1 | from scantable import scantable
|
---|
2 |
|
---|
3 | def average_time(*args, **kwargs):
|
---|
4 | """
|
---|
5 | Return the (time) average of a scan or list of scans. [in channels only]
|
---|
6 | Parameters:
|
---|
7 | one scan or comma separated scans
|
---|
8 | mask: an optional mask
|
---|
9 | Example:
|
---|
10 | # return a time averaged scan from scana and scanb
|
---|
11 | # without using a mask
|
---|
12 | scanav = average_scans(scana,scanb)
|
---|
13 | # return the (time) averaged scan, i.e. the average of
|
---|
14 | # all correlator cycles
|
---|
15 | scanav = average_time(scan)
|
---|
16 |
|
---|
17 | """
|
---|
18 | lst = args
|
---|
19 | if len(args) < 2:
|
---|
20 | if type(args[0]) is list:
|
---|
21 | if len(args[0]) < 2:
|
---|
22 | print "Please give at least two scantables"
|
---|
23 | return
|
---|
24 | else:
|
---|
25 | s = args[0]
|
---|
26 | if s.nrow() > 1:
|
---|
27 | from asap._asap import average as _av
|
---|
28 | return scantable(_av(s))
|
---|
29 | else:
|
---|
30 | print "Given scantable is already time averaged"
|
---|
31 | return
|
---|
32 | lst = tuple(args[0])
|
---|
33 | else:
|
---|
34 | lst = tuple(args)
|
---|
35 | from asap._asap import averages as _avs
|
---|
36 | d = [lst[0].nbeam(),lst[0].nif(),lst[0].npol(),lst[0].nchan()]
|
---|
37 | for s in lst:
|
---|
38 | if not isinstance(s,scantable):
|
---|
39 | print "Please give a list of scantables"
|
---|
40 | return
|
---|
41 | dim = [s.nbeam(),s.nif(),s.npol(),s.nchan()]
|
---|
42 | if (dim != d):
|
---|
43 | print "All scans have to have the same numer of Beams/IFs/Pols/Chans"
|
---|
44 | return
|
---|
45 | if kwargs.has_key('mask'):
|
---|
46 | return scantable(_avs(lst, kwargs.get('mask')))
|
---|
47 | else:
|
---|
48 | from numarray import ones
|
---|
49 | mask = tuple(ones(d[3]))
|
---|
50 | return scantable(_avs(lst, mask))
|
---|
51 |
|
---|
52 | def quotient(source, reference):
|
---|
53 | """
|
---|
54 | Return the quotient of a 'source' scan and a 'reference' scan
|
---|
55 | Parameters:
|
---|
56 | source: the 'on' scan
|
---|
57 | reference: the 'off' scan
|
---|
58 | """
|
---|
59 | from asap._asap import quotient as _quot
|
---|
60 | return scantable(_quot(source, reference))
|
---|
61 |
|
---|
62 | def scale(scan, factor):
|
---|
63 | """
|
---|
64 | Return a scan where all spectra are scaled by the give 'factor'
|
---|
65 | Parameters:
|
---|
66 | scan: a scantable
|
---|
67 | factor: the scaling factor
|
---|
68 | Note:
|
---|
69 | This currently applies the all beams/IFs/pols
|
---|
70 | """
|
---|
71 | from asap._asap import scale as _scale
|
---|
72 | return scantable(_scale(scan, factor))
|
---|
73 |
|
---|
74 | def add(scan, offset):
|
---|
75 | """
|
---|
76 | Return a scan where the offset is added.
|
---|
77 | Parameters:
|
---|
78 | scan: a scantable
|
---|
79 | offset: the value to add
|
---|
80 | Note:
|
---|
81 | This currently applies the all beams/IFs/pols
|
---|
82 | """
|
---|
83 | from asap._asap import add as _add
|
---|
84 | return scantable(_add(scan, offset))
|
---|
85 |
|
---|
86 |
|
---|
87 | def bin(scan, binwidth=5):
|
---|
88 | """
|
---|
89 | """
|
---|
90 | from asap._asap import bin as _bin
|
---|
91 | return scantable(_bin(scan, binwidth))
|
---|
92 |
|
---|
93 | def average_pol(scan, mask=None):
|
---|
94 | """
|
---|
95 | Average the Polarisations together.
|
---|
96 | Parameters:
|
---|
97 | scan - a scantable
|
---|
98 | mask - an optional mask defining the region, where
|
---|
99 | the averaging will be applied. The output
|
---|
100 | will have all specified points masked.
|
---|
101 | The dimension won't be reduced and
|
---|
102 | all polarisations will contain the
|
---|
103 | averaged spectrum.
|
---|
104 | Example:
|
---|
105 | polav = average_pols(myscan)
|
---|
106 | """
|
---|
107 | from asap._asap import averagepol as _avpol
|
---|
108 | from numarray import ones
|
---|
109 | if mask is None:
|
---|
110 | mask = tuple(ones(scan.nchan()))
|
---|
111 | return scantable(_avpol(scan, mask))
|
---|
112 |
|
---|
113 | def hanning(scan):
|
---|
114 | """
|
---|
115 | Hanning smooth the channels.
|
---|
116 | Parameters:
|
---|
117 | scan - the input scan
|
---|
118 | Example:
|
---|
119 | none
|
---|
120 | """
|
---|
121 | from asap._asap import hanning as _han
|
---|
122 | return scantable(_han(scan))
|
---|
123 |
|
---|
124 |
|
---|
125 | def poly_baseline(scan, mask=None, order=0):
|
---|
126 | """
|
---|
127 | Return a scan which has been baselined by a polynomial.
|
---|
128 | Parameters:
|
---|
129 | scan: a scantable
|
---|
130 | mask: an optional mask
|
---|
131 | order: the order of the polynomial (default is 0)
|
---|
132 | Example:
|
---|
133 | # return a scan baselined by a third order polynomial,
|
---|
134 | # not using a mask
|
---|
135 | bscan = poly_baseline(scan, order=3)
|
---|
136 | """
|
---|
137 | from asap.asapfitter import fitter
|
---|
138 | if mask is None:
|
---|
139 | from numarray import ones
|
---|
140 | mask = tuple(ones(scan.nchan()))
|
---|
141 | f = fitter()
|
---|
142 | f._verbose(True)
|
---|
143 | f.set_scan(scan, mask)
|
---|
144 | f.set_function(poly=order)
|
---|
145 | sf = f.auto_fit()
|
---|
146 | return sf
|
---|