1 | from asap.scantable import scantable
|
---|
2 | from asap.parameters import rcParams
|
---|
3 | from asap.logging import asaplog, asaplog_post_dec
|
---|
4 | from asap.selector import selector
|
---|
5 | from asap import asaplotgui
|
---|
6 |
|
---|
7 | @asaplog_post_dec
|
---|
8 | def average_time(*args, **kwargs):
|
---|
9 | """
|
---|
10 | Return the (time) average of a scan or list of scans. [in channels only]
|
---|
11 | The cursor of the output scan is set to 0
|
---|
12 | Parameters:
|
---|
13 | one scan or comma separated scans or a list of scans
|
---|
14 | mask: an optional mask (only used for 'var' and 'tsys' weighting)
|
---|
15 | scanav: True averages each scan separately.
|
---|
16 | False (default) averages all scans together,
|
---|
17 | weight: Weighting scheme.
|
---|
18 | 'none' (mean no weight)
|
---|
19 | 'var' (1/var(spec) weighted)
|
---|
20 | 'tsys' (1/Tsys**2 weighted)
|
---|
21 | 'tint' (integration time weighted)
|
---|
22 | 'tintsys' (Tint/Tsys**2)
|
---|
23 | 'median' ( median averaging)
|
---|
24 | align: align the spectra in velocity before averaging. It takes
|
---|
25 | the time of the first spectrum in the first scantable
|
---|
26 | as reference time.
|
---|
27 | Example:
|
---|
28 | # return a time averaged scan from scana and scanb
|
---|
29 | # without using a mask
|
---|
30 | scanav = average_time(scana,scanb)
|
---|
31 | # or equivalent
|
---|
32 | # scanav = average_time([scana, scanb])
|
---|
33 | # return the (time) averaged scan, i.e. the average of
|
---|
34 | # all correlator cycles
|
---|
35 | scanav = average_time(scan, scanav=True)
|
---|
36 | """
|
---|
37 | scanav = False
|
---|
38 | if kwargs.has_key('scanav'):
|
---|
39 | scanav = kwargs.get('scanav')
|
---|
40 | weight = 'tint'
|
---|
41 | if kwargs.has_key('weight'):
|
---|
42 | weight = kwargs.get('weight')
|
---|
43 | mask = ()
|
---|
44 | if kwargs.has_key('mask'):
|
---|
45 | mask = kwargs.get('mask')
|
---|
46 | align = False
|
---|
47 | if kwargs.has_key('align'):
|
---|
48 | align = kwargs.get('align')
|
---|
49 | compel = False
|
---|
50 | if kwargs.has_key('compel'):
|
---|
51 | compel = kwargs.get('compel')
|
---|
52 | varlist = vars()
|
---|
53 | if isinstance(args[0],list):
|
---|
54 | lst = args[0]
|
---|
55 | elif isinstance(args[0],tuple):
|
---|
56 | lst = list(args[0])
|
---|
57 | else:
|
---|
58 | lst = list(args)
|
---|
59 |
|
---|
60 | del varlist["kwargs"]
|
---|
61 | varlist["args"] = "%d scantables" % len(lst)
|
---|
62 | # need special formatting here for history...
|
---|
63 |
|
---|
64 | from asap._asap import stmath
|
---|
65 | stm = stmath()
|
---|
66 | for s in lst:
|
---|
67 | if not isinstance(s,scantable):
|
---|
68 | msg = "Please give a list of scantables"
|
---|
69 | raise TypeError(msg)
|
---|
70 | if scanav: scanav = "SCAN"
|
---|
71 | else: scanav = "NONE"
|
---|
72 | alignedlst = []
|
---|
73 | if align:
|
---|
74 | refepoch = lst[0].get_time(0)
|
---|
75 | for scan in lst:
|
---|
76 | alignedlst.append(scan.freq_align(refepoch,insitu=False))
|
---|
77 | else:
|
---|
78 | alignedlst = lst
|
---|
79 | if weight.upper() == 'MEDIAN':
|
---|
80 | # median doesn't support list of scantables - merge first
|
---|
81 | merged = None
|
---|
82 | if len(alignedlst) > 1:
|
---|
83 | merged = merge(alignedlst)
|
---|
84 | else:
|
---|
85 | merged = alignedlst[0]
|
---|
86 | s = scantable(stm._averagechannel(merged, 'MEDIAN', scanav))
|
---|
87 | del merged
|
---|
88 | else:
|
---|
89 | #s = scantable(stm._average(alignedlst, mask, weight.upper(), scanav))
|
---|
90 | s = scantable(stm._new_average(alignedlst, compel, mask, weight.upper(), scanav))
|
---|
91 | s._add_history("average_time",varlist)
|
---|
92 |
|
---|
93 | return s
|
---|
94 |
|
---|
95 | @asaplog_post_dec
|
---|
96 | def quotient(source, reference, preserve=True):
|
---|
97 | """
|
---|
98 | Return the quotient of a 'source' (signal) scan and a 'reference' scan.
|
---|
99 | The reference can have just one scan, even if the signal has many. Otherwise
|
---|
100 | they must have the same number of scans.
|
---|
101 | The cursor of the output scan is set to 0
|
---|
102 | Parameters:
|
---|
103 | source: the 'on' scan
|
---|
104 | reference: the 'off' scan
|
---|
105 | preserve: you can preserve (default) the continuum or
|
---|
106 | remove it. The equations used are
|
---|
107 | preserve: Output = Toff * (on/off) - Toff
|
---|
108 | remove: Output = Toff * (on/off) - Ton
|
---|
109 | """
|
---|
110 | varlist = vars()
|
---|
111 | from asap._asap import stmath
|
---|
112 | stm = stmath()
|
---|
113 | stm._setinsitu(False)
|
---|
114 | s = scantable(stm._quotient(source, reference, preserve))
|
---|
115 | s._add_history("quotient",varlist)
|
---|
116 | return s
|
---|
117 |
|
---|
118 | @asaplog_post_dec
|
---|
119 | def dototalpower(calon, caloff, tcalval=0.0):
|
---|
120 | """
|
---|
121 | Do calibration for CAL on,off signals.
