1 | from scantable import scantable
|
---|
2 |
|
---|
3 | def average_time(*args, **kwargs):
|
---|
4 | """
|
---|
5 | Return the (time) average of a scan or list of scans. [in channels only]
|
---|
6 | Parameters:
|
---|
7 | one scan or comma separated scans
|
---|
8 | mask: an optional mask (only used for 'var' and 'tsys' weighting)
|
---|
9 | scanav: False (default) averages all scans together,
|
---|
10 | True averages each scan separately
|
---|
11 | weight: Weighting scheme. 'none' (default), 'var' (variance
|
---|
12 | weighted), 'tsys'
|
---|
13 | Example:
|
---|
14 | # return a time averaged scan from scana and scanb
|
---|
15 | # without using a mask
|
---|
16 | scanav = average_time(scana,scanb)
|
---|
17 | # return the (time) averaged scan, i.e. the average of
|
---|
18 | # all correlator cycles
|
---|
19 | scanav = average_time(scan)
|
---|
20 |
|
---|
21 | """
|
---|
22 | scanAv = False
|
---|
23 | if kwargs.has_key('scanav'):
|
---|
24 | scanAv = kwargs.get('scanav')
|
---|
25 | #
|
---|
26 | weight = 'none'
|
---|
27 | if kwargs.has_key('weight'):
|
---|
28 | weight = kwargs.get('weight')
|
---|
29 | #
|
---|
30 | mask = ()
|
---|
31 | if kwargs.has_key('mask'):
|
---|
32 | mask = kwargs.get('mask')
|
---|
33 | #
|
---|
34 | lst = tuple(args)
|
---|
35 | from asap._asap import average as _av
|
---|
36 | for s in lst:
|
---|
37 | if not isinstance(s,scantable):
|
---|
38 | print "Please give a list of scantables"
|
---|
39 | return
|
---|
40 | return scantable(_av(lst, mask, scanAv, weight))
|
---|
41 |
|
---|
42 | def quotient(source, reference):
|
---|
43 | """
|
---|
44 | Return the quotient of a 'source' scan and a 'reference' scan
|
---|
45 | Parameters:
|
---|
46 | source: the 'on' scan
|
---|
47 | reference: the 'off' scan
|
---|
48 | """
|
---|
49 | from asap._asap import quotient as _quot
|
---|
50 | return scantable(_quot(source, reference))
|
---|
51 |
|
---|
52 | def scale(scan, factor, insitu=False, all=True):
|
---|
53 | """
|
---|
54 | Return a scan where all spectra are scaled by the give 'factor'
|
---|
55 | Parameters:
|
---|
56 | scan: a scantable
|
---|
57 | factor: the scaling factor
|
---|
58 | insitu: if False (default) a new scantable is returned.
|
---|
59 | Otherwise, the scaling is done in-situ
|
---|
60 | all: if True (default) apply to all spectra. Otherwise
|
---|
61 | apply only to the selected (beam/pol/if)spectra only
|
---|
62 | """
|
---|
63 | if not insitu:
|
---|
64 | from asap._asap import scale as _scale
|
---|
65 | return scantable(_scale(scan, factor, all))
|
---|
66 | else:
|
---|
67 | from asap._asap import scale_insitu as _scale
|
---|
68 | _scale(scan, factor, all)
|
---|
69 | return
|
---|
70 |
|
---|
71 |
|
---|
72 | def add(scan, offset, insitu=False, all=True):
|
---|
73 | """
|
---|
74 | Return a scan where all spectra have the offset added
|
---|
75 | Parameters:
|
---|
76 | scan: a scantable
|
---|
77 | offset: the offset
|
---|
78 | insitu: if False (default) a new scantable is returned.
|
---|
79 | Otherwise, the addition is done in-situ
|
---|
80 | all: if True (default) apply to all spectra. Otherwise
|
---|
81 | apply only to the selected (beam/pol/if)spectra only
|
---|
82 | """
|
---|
83 | if not insitu:
|
---|
84 | from asap._asap import add as _add
|
---|
85 | return scantable(_add(scan, offset, all))
|
---|
86 | else:
|
---|
87 | from asap._asap import add_insitu as _add
|
---|
88 | _add(scan, offset, all)
|
---|
89 | return
|
---|
90 |
|
---|
91 | def bin(scan, binwidth=5):
|
---|
92 | """
|
---|
93 | """
|
---|
94 | from asap._asap import bin as _bin
|
---|
95 | return scantable(_bin(scan, binwidth))
|
---|
96 |
|
---|
97 | def average_pol(scan, mask=None):
|
---|
98 | """
|
---|
99 | Average the Polarisations together.
|
---|
100 | Parameters:
|
---|
101 | scan - a scantable
|
---|
102 | mask - an optional mask defining the region, where
|
---|
103 | the averaging will be applied. The output
|
---|
104 | will have all specified points masked.
|
---|
105 | The dimension won't be reduced and
|
---|
106 | all polarisations will contain the
|
---|
107 | averaged spectrum.
|
---|
108 | Example:
|
---|
109 | polav = average_pols(myscan)
|
---|
110 | """
|
---|
111 | from asap._asap import averagepol as _avpol
|
---|
112 | from numarray import ones
|
---|
113 | if mask is None:
|
---|
114 | mask = tuple(ones(scan.nchan()))
|
---|
115 | return scantable(_avpol(scan, mask))
|
---|
116 |
|
---|
117 | def hanning(scan):
|
---|
118 | """
|
---|
119 | Hanning smooth the channels.
|
---|
120 | Parameters:
|
---|
121 | scan - the input scan
|
---|
122 | Example:
|
---|
123 | none
|
---|
124 | """
|
---|
125 | from asap._asap import hanning as _han
|
---|
126 | return scantable(_han(scan))
|
---|
127 |
|
---|
128 |
|
---|
129 | def poly_baseline(scan, mask=None, order=0):
|
---|
130 | """
|
---|
131 | Return a scan which has been baselined by a polynomial.
|
---|
132 | Parameters:
|
---|
133 | scan: a scantable
|
---|
134 | mask: an optional mask
|
---|
135 | order: the order of the polynomial (default is 0)
|
---|
136 | Example:
|
---|
137 | # return a scan baselined by a third order polynomial,
|
---|
138 | # not using a mask
|
---|
139 | bscan = poly_baseline(scan, order=3)
|
---|
140 | """
|
---|
141 | from asap.asapfitter import fitter
|
---|
142 | if mask is None:
|
---|
143 | from numarray import ones
|
---|
144 | mask = tuple(ones(scan.nchan()))
|
---|
145 | f = fitter()
|
---|
146 | f._verbose(True)
|
---|
147 | f.set_scan(scan, mask)
|
---|
148 | f.set_function(poly=order)
|
---|
149 | sf = f.auto_fit()
|
---|
150 | return sf
|
---|