|
[920] | 422 | a = d[self._panelling](r)
|
---|
| 423 | b = d[self._stacking](r)
|
---|
| 424 | if a > a0 and panelcount < n:
|
---|
| 425 | if n > 1:
|
---|
| 426 | self._plotter.subplot(panelcount)
|
---|
| 427 | self._plotter.palette(0)
|
---|
| 428 | #title
|
---|
| 429 | xlab = self._abcissa and self._abcissa[panelcount] \
|
---|
| 430 | or scan._getabcissalabel()
|
---|
| 431 | ylab = self._ordinate and self._ordinate[panelcount] \
|
---|
| 432 | or scan._get_ordinate_label()
|
---|
| 433 | self._plotter.set_axes('xlabel',xlab)
|
---|
| 434 | self._plotter.set_axes('ylabel',ylab)
|
---|
| 435 | lbl = self._get_label(scan, r, self._panelling, self._title)
|
---|
| 436 | if isinstance(lbl, list) or isinstance(lbl, tuple):
|
---|
| 437 | if 0 <= panelcount < len(lbl):
|
---|
| 438 | lbl = lbl[panelcount]
|
---|
| 439 | else:
|
---|
| 440 | # get default label
|
---|
| 441 | lbl = self._get_label(scan, r, self._panelling, None)
|
---|
| 442 | self._plotter.set_axes('title',lbl)
|
---|
| 443 | newpanel = True
|
---|
| 444 | stackcount =0
|
---|
| 445 | panelcount += 1
|
---|
| 446 | if (b > b0 or newpanel) and stackcount < nstack:
|
---|
| 447 | y = []
|
---|
| 448 | if len(polmodes):
|
---|
| 449 | y = scan._getspectrum(r, polmodes[scan.getpol(r)])
|
---|
| 450 | else:
|
---|
| 451 | y = scan._getspectrum(r)
|
---|
| 452 | m = scan._getmask(r)
|
---|
| 453 | if self._maskselection and len(self._usermask) == len(m):
|
---|
| 454 | if d[self._stacking](r) in self._maskselection[self._stacking]:
|
---|
| 455 | m = logical_and(m, self._usermask)
|
---|
| 456 | x = scan._getabcissa(r)
|
---|
[1087] | 457 | from matplotlib.numerix import ma,logical_not,array
|
---|
| 458 | y = ma.MA.MaskedArray(y,mask=logical_not(array(m,copy=0)),copy=0)
|
---|
[920] | 459 | if self._minmaxx is not None:
|
---|
| 460 | s,e = self._slice_indeces(x)
|
---|
| 461 | x = x[s:e]
|
---|
| 462 | y = y[s:e]
|
---|
[1021] | 463 | if len(x) > 2048 and rcParams['plotter.decimate']:
|
---|
| 464 | fac = len(x)/2048
|
---|
[920] | 465 | x = x[::fac]
|
---|
| 466 | y = y[::fac]
|
---|
| 467 | llbl = self._get_label(scan, r, self._stacking, self._lmap)
|
---|
| 468 | if isinstance(llbl, list) or isinstance(llbl, tuple):
|
---|
| 469 | if 0 <= stackcount < len(llbl):
|
---|
| 470 | # use user label
|
---|
| 471 | llbl = llbl[stackcount]
|
---|
| 472 | else:
|
---|
| 473 | # get default label
|
---|
| 474 | llbl = self._get_label(scan, r, self._stacking, None)
|
---|
| 475 | self._plotter.set_line(label=llbl)
|
---|
[1023] | 476 | plotit = self._plotter.plot
|
---|
| 477 | if self._hist: plotit = self._plotter.hist
|
---|
[1087] | 478 | plotit(x,y)
|
---|
[920] | 479 | xlim= self._minmaxx or [min(x),max(x)]
|
---|
| 480 | allxlim += xlim
|
---|
[1087] | 481 | ylim= self._minmaxy or [ma.MA.minimum(y),ma.MA.maximum(y)]
|
---|
[1018] | 482 | allylim += ylim
|
---|
[920] | 483 | stackcount += 1
|
---|
| 484 | # last in colour stack -> autoscale x
|
---|
| 485 | if stackcount == nstack:
|
---|
| 486 | allxlim.sort()
|
---|
| 487 | self._plotter.axes.set_xlim([allxlim[0],allxlim[-1]])
|
---|
| 488 | # clear
|
---|
| 489 | allxlim =[]
|
---|
| 490 |
|
---|
| 491 | newpanel = False
|
---|
| 492 | a0=a
|
---|
| 493 | b0=b
|
---|
| 494 | # ignore following rows
|
---|
| 495 | if (panelcount == n) and (stackcount == nstack):
|
---|
[1018] | 496 | # last panel -> autoscale y if ganged
|
---|
| 497 | if rcParams['plotter.ganged']:
|
---|
| 498 | allylim.sort()
|
---|
| 499 | self._plotter.set_limits(ylim=[allylim[0],allylim[-1]])
|
---|
[998] | 500 | break
|
---|
[920] | 501 | r+=1 # next row
|
---|
[947] | 502 | #reset the selector to the scantable's original
|
---|
| 503 | scan.set_selection(savesel)
|
---|
[920] | 504 |
|
---|
| 505 | def set_selection(self, selection=None, refresh=True):
|
---|
[947] | 506 | self._selection = isinstance(selection,selector) and selection or selector()
|
---|
[920] | 507 | d0 = {'s': 'SCANNO', 'b': 'BEAMNO', 'i':'IFNO',
|
---|
| 508 | 'p': 'POLNO', 'c': 'CYCLENO', 't' : 'TIME' }
|
---|
| 509 | order = [d0[self._panelling],d0[self._stacking]]
|
---|
[947] | 510 | self._selection.set_order(order)
|
---|
[920] | 511 | if self._data and refresh: self.plot(self._data)
|
---|
| 512 |
|
---|
| 513 | def _get_selected_n(self, scan):
|
---|
| 514 | d1 = {'b': scan.nbeam, 's': scan.nscan,
|
---|
| 515 | 'i': scan.nif, 'p': scan.npol, 't': scan.ncycle }
|
---|
[947] | 516 | d2 = { 'b': len(self._selection.get_beams()),
|
---|
| 517 | 's': len(self._selection.get_scans()),
|
---|
| 518 | 'i': len(self._selection.get_ifs()),
|
---|
| 519 | 'p': len(self._selection.get_pols()),
|
---|
| 520 | 't': len(self._selection.get_cycles()) }
|
---|
[920] | 521 | n = d2[self._panelling] or d1[self._panelling]()
|
---|
| 522 | nstack = d2[self._stacking] or d1[self._stacking]()
|
---|
| 523 | return n,nstack
|
---|
| 524 |
|
---|
| 525 | def _get_label(self, scan, row, mode, userlabel=None):
|
---|
[947] | 526 | pms = dict(zip(self._selection.get_pols(),self._selection.get_poltypes()))
|
---|
[920] | 527 | if len(pms):
|
---|
| 528 | poleval = scan._getpollabel(scan.getpol(row),pms[scan.getpol(row)])
|
---|
| 529 | else:
|
---|
| 530 | poleval = scan._getpollabel(scan.getpol(row),scan.poltype())
|
---|
| 531 | d = {'b': "Beam "+str(scan.getbeam(row)),
|
---|
| 532 | 's': scan._getsourcename(row),
|
---|
| 533 | 'i': "IF"+str(scan.getif(row)),
|
---|
[964] | 534 | 'p': poleval,
|
---|
[920] | 535 | 't': scan._gettime(row) }
|
---|
| 536 | return userlabel or d[mode]
|
---|