|
---|
122 | Adopted from GBTIDL dototalpower
|
---|
123 | Parameters:
|
---|
124 | calon: the 'cal on' subintegration
|
---|
125 | caloff: the 'cal off' subintegration
|
---|
126 | tcalval: user supplied Tcal value
|
---|
127 | """
|
---|
128 | varlist = vars()
|
---|
129 | from asap._asap import stmath
|
---|
130 | stm = stmath()
|
---|
131 | stm._setinsitu(False)
|
---|
132 | s = scantable(stm._dototalpower(calon, caloff, tcalval))
|
---|
133 | s._add_history("dototalpower",varlist)
|
---|
134 | return s
|
---|
135 |
|
---|
136 | @asaplog_post_dec
|
---|
137 | def dosigref(sig, ref, smooth, tsysval=0.0, tauval=0.0):
|
---|
138 | """
|
---|
139 | Calculate a quotient (sig-ref/ref * Tsys)
|
---|
140 | Adopted from GBTIDL dosigref
|
---|
141 | Parameters:
|
---|
142 | sig: on source data
|
---|
143 | ref: reference data
|
---|
144 | smooth: width of box car smoothing for reference
|
---|
145 | tsysval: user specified Tsys (scalar only)
|
---|
146 | tauval: user specified Tau (required if tsysval is set)
|
---|
147 | """
|
---|
148 | varlist = vars()
|
---|
149 | from asap._asap import stmath
|
---|
150 | stm = stmath()
|
---|
151 | stm._setinsitu(False)
|
---|
152 | s = scantable(stm._dosigref(sig, ref, smooth, tsysval, tauval))
|
---|
153 | s._add_history("dosigref",varlist)
|
---|
154 | return s
|
---|
155 |
|
---|
156 | @asaplog_post_dec
|
---|
157 | def calps(scantab, scannos, smooth=1, tsysval=0.0, tauval=0.0, tcalval=0.0, verify=False):
|
---|
158 | """
|
---|
159 | Calibrate GBT position switched data
|
---|
160 | Adopted from GBTIDL getps
|
---|
161 | Currently calps identify the scans as position switched data if they
|
---|
162 | contain '_ps' in the source name. The data must contains 'CAL' signal
|
---|
163 | on/off in each integration. To identify 'CAL' on state, the word, 'calon'
|
---|
164 | need to be present in the source name field.
|
---|
165 | (GBT MS data reading process to scantable automatically append these
|
---|
166 | id names to the source names)
|
---|
167 |
|
---|
168 | Parameters:
|
---|
169 | scantab: scantable
|
---|
170 | scannos: list of scan numbers
|
---|
171 | smooth: optional box smoothing order for the reference
|
---|
172 | (default is 1 = no smoothing)
|
---|
173 | tsysval: optional user specified Tsys (default is 0.0,
|
---|
174 | use Tsys in the data)
|
---|
175 | tauval: optional user specified Tau
|
---|
176 | tcalval: optional user specified Tcal (default is 0.0,
|
---|
177 | use Tcal value in the data)
|
---|
178 | """
|
---|
179 | varlist = vars()
|
---|
180 | # check for the appropriate data
|
---|
181 | ## s = scantab.get_scan('*_ps*')
|
---|
182 | ## if s is None:
|
---|
183 | ## msg = "The input data appear to contain no position-switch mode data."
|
---|
184 | ## raise TypeError(msg)
|
---|
185 | s = scantab.copy()
|
---|
186 | from asap._asap import srctype
|
---|
187 | sel = selector()
|
---|
188 | sel.set_types( srctype.pson )
|
---|
189 | try:
|
---|
190 | scantab.set_selection( sel )
|
---|
191 | except Exception, e:
|
---|
192 | msg = "The input data appear to contain no position-switch mode data."
|
---|
193 | raise TypeError(msg)
|
---|
194 | s.set_selection()
|
---|
195 | sel.reset()
|
---|
196 | ssub = s.get_scan(scannos)
|
---|
197 | if ssub is None:
|
---|
198 | msg = "No data was found with given scan numbers!"
|
---|
199 | raise TypeError(msg)
|
---|
200 | #ssubon = ssub.get_scan('*calon')
|
---|
201 | #ssuboff = ssub.get_scan('*[^calon]')
|
---|
202 | sel.set_types( [srctype.poncal,srctype.poffcal] )
|
---|
203 | ssub.set_selection( sel )
|
---|
204 | ssubon = ssub.copy()
|
---|
205 | ssub.set_selection()
|
---|
206 | sel.reset()
|
---|
207 | sel.set_types( [srctype.pson,srctype.psoff] )
|
---|
208 | ssub.set_selection( sel )
|
---|
209 | ssuboff = ssub.copy()
|
---|
210 | ssub.set_selection()
|
---|
211 | sel.reset()
|
---|
212 | if ssubon.nrow() != ssuboff.nrow():
|
---|
213 | msg = "mismatch in numbers of CAL on/off scans. Cannot calibrate. Check the scan numbers."
|
---|
214 | raise TypeError(msg)
|
---|
215 | cals = dototalpower(ssubon, ssuboff, tcalval)
|
---|
216 | #sig = cals.get_scan('*ps')
|
---|
217 | #ref = cals.get_scan('*psr')
|
---|
218 | sel.set_types( srctype.pson )
|
---|
219 | cals.set_selection( sel )
|
---|
220 | sig = cals.copy()
|
---|
221 | cals.set_selection()
|
---|
222 | sel.reset()
|
---|
223 | sel.set_types( srctype.psoff )
|
---|
224 | cals.set_selection( sel )
|
---|
225 | ref = cals.copy()
|
---|
226 | cals.set_selection()
|
---|
227 | sel.reset()
|
---|
228 | if sig.nscan() != ref.nscan():
|
---|
229 | msg = "mismatch in numbers of on/off scans. Cannot calibrate. Check the scan numbers."
|
---|
230 | raise TypeError(msg)
|
---|
231 |
|
---|
232 | #for user supplied Tsys
|
---|
233 | if tsysval>0.0:
|
---|
234 | if tauval<=0.0:
|
---|
235 | msg = "Need to supply a valid tau to use the supplied Tsys"
|
---|
236 | raise TypeError(msg)
|
---|
237 | else:
|
---|
238 | sig.recalc_azel()
|
---|
239 | ref.recalc_azel()
|
---|
240 | #msg = "Use of user specified Tsys is not fully implemented yet."
|
---|
241 | #raise TypeError(msg)
|
---|
242 | # use get_elevation to get elevation and
|
---|
243 | # calculate a scaling factor using the formula
|
---|
244 | # -> tsys use to dosigref
|
---|
245 |
|
---|
246 | #ress = dosigref(sig, ref, smooth, tsysval)
|
---|
247 | ress = dosigref(sig, ref, smooth, tsysval, tauval)
|
---|
248 | ###
|
---|
249 | if verify:
|
---|
250 | # get data
|
---|
251 | import numpy
|
---|
252 | precal={}
|
---|
253 | postcal=[]
|
---|
254 | keys=['ps','ps_calon','psr','psr_calon']
|
---|
255 | types=[srctype.pson,srctype.poncal,srctype.psoff,srctype.poffcal]
|
---|
256 | ifnos=list(ssub.getifnos())
|
---|
257 | polnos=list(ssub.getpolnos())
|
---|
258 | sel=selector()
|
---|
259 | for i in range(2):
|
---|
260 | #ss=ssuboff.get_scan('*'+keys[2*i])
|
---|
261 | ll=[]
|
---|
262 | for j in range(len(ifnos)):
|
---|
263 | for k in range(len(polnos)):
|
---|
264 | sel.set_ifs(ifnos[j])
|
---|
265 | sel.set_polarizations(polnos[k])
|
---|
266 | sel.set_types(types[2*i])
|
---|
267 | try:
|
---|
268 | #ss.set_selection(sel)
|
---|
269 | ssuboff.set_selection(sel)
|
---|
270 | except:
|
---|
271 | continue
|
---|
272 | #ll.append(numpy.array(ss._getspectrum(0)))
|
---|
273 | ll.append(numpy.array(ssuboff._getspectrum(0)))
|
---|
274 | sel.reset()
|
---|
275 | ssuboff.set_selection()
|
---|
276 | precal[keys[2*i]]=ll
|
---|
277 | #del ss
|
---|
278 | #ss=ssubon.get_scan('*'+keys[2*i+1])
|
---|
279 | ll=[]
|
---|
280 | for j in range(len(ifnos)):
|
---|
281 | for k in range(len(polnos)):
|
---|
282 | sel.set_ifs(ifnos[j])
|
---|
283 | sel.set_polarizations(polnos[k])
|
---|
284 | sel.set_types(types[2*i+1])
|
---|
285 | try:
|
---|
286 | #ss.set_selection(sel)
|
---|
287 | ssubon.set_selection(sel)
|
---|
288 | except:
|
---|
289 | continue
|
---|
290 | #ll.append(numpy.array(ss._getspectrum(0)))
|
---|
291 | ll.append(numpy.array(ssubon._getspectrum(0)))
|
---|
292 | sel.reset()
|
---|
293 | ssubon.set_selection()
|
---|
294 | precal[keys[2*i+1]]=ll
|
---|
295 | #del ss
|
---|
296 | for j in range(len(ifnos)):
|
---|
297 | for k in range(len(polnos)):
|
---|
298 | sel.set_ifs(ifnos[j])
|
---|
299 | sel.set_polarizations(polnos[k])
|
---|
300 | try:
|
---|
301 | ress.set_selection(sel)
|
---|
302 | except:
|
---|
303 | continue
|
---|
304 | postcal.append(numpy.array(ress._getspectrum(0)))
|
---|
305 | sel.reset()
|
---|
306 | ress.set_selection()
|
---|
307 | del sel
|
---|
308 | # plot
|
---|
309 | asaplog.post()
|
---|
310 | asaplog.push('Plot only first spectrum for each [if,pol] pairs to verify calibration.')
|
---|
311 | asaplog.post('WARN')
|
---|
312 | p=asaplotgui.asaplotgui()
|
---|
313 | #nr=min(6,len(ifnos)*len(polnos))
|
---|
314 | nr=len(ifnos)*len(polnos)
|
---|
315 | titles=[]
|
---|
316 | btics=[]
|
---|
317 | if nr<4:
|
---|
318 | p.set_panels(rows=nr,cols=2,nplots=2*nr,ganged=False)
|
---|
319 | for i in range(2*nr):
|
---|
320 | b=False
|
---|
321 | if i >= 2*nr-2:
|
---|
322 | b=True
|
---|
323 | btics.append(b)
|
---|
324 | elif nr==4:
|
---|
325 | p.set_panels(rows=2,cols=4,nplots=8,ganged=False)
|
---|
326 | for i in range(2*nr):
|
---|
327 | b=False
|
---|
328 | if i >= 2*nr-4:
|
---|
329 | b=True
|
---|
330 | btics.append(b)
|
---|
331 | elif nr<7:
|
---|
332 | p.set_panels(rows=3,cols=4,nplots=2*nr,ganged=False)
|
---|
333 | for i in range(2*nr):
|
---|
334 | if i >= 2*nr-4:
|
---|
335 | b=True
|
---|
336 | btics.append(b)
|
---|
337 | else:
|
---|
338 | asaplog.post()
|
---|
339 | asaplog.push('Only first 6 [if,pol] pairs are plotted.')
|
---|
340 | asaplog.post('WARN')
|
---|
341 | nr=6
|
---|
342 | for i in range(2*nr):
|
---|
343 | b=False
|
---|
344 | if i >= 2*nr-4:
|
---|
345 | b=True
|
---|
346 | btics.append(b)
|
---|
347 | p.set_panels(rows=3,cols=4,nplots=2*nr,ganged=False)
|
---|
348 | for i in range(nr):
|
---|
349 | p.subplot(2*i)
|
---|
350 | p.color=0
|
---|
351 | title='raw data IF%s POL%s' % (ifnos[int(i/len(polnos))],polnos[i%len(polnos)])
|
---|
352 | titles.append(title)
|
---|
353 | #p.set_axes('title',title,fontsize=40)
|
---|
354 | ymin=1.0e100
|
---|
355 | ymax=-1.0e100
|
---|
356 | nchan=s.nchan()
|
---|
357 | edge=int(nchan*0.01)
|
---|
358 | for j in range(4):
|
---|
359 | spmin=min(precal[keys[j]][i][edge:nchan-edge])
|
---|
360 | spmax=max(precal[keys[j]][i][edge:nchan-edge])
|
---|
361 | ymin=min(ymin,spmin)
|
---|
362 | ymax=max(ymax,spmax)
|
---|
363 | for j in range(4):
|
---|
364 | if i==0:
|
---|
365 | p.set_line(label=keys[j])
|
---|
366 | else:
|
---|
367 | p.legend()
|
---|
368 | p.plot(precal[keys[j]][i])
|
---|
369 | p.axes.set_ylim(ymin-0.1*abs(ymin),ymax+0.1*abs(ymax))
|
---|
370 | if not btics[2*i]:
|
---|
371 | p.axes.set_xticks([])
|
---|
372 | p.subplot(2*i+1)
|
---|
373 | p.color=0
|
---|
374 | title='cal data IF%s POL%s' % (ifnos[int(i/len(polnos))],polnos[i%len(polnos)])
|
---|
375 | titles.append(title)
|
---|
376 | #p.set_axes('title',title)
|
---|
377 | p.legend()
|
---|
378 | ymin=postcal[i][edge:nchan-edge].min()
|
---|
379 | ymax=postcal[i][edge:nchan-edge].max()
|
---|
380 | p.plot(postcal[i])
|
---|
381 | p.axes.set_ylim(ymin-0.1*abs(ymin),ymax+0.1*abs(ymax))
|
---|
382 | if not btics[2*i+1]:
|
---|
383 | p.axes.set_xticks([])
|
---|
384 | for i in range(2*nr):
|
---|
385 | p.subplot(i)
|
---|
386 | p.set_axes('title',titles[i],fontsize='medium')
|
---|
387 | x=raw_input('Accept calibration ([y]/n): ' )
|
---|
388 | if x.upper() == 'N':
|
---|
389 | p.unmap()
|
---|
390 | del p
|
---|
391 | return scabtab
|
---|
392 | p.unmap()
|
---|
393 | del p
|
---|
394 | ###
|
---|
395 | ress._add_history("calps", varlist)
|
---|
396 | return ress
|
---|
397 |
|
---|
398 | @asaplog_post_dec
|
---|
399 | def calnod(scantab, scannos=[], smooth=1, tsysval=0.0, tauval=0.0, tcalval=0.0, verify=False):
|
---|
400 | """
|
---|
401 | Do full (but a pair of scans at time) processing of GBT Nod data
|
---|
402 | calibration.
|
---|
403 | Adopted from GBTIDL's getnod
|
---|
404 | Parameters:
|
---|
405 | scantab: scantable
|
---|
406 | scannos: a pair of scan numbers, or the first scan number of the pair
|
---|
407 | smooth: box car smoothing order
|
---|
408 | tsysval: optional user specified Tsys value
|
---|
409 | tauval: optional user specified tau value (not implemented yet)
|
---|
410 | tcalval: optional user specified Tcal value
|
---|
411 | """
|
---|
412 | varlist = vars()
|
---|
413 | from asap._asap import stmath
|
---|
414 | from asap._asap import srctype
|
---|
415 | stm = stmath()
|
---|
416 | stm._setinsitu(False)
|
---|
417 |
|
---|
418 | # check for the appropriate data
|
---|
419 | ## s = scantab.get_scan('*_nod*')
|
---|
420 | ## if s is None:
|
---|
421 | ## msg = "The input data appear to contain no Nod observing mode data."
|
---|
422 | ## raise TypeError(msg)
|
---|
423 | s = scantab.copy()
|
---|
424 | sel = selector()
|
---|
425 | sel.set_types( srctype.nod )
|
---|
426 | try:
|
---|
427 | s.set_selection( sel )
|
---|
428 | except Exception, e:
|
---|
429 | msg = "The input data appear to contain no Nod observing mode data."
|
---|
430 | raise TypeError(msg)
|
---|
431 | sel.reset()
|
---|
432 | del sel
|
---|
433 | del s
|
---|
434 |
|
---|
435 | # need check correspondance of each beam with sig-ref ...
|
---|
436 | # check for timestamps, scan numbers, subscan id (not available in
|
---|
437 | # ASAP data format...). Assume 1st scan of the pair (beam 0 - sig
|
---|
438 | # and beam 1 - ref...)
|
---|
439 | # First scan number of paired scans or list of pairs of
|
---|
440 | # scan numbers (has to have even number of pairs.)
|
---|
441 |
|
---|
442 | #data splitting
|
---|
443 | scan1no = scan2no = 0
|
---|
444 |
|
---|
445 | if len(scannos)==1:
|
---|
446 | scan1no = scannos[0]
|
---|
447 | scan2no = scannos[0]+1
|
---|
448 | pairScans = [scan1no, scan2no]
|
---|
449 | else:
|
---|
450 | #if len(scannos)>2:
|
---|
451 | # msg = "calnod can only process a pair of nod scans at time."
|
---|
452 | # raise TypeError(msg)
|
---|
453 | #
|
---|
454 | #if len(scannos)==2:
|
---|
455 | # scan1no = scannos[0]
|
---|
456 | # scan2no = scannos[1]
|
---|
457 | pairScans = list(scannos)
|
---|
458 |
|
---|
459 | if tsysval>0.0:
|
---|
460 | if tauval<=0.0:
|
---|
461 | msg = "Need to supply a valid tau to use the supplied Tsys"
|
---|
462 | raise TypeError(msg)
|
---|
463 | else:
|
---|
464 | scantab.recalc_azel()
|
---|
465 | resspec = scantable(stm._donod(scantab, pairScans, smooth, tsysval,tauval,tcalval))
|
---|
466 | ###
|
---|
467 | if verify:
|
---|
468 | # get data
|
---|
469 | import numpy
|
---|
470 | precal={}
|
---|
471 | postcal=[]
|
---|
472 | keys=['','_calon']
|
---|
473 | types=[srctype.nod,srctype.nodcal]
|
---|
474 | ifnos=list(scantab.getifnos())
|
---|
475 | polnos=list(scantab.getpolnos())
|
---|
476 | sel=selector()
|
---|
477 | ss = scantab.copy()
|
---|
478 | for i in range(2):
|
---|
479 | #ss=scantab.get_scan('*'+keys[i])
|
---|
480 | ll=[]
|
---|
481 | ll2=[]
|
---|
482 | for j in range(len(ifnos)):
|
---|
483 | for k in range(len(polnos)):
|
---|
484 | sel.set_ifs(ifnos[j])
|
---|
485 | sel.set_polarizations(polnos[k])
|
---|
486 | sel.set_scans(pairScans[0])
|
---|
487 | sel.set_types(types[i])
|
---|
488 | try:
|
---|
489 | ss.set_selection(sel)
|
---|
490 | except:
|
---|
491 | continue
|
---|
492 | ll.append(numpy.array(ss._getspectrum(0)))
|
---|
493 | sel.reset()
|
---|
494 | ss.set_selection()
|
---|
495 | sel.set_ifs(ifnos[j])
|
---|
496 | sel.set_polarizations(polnos[k])
|
---|
497 | sel.set_scans(pairScans[1])
|
---|
498 | sel.set_types(types[i])
|
---|
499 | try:
|
---|
500 | ss.set_selection(sel)
|
---|
501 | except:
|
---|
502 | ll.pop()
|
---|
503 | continue
|
---|
504 | ll2.append(numpy.array(ss._getspectrum(0)))
|
---|
505 | sel.reset()
|
---|
506 | ss.set_selection()
|
---|
507 | key='%s%s' %(pairScans[0],keys[i])
|
---|
508 | precal[key]=ll
|
---|
509 | key='%s%s' %(pairScans[1],keys[i])
|
---|
510 | precal[key]=ll2
|
---|
511 | #del ss
|
---|
512 | keys=precal.keys()
|
---|
513 | for j in range(len(ifnos)):
|
---|
514 | for k in range(len(polnos)):
|
---|
515 | sel.set_ifs(ifnos[j])
|
---|
516 | sel.set_polarizations(polnos[k])
|
---|
517 | sel.set_scans(pairScans[0])
|
---|
518 | try:
|
---|
519 | resspec.set_selection(sel)
|
---|
520 | except:
|
---|
521 | continue
|
---|
522 | postcal.append(numpy.array(resspec._getspectrum(0)))
|
---|
523 | sel.reset()
|
---|
524 | resspec.set_selection()
|
---|
525 | del sel
|
---|
526 | # plot
|
---|
527 | asaplog.post()
|
---|
528 | asaplog.push('Plot only first spectrum for each [if,pol] pairs to verify calibration.')
|
---|
529 | asaplog.post('WARN')
|
---|
530 | p=asaplotgui.asaplotgui()
|
---|
531 | #nr=min(6,len(ifnos)*len(polnos))
|
---|
532 | nr=len(ifnos)*len(polnos)
|
---|
533 | titles=[]
|
---|
534 | btics=[]
|
---|
535 | if nr<4:
|
---|
536 | p.set_panels(rows=nr,cols=2,nplots=2*nr,ganged=False)
|
---|
537 | for i in range(2*nr):
|
---|
538 | b=False
|
---|
539 | if i >= 2*nr-2:
|
---|
540 | b=True
|
---|
541 | btics.append(b)
|
---|
542 | elif nr==4:
|
---|
543 | p.set_panels(rows=2,cols=4,nplots=8,ganged=False)
|
---|
544 | for i in range(2*nr):
|
---|
545 | b=False
|
---|
546 | if i >= 2*nr-4:
|
---|
547 | b=True
|
---|
548 | btics.append(b)
|
---|
549 | elif nr<7:
|
---|
550 | p.set_panels(rows=3,cols=4,nplots=2*nr,ganged=False)
|
---|
551 | for i in range(2*nr):
|
---|
552 | if i >= 2*nr-4:
|
---|
553 | b=True
|
---|
554 | btics.append(b)
|
---|
555 | else:
|
---|
556 | asaplog.post()
|
---|
557 | asaplog.push('Only first 6 [if,pol] pairs are plotted.')
|
---|
558 | asaplog.post('WARN')
|
---|
559 | nr=6
|
---|
560 | for i in range(2*nr):
|
---|
561 | b=False
|
---|
562 | if i >= 2*nr-4:
|
---|
563 | b=True
|
---|
564 | btics.append(b)
|
---|
565 | p.set_panels(rows=3,cols=4,nplots=2*nr,ganged=False)
|
---|
566 | for i in range(nr):
|
---|
567 | p.subplot(2*i)
|
---|
568 | p.color=0
|
---|
569 | title='raw data IF%s POL%s' % (ifnos[int(i/len(polnos))],polnos[i%len(polnos)])
|
---|
570 | titles.append(title)
|
---|
571 | #p.set_axes('title',title,fontsize=40)
|
---|
572 | ymin=1.0e100
|
---|
573 | ymax=-1.0e100
|
---|
574 | nchan=scantab.nchan()
|
---|
575 | edge=int(nchan*0.01)
|
---|
576 | for j in range(4):
|
---|
577 | spmin=min(precal[keys[j]][i][edge:nchan-edge])
|
---|
578 | spmax=max(precal[keys[j]][i][edge:nchan-edge])
|
---|
579 | ymin=min(ymin,spmin)
|
---|
580 | ymax=max(ymax,spmax)
|
---|
581 | for j in range(4):
|
---|
582 | if i==0:
|
---|
583 | p.set_line(label=keys[j])
|
---|
584 | else:
|
---|
585 | p.legend()
|
---|
586 | p.plot(precal[keys[j]][i])
|
---|
587 | p.axes.set_ylim(ymin-0.1*abs(ymin),ymax+0.1*abs(ymax))
|
---|
588 | if not btics[2*i]:
|
---|
589 | p.axes.set_xticks([])
|
---|
590 | p.subplot(2*i+1)
|
---|
591 | p.color=0
|
---|
592 | title='cal data IF%s POL%s' % (ifnos[int(i/len(polnos))],polnos[i%len(polnos)])
|
---|
593 | titles.append(title)
|
---|
594 | #p.set_axes('title',title)
|
---|
595 | p.legend()
|
---|
596 | ymin=postcal[i][edge:nchan-edge].min()
|
---|
597 | ymax=postcal[i][edge:nchan-edge].max()
|
---|
598 | p.plot(postcal[i])
|
---|
599 | p.axes.set_ylim(ymin-0.1*abs(ymin),ymax+0.1*abs(ymax))
|
---|
600 | if not btics[2*i+1]:
|
---|
601 | p.axes.set_xticks([])
|
---|
602 | for i in range(2*nr):
|
---|
603 | p.subplot(i)
|
---|
604 | p.set_axes('title',titles[i],fontsize='medium')
|
---|
605 | x=raw_input('Accept calibration ([y]/n): ' )
|
---|
606 | if x.upper() == 'N':
|
---|
607 | p.unmap()
|
---|
608 | del p
|
---|
609 | return scabtab
|
---|
610 | p.unmap()
|
---|
611 | del p
|
---|
612 | ###
|
---|
613 | resspec._add_history("calnod",varlist)
|
---|
614 | return resspec
|
---|
615 |
|
---|
616 | @asaplog_post_dec
|
---|
617 | def calfs(scantab, scannos=[], smooth=1, tsysval=0.0, tauval=0.0, tcalval=0.0, verify=False):
|
---|
618 | """
|
---|
619 | Calibrate GBT frequency switched data.
|
---|
620 | Adopted from GBTIDL getfs.
|
---|
621 | Currently calfs identify the scans as frequency switched data if they
|
---|
622 | contain '_fs' in the source name. The data must contains 'CAL' signal
|
---|
623 | on/off in each integration. To identify 'CAL' on state, the word, 'calon'
|
---|
624 | need to be present in the source name field.
|
---|
625 | (GBT MS data reading via scantable automatically append these
|
---|
626 | id names to the source names)
|
---|
627 |
|
---|
628 | Parameters:
|
---|
629 | scantab: scantable
|
---|
630 | scannos: list of scan numbers
|
---|
631 | smooth: optional box smoothing order for the reference
|
---|
632 | (default is 1 = no smoothing)
|
---|
633 | tsysval: optional user specified Tsys (default is 0.0,
|
---|
634 | use Tsys in the data)
|
---|
635 | tauval: optional user specified Tau
|
---|
636 | """
|
---|
637 | varlist = vars()
|
---|
638 | from asap._asap import stmath
|
---|
639 | from asap._asap import srctype
|
---|
640 | stm = stmath()
|
---|
641 | stm._setinsitu(False)
|
---|
642 |
|
---|
643 | # check = scantab.get_scan('*_fs*')
|
---|
644 | # if check is None:
|
---|
645 | # msg = "The input data appear to contain no Nod observing mode data."
|
---|
646 | # raise TypeError(msg)
|
---|
647 | s = scantab.get_scan(scannos)
|
---|
648 | del scantab
|
---|
649 |
|
---|
650 | resspec = scantable(stm._dofs(s, scannos, smooth, tsysval,tauval,tcalval))
|
---|
651 | ###
|
---|
652 | if verify:
|
---|
653 | # get data
|
---|
654 | ssub = s.get_scan(scannos)
|
---|
655 | #ssubon = ssub.get_scan('*calon')
|
---|
656 | #ssuboff = ssub.get_scan('*[^calon]')
|
---|
657 | sel = selector()
|
---|
658 | sel.set_types( [srctype.foncal,srctype.foffcal] )
|
---|
659 | ssub.set_selection( sel )
|
---|
660 | ssubon = ssub.copy()
|
---|
661 | ssub.set_selection()
|
---|
662 | sel.reset()
|
---|
663 | sel.set_types( [srctype.fson,srctype.fsoff] )
|
---|
664 | ssub.set_selection( sel )
|
---|
665 | ssuboff = ssub.copy()
|
---|
666 | ssub.set_selection()
|
---|
667 | sel.reset()
|
---|
668 | import numpy
|
---|
669 | precal={}
|
---|
670 | postcal=[]
|
---|
671 | keys=['fs','fs_calon','fsr','fsr_calon']
|
---|
672 | types=[srctype.fson,srctype.foncal,srctype.fsoff,srctype.foffcal]
|
---|
673 | ifnos=list(ssub.getifnos())
|
---|
674 | polnos=list(ssub.getpolnos())
|
---|
675 | for i in range(2):
|
---|
676 | #ss=ssuboff.get_scan('*'+keys[2*i])
|
---|
677 | ll=[]
|
---|
678 | for j in range(len(ifnos)):
|
---|
679 | for k in range(len(polnos)):
|
---|
680 | sel.set_ifs(ifnos[j])
|
---|
681 | sel.set_polarizations(polnos[k])
|
---|
682 | sel.set_types(types[2*i])
|
---|
683 | try:
|
---|
684 | #ss.set_selection(sel)
|
---|
685 | ssuboff.set_selection(sel)
|
---|
686 | except:
|
---|
687 | continue
|
---|
688 | ll.append(numpy.array(ss._getspectrum(0)))
|
---|
689 | sel.reset()
|
---|
690 | #ss.set_selection()
|
---|
691 | ssuboff.set_selection()
|
---|
692 | precal[keys[2*i]]=ll
|
---|
693 | #del ss
|
---|
694 | #ss=ssubon.get_scan('*'+keys[2*i+1])
|
---|
695 | ll=[]
|
---|
696 | for j in range(len(ifnos)):
|
---|
697 | for k in range(len(polnos)):
|
---|
698 | sel.set_ifs(ifnos[j])
|
---|
699 | sel.set_polarizations(polnos[k])
|
---|
700 | sel.set_types(types[2*i+1])
|
---|
701 | try:
|
---|
702 | #ss.set_selection(sel)
|
---|
703 | ssubon.set_selection(sel)
|
---|
704 | except:
|
---|
705 | continue
|
---|
706 | ll.append(numpy.array(ss._getspectrum(0)))
|
---|
707 | sel.reset()
|
---|
708 | #ss.set_selection()
|
---|
709 | ssubon.set_selection()
|
---|
710 | precal[keys[2*i+1]]=ll
|
---|
711 | #del ss
|
---|
712 | #sig=resspec.get_scan('*_fs')
|
---|
713 | #ref=resspec.get_scan('*_fsr')
|
---|
714 | sel.set_types( srctype.fson )
|
---|
715 | resspec.set_selection( sel )
|
---|
716 | sig=resspec.copy()
|
---|
717 | resspec.set_selection()
|
---|
718 | sel.reset()
|
---|
719 | sel.set_type( srctype.fsoff )
|
---|
720 | resspec.set_selection( sel )
|
---|
721 | ref=resspec.copy()
|
---|
722 | resspec.set_selection()
|
---|
723 | sel.reset()
|
---|
724 | for k in range(len(polnos)):
|
---|
725 | for j in range(len(ifnos)):
|
---|
726 | sel.set_ifs(ifnos[j])
|
---|
727 | sel.set_polarizations(polnos[k])
|
---|
728 | try:
|
---|
729 | sig.set_selection(sel)
|
---|
730 | postcal.append(numpy.array(sig._getspectrum(0)))
|
---|
731 | except:
|
---|
732 | ref.set_selection(sel)
|
---|
733 | postcal.append(numpy.array(ref._getspectrum(0)))
|
---|
734 | sel.reset()
|
---|
735 | resspec.set_selection()
|
---|
736 | del sel
|
---|
737 | # plot
|
---|
738 | asaplog.post()
|
---|
739 | asaplog.push('Plot only first spectrum for each [if,pol] pairs to verify calibration.')
|
---|
740 | asaplog.post('WARN')
|
---|
741 | p=asaplotgui.asaplotgui()
|
---|
742 | #nr=min(6,len(ifnos)*len(polnos))
|
---|
743 | nr=len(ifnos)/2*len(polnos)
|
---|
744 | titles=[]
|
---|
745 | btics=[]
|
---|
746 | if nr>3:
|
---|
747 | asaplog.post()
|
---|
748 | asaplog.push('Only first 3 [if,pol] pairs are plotted.')
|
---|
749 | asaplog.post('WARN')
|
---|
750 | nr=3
|
---|
751 | p.set_panels(rows=nr,cols=3,nplots=3*nr,ganged=False)
|
---|
752 | for i in range(3*nr):
|
---|
753 | b=False
|
---|
754 | if i >= 3*nr-3:
|
---|
755 | b=True
|
---|
756 | btics.append(b)
|
---|
757 | for i in range(nr):
|
---|
758 | p.subplot(3*i)
|
---|
759 | p.color=0
|
---|
760 | title='raw data IF%s,%s POL%s' % (ifnos[2*int(i/len(polnos))],ifnos[2*int(i/len(polnos))+1],polnos[i%len(polnos)])
|
---|
761 | titles.append(title)
|
---|
762 | #p.set_axes('title',title,fontsize=40)
|
---|
763 | ymin=1.0e100
|
---|
764 | ymax=-1.0e100
|
---|
765 | nchan=s.nchan()
|
---|
766 | edge=int(nchan*0.01)
|
---|
767 | for j in range(4):
|
---|
768 | spmin=min(precal[keys[j]][i][edge:nchan-edge])
|
---|
769 | spmax=max(precal[keys[j]][i][edge:nchan-edge])
|
---|
770 | ymin=min(ymin,spmin)
|
---|
771 | ymax=max(ymax,spmax)
|
---|
772 | for j in range(4):
|
---|
773 | if i==0:
|
---|
774 | p.set_line(label=keys[j])
|
---|
775 | else:
|
---|
776 | p.legend()
|
---|
777 | p.plot(precal[keys[j]][i])
|
---|
778 | p.axes.set_ylim(ymin-0.1*abs(ymin),ymax+0.1*abs(ymax))
|
---|
779 | if not btics[3*i]:
|
---|
780 | p.axes.set_xticks([])
|
---|
781 | p.subplot(3*i+1)
|
---|
782 | p.color=0
|
---|
783 | title='sig data IF%s POL%s' % (ifnos[2*int(i/len(polnos))],polnos[i%len(polnos)])
|
---|
784 | titles.append(title)
|
---|
785 | #p.set_axes('title',title)
|
---|
786 | p.legend()
|
---|
787 | ymin=postcal[2*i][edge:nchan-edge].min()
|
---|
788 | ymax=postcal[2*i][edge:nchan-edge].max()
|
---|
789 | p.plot(postcal[2*i])
|
---|
790 | p.axes.set_ylim(ymin-0.1*abs(ymin),ymax+0.1*abs(ymax))
|
---|
791 | if not btics[3*i+1]:
|
---|
792 | p.axes.set_xticks([])
|
---|
793 | p.subplot(3*i+2)
|
---|
794 | p.color=0
|
---|
795 | title='ref data IF%s POL%s' % (ifnos[2*int(i/len(polnos))+1],polnos[i%len(polnos)])
|
---|
796 | titles.append(title)
|
---|
797 | #p.set_axes('title',title)
|
---|
798 | p.legend()
|
---|
799 | ymin=postcal[2*i+1][edge:nchan-edge].min()
|
---|
800 | ymax=postcal[2*i+1][edge:nchan-edge].max()
|
---|
801 | p.plot(postcal[2*i+1])
|
---|
802 | p.axes.set_ylim(ymin-0.1*abs(ymin),ymax+0.1*abs(ymax))
|
---|
803 | if not btics[3*i+2]:
|
---|
804 | p.axes.set_xticks([])
|
---|
805 | for i in range(3*nr):
|
---|
806 | p.subplot(i)
|
---|
807 | p.set_axes('title',titles[i],fontsize='medium')
|
---|
808 | x=raw_input('Accept calibration ([y]/n): ' )
|
---|
809 | if x.upper() == 'N':
|
---|
810 | p.unmap()
|
---|
811 | del p
|
---|
812 | return scabtab
|
---|
813 | p.unmap()
|
---|
814 | del p
|
---|
815 | ###
|
---|
816 | resspec._add_history("calfs",varlist)
|
---|
817 | return resspec
|
---|
818 |
|
---|
819 | @asaplog_post_dec
|
---|
820 | def merge(*args):
|
---|
821 | """
|
---|
822 | Merge a list of scanatables, or comma-sperated scantables into one
|
---|
823 | scnatble.
|
---|
824 | Parameters:
|
---|
825 | A list [scan1, scan2] or scan1, scan2.
|
---|
826 | Example:
|
---|
827 | myscans = [scan1, scan2]
|
---|
828 | allscans = merge(myscans)
|
---|
829 | # or equivalent
|
---|
830 | sameallscans = merge(scan1, scan2)
|
---|
831 | """
|
---|
832 | varlist = vars()
|
---|
833 | if isinstance(args[0],list):
|
---|
834 | lst = tuple(args[0])
|
---|
835 | elif isinstance(args[0],tuple):
|
---|
836 | lst = args[0]
|
---|
837 | else:
|
---|
838 | lst = tuple(args)
|
---|
839 | varlist["args"] = "%d scantables" % len(lst)
|
---|
840 | # need special formatting her for history...
|
---|
841 | from asap._asap import stmath
|
---|
842 | stm = stmath()
|
---|
843 | for s in lst:
|
---|
844 | if not isinstance(s,scantable):
|
---|
845 | msg = "Please give a list of scantables"
|
---|
846 | raise TypeError(msg)
|
---|
847 | s = scantable(stm._merge(lst))
|
---|
848 | s._add_history("merge", varlist)
|
---|
849 | return s
|
---|
850 |
|
---|
851 | @asaplog_post_dec
|
---|
852 | def calibrate( scantab, scannos=[], calmode='none', verify=None ):
|
---|
853 | """
|
---|
854 | Calibrate data.
|
---|
855 |
|
---|
856 | Parameters:
|
---|
857 | scantab: scantable
|
---|
858 | scannos: list of scan number
|
---|
859 | calmode: calibration mode
|
---|
860 | verify: verify calibration
|
---|
861 | """
|
---|
862 | antname = scantab.get_antennaname()
|
---|
863 | if ( calmode == 'nod' ):
|
---|
864 | asaplog.push( 'Calibrating nod data.' )
|
---|
865 | scal = calnod( scantab, scannos=scannos, verify=verify )
|
---|
866 | elif ( calmode == 'quotient' ):
|
---|
867 | asaplog.push( 'Calibrating using quotient.' )
|
---|
868 | scal = scantab.auto_quotient( verify=verify )
|
---|
869 | elif ( calmode == 'ps' ):
|
---|
870 | asaplog.push( 'Calibrating %s position-switched data.' % antname )
|
---|
871 | if ( antname.find( 'APEX' ) != -1 ):
|
---|
872 | scal = apexcal( scantab, scannos, calmode, verify )
|
---|
873 | elif ( antname.find( 'ALMA' ) != -1 or antname.find( 'OSF' ) != -1 ):
|
---|
874 | scal = almacal( scantab, scannos, calmode, verify )
|
---|
875 | else:
|
---|
876 | scal = calps( scantab, scannos=scannos, verify=verify )
|
---|
877 | elif ( calmode == 'fs' or calmode == 'fsotf' ):
|
---|
878 | asaplog.push( 'Calibrating %s frequency-switched data.' % antname )
|
---|
879 | if ( antname.find( 'APEX' ) != -1 ):
|
---|
880 | scal = apexcal( scantab, scannos, calmode, verify )
|
---|
881 | elif ( antname.find( 'ALMA' ) != -1 or antname.find( 'OSF' ) != -1 ):
|
---|
882 | scal = almacal( scantab, scannos, calmode, verify )
|
---|
883 | else:
|
---|
884 | scal = calfs( scantab, scannos=scannos, verify=verify )
|
---|
885 | elif ( calmode == 'otf' ):
|
---|
886 | asaplog.push( 'Calibrating %s On-The-Fly data.' % antname )
|
---|
887 | scal = almacal( scantab, scannos, calmode, verify )
|
---|
888 | else:
|
---|
889 | asaplog.push( 'No calibration.' )
|
---|
890 | scal = scantab.copy()
|
---|
891 |
|
---|
892 | return scal
|
---|
893 |
|
---|
894 | def apexcal( scantab, scannos=[], calmode='none', verify=False ):
|
---|
895 | """
|
---|
896 | Calibrate APEX data
|
---|
897 |
|
---|
898 | Parameters:
|
---|
899 | scantab: scantable
|
---|
900 | scannos: list of scan number
|
---|
901 | calmode: calibration mode
|
---|
902 |
|
---|
903 | verify: verify calibration
|
---|
904 | """
|
---|
905 | from asap._asap import stmath
|
---|
906 | stm = stmath()
|
---|
907 | antname = scantab.get_antennaname()
|
---|
908 | ssub = scantab.get_scan( scannos )
|
---|
909 | scal = scantable( stm.cwcal( ssub, calmode, antname ) )
|
---|
910 | return scal
|
---|
911 |
|
---|
912 | def almacal( scantab, scannos=[], calmode='none', verify=False ):
|
---|
913 | """
|
---|
914 | Calibrate ALMA data
|
---|
915 |
|
---|
916 | Parameters:
|
---|
917 | scantab: scantable
|
---|
918 | scannos: list of scan number
|
---|
919 | calmode: calibration mode
|
---|
920 |
|
---|
921 | verify: verify calibration
|
---|
922 | """
|
---|
923 | from asap._asap import stmath
|
---|
924 | stm = stmath()
|
---|
925 | ssub = scantab.get_scan( scannos )
|
---|
926 | scal = scantable( stm.almacal( ssub, calmode ) )
|
---|
927 | return scal
|
---|
928 |
|
---|
929 | @asaplog_post_dec
|
---|
930 | def splitant(filename, outprefix='',overwrite=False):
|
---|
931 | """
|
---|
932 | Split Measurement set by antenna name, save data as a scantables,
|
---|
933 | and return a list of filename.
|
---|
934 | Notice this method can only be available from CASA.
|
---|
935 | Prameter
|
---|
936 | filename: the name of Measurement set to be read.
|
---|
937 | outprefix: the prefix of output scantable name.
|
---|
938 | the names of output scantable will be
|
---|
939 | outprefix.antenna1, outprefix.antenna2, ....
|
---|
940 | If not specified, outprefix = filename is assumed.
|
---|
941 | overwrite If the file should be overwritten if it exists.
|
---|
942 | The default False is to return with warning
|
---|
943 | without writing the output. USE WITH CARE.
|
---|
944 |
|
---|
945 | """
|
---|
946 | # Import the table toolkit from CASA
|
---|
947 | import casac
|
---|
948 | from asap.scantable import is_ms
|
---|
949 | tbtool = casac.homefinder.find_home_by_name('tableHome')
|
---|
950 | tb = tbtool.create()
|
---|
951 | # Check the input filename
|
---|
952 | if isinstance(filename, str):
|
---|
953 | import os.path
|
---|
954 | filename = os.path.expandvars(filename)
|
---|
955 | filename = os.path.expanduser(filename)
|
---|
956 | if not os.path.exists(filename):
|
---|
957 | s = "File '%s' not found." % (filename)
|
---|
958 | raise IOError(s)
|
---|
959 | # check if input file is MS
|
---|
960 | #if not os.path.isdir(filename) \
|
---|
961 | # or not os.path.exists(filename+'/ANTENNA') \
|
---|
962 | # or not os.path.exists(filename+'/table.f1'):
|
---|
963 | if not is_ms(filename):
|
---|
964 | s = "File '%s' is not a Measurement set." % (filename)
|
---|
965 | raise IOError(s)
|
---|
966 | else:
|
---|
967 | s = "The filename should be string. "
|
---|
968 | raise TypeError(s)
|
---|
969 | # Check out put file name
|
---|
970 | outname=''
|
---|
971 | if len(outprefix) > 0: prefix=outprefix+'.'
|
---|
972 | else:
|
---|
973 | prefix=filename.rstrip('/')
|
---|
974 | # Now do the actual splitting.
|
---|
975 | outfiles=[]
|
---|
976 | tb.open(tablename=filename+'/ANTENNA',nomodify=True)
|
---|
977 | nant=tb.nrows()
|
---|
978 | antnames=tb.getcol('NAME',0,nant,1)
|
---|
979 | tb.close()
|
---|
980 | tb.open(tablename=filename,nomodify=True)
|
---|
981 | ant1=tb.getcol('ANTENNA1',0,-1,1)
|
---|
982 | tb.close()
|
---|
983 | tmpname='asapmath.splitant.tmp'
|
---|
984 | for antid in set(ant1):
|
---|
985 | tb.open(tablename=filename,nomodify=True)
|
---|
986 | tbsel=tb.query('ANTENNA1 == %s && ANTENNA2 == %s'%(antid,antid),tmpname)
|
---|
987 | scan=scantable(tmpname,average=False,getpt=True,antenna=int(antid))
|
---|
988 | outname=prefix+antnames[antid]+'.asap'
|
---|
989 | scan.save(outname,format='ASAP',overwrite=overwrite)
|
---|
990 | tbsel.close()
|
---|
991 | tb.close()
|
---|
992 | del tbsel
|
---|
993 | del scan
|
---|
994 | outfiles.append(outname)
|
---|
995 | os.system('rm -rf '+tmpname)
|
---|
996 | del tb
|
---|
997 | return outfiles
|
---|
998 |
|
---|
999 | @asaplog_post_dec
|
---|
1000 | def _array2dOp( scan, value, mode="ADD", tsys=False ):
|
---|
1001 | """
|
---|
1002 | This function is workaround on the basic operation of scantable
|
---|
1003 | with 2 dimensional float list.
|
---|
1004 |
|
---|
1005 | scan: scantable operand
|
---|
1006 | value: float list operand
|
---|
1007 | mode: operation mode (ADD, SUB, MUL, DIV)
|
---|
1008 | tsys: if True, operate tsys as well
|
---|
1009 | """
|
---|
1010 | nrow = scan.nrow()
|
---|
1011 | s = None
|
---|
1012 | if len( value ) == 1:
|
---|
1013 | from asap._asap import stmath
|
---|
1014 | stm = stmath()
|
---|
1015 | s = scantable( stm._arrayop( scan.copy(), value[0], mode, tsys ) )
|
---|
1016 | del stm
|
---|
1017 | elif len( value ) != nrow:
|
---|
1018 | raise ValueError( 'len(value) must be 1 or conform to scan.nrow()' )
|
---|
1019 | else:
|
---|
1020 | from asap._asap import stmath
|
---|
1021 | stm = stmath()
|
---|
1022 | # insitu must be True
|
---|
1023 | stm._setinsitu( True )
|
---|
1024 | s = scan.copy()
|
---|
1025 | sel = selector()
|
---|
1026 | for irow in range( nrow ):
|
---|
1027 | sel.set_rows( irow )
|
---|
1028 | s.set_selection( sel )
|
---|
1029 | if len( value[irow] ) == 1:
|
---|
1030 | stm._unaryop( s, value[irow][0], mode, tsys )
|
---|
1031 | else:
|
---|
1032 | stm._arrayop( s, value[irow], mode, tsys, 'channel' )
|
---|
1033 | s.set_selection()
|
---|
1034 | sel.reset()
|
---|
1035 | del sel
|
---|
1036 | del stm
|
---|
1037 | return s
|
---|