""" ASAP plotting class based on matplotlib. """ import sys from re import match import matplotlib from matplotlib.figure import Figure, Text from matplotlib.font_manager import FontProperties as FP from numpy import sqrt from matplotlib import rc, rcParams from asap import rcParams as asaprcParams from matplotlib.ticker import OldScalarFormatter # API change in mpl >= 0.98 try: from matplotlib.transforms import blended_transform_factory except ImportError: from matplotlib.transforms import blend_xy_sep_transform as blended_transform_factory if int(matplotlib.__version__.split(".")[1]) < 87: print "Warning: matplotlib version < 0.87. This might cause errors. Please upgrade." class asaplotbase: """ ASAP plotting base class based on matplotlib. """ def __init__(self, rows=1, cols=0, title='', size=None, buffering=False): """ Create a new instance of the ASAPlot plotting class. If rows < 1 then a separate call to set_panels() is required to define the panel layout; refer to the doctext for set_panels(). """ self.is_dead = False self.figure = Figure(figsize=size, facecolor='#ddddee') self.canvas = None self.set_title(title) self.subplots = [] if rows > 0: self.set_panels(rows, cols) # Set matplotlib default colour sequence. self.colormap = "green red black cyan magenta orange blue purple yellow pink".split() c = asaprcParams['plotter.colours'] if isinstance(c,str) and len(c) > 0: self.colormap = c.split() self.lsalias = {"line": [1,0], "dashdot": [4,2,1,2], "dashed" : [4,2,4,2], "dotted" : [1,2], "dashdotdot": [4,2,1,2,1,2], "dashdashdot": [4,2,4,2,1,2] } styles = "line dashed dotted dashdot".split() c = asaprcParams['plotter.linestyles'] if isinstance(c,str) and len(c) > 0: styles = c.split() s = [] for ls in styles: if self.lsalias.has_key(ls): s.append(self.lsalias.get(ls)) else: s.append('-') self.linestyles = s self.color = 0; self.linestyle = 0; self.attributes = {} self.loc = 0 self.buffering = buffering def clear(self): """ Delete all lines from the plot. Line numbering will restart from 0. """ for i in range(len(self.lines)): self.delete(i) self.axes.clear() self.color = 0 self.lines = [] def palette(self, color, colormap=None, linestyle=0, linestyles=None): if colormap: if isinstance(colormap,list): self.colormap = colormap elif isinstance(colormap,str): self.colormap = colormap.split() if 0 <= color < len(self.colormap): self.color = color if linestyles: self.linestyles = [] if isinstance(linestyles,list): styles = linestyles elif isinstance(linestyles,str): styles = linestyles.split() for ls in styles: if self.lsalias.has_key(ls): self.linestyles.append(self.lsalias.get(ls)) else: self.linestyles.append(self.lsalias.get('line')) if 0 <= linestyle < len(self.linestyles): self.linestyle = linestyle def delete(self, numbers=None): """ Delete the 0-relative line number, default is to delete the last. The remaining lines are NOT renumbered. """ if numbers is None: numbers = [len(self.lines)-1] if not hasattr(numbers, '__iter__'): numbers = [numbers] for number in numbers: if 0 <= number < len(self.lines): if self.lines[number] is not None: for line in self.lines[number]: line.set_linestyle('None') self.lines[number] = None self.show() def get_line(self): """ Get the current default line attributes. """ return self.attributes def hist(self, x=None, y=None, fmt=None, add=None): """ Plot a histogram. N.B. the x values refer to the start of the histogram bin. fmt is the line style as in plot(). """ from numpy import array from numpy.ma import MaskedArray if x is None: if y is None: return x = range(len(y)) if len(x) != len(y): return l2 = 2*len(x) x2 = range(l2) y2 = range(12) y2 = range(l2) m2 = range(l2) ymsk = None ydat = None if hasattr(y, "raw_mask"): # numpy < 1.1 ymsk = y.raw_mask() ydat = y.raw_data() else: ymsk = y.mask ydat = y.data for i in range(l2): x2[i] = x[i/2] m2[i] = ymsk[i/2] y2[0] = 0.0 for i in range(1,l2): y2[i] = ydat[(i-1)/2] self.plot(x2, MaskedArray(y2,mask=m2,copy=0), fmt, add) def hold(self, hold=True): """ Buffer graphics until subsequently released. """ self.buffering = hold def legend(self, loc=None): """ Add a legend to the plot. Any other value for loc else disables the legend: 1: upper right 2: upper left 3: lower left 4: lower right 5: right 6: center left 7: center right 8: lower center 9: upper center 10: center """ if isinstance(loc, int): self.loc = None if 0 <= loc <= 10: self.loc = loc else: self.loc = None #self.show() def plot(self, x=None, y=None, fmt=None, add=None): """ Plot the next line in the current frame using the current line attributes. The ASAPlot graphics window will be mapped and raised. The argument list works a bit like the matlab plot() function. """ if x is None: if y is None: return x = range(len(y)) elif y is None: y = x x = range(len(y)) if fmt is None: line = self.axes.plot(x, y) else: line = self.axes.plot(x, y, fmt) # Add to an existing line? i = None if add is None or len(self.lines) < add < 0: # Don't add. self.lines.append(line) i = len(self.lines) - 1 else: if add == 0: add = len(self.lines) i = add - 1 self.lines[i].extend(line) # Set/reset attributes for the line. gotcolour = False for k, v in self.attributes.iteritems(): if k == 'color': gotcolour = True for segment in self.lines[i]: getattr(segment, "set_%s"%k)(v) if not gotcolour and len(self.colormap): for segment in self.lines[i]: getattr(segment, "set_color")(self.colormap[self.color]) if len(self.colormap) == 1: getattr(segment, "set_dashes")(self.linestyles[self.linestyle]) self.color += 1 if self.color >= len(self.colormap): self.color = 0 if len(self.colormap) == 1: self.linestyle += 1 if self.linestyle >= len(self.linestyles): self.linestyle = 0 self.show() def position(self): """ Use the mouse to get a position from a graph. """ def position_disable(event): self.register('button_press', None) print '%.4f, %.4f' % (event.xdata, event.ydata) print 'Press any mouse button...' self.register('button_press', position_disable) def get_region(self): pos = [] print "Please select the bottom/left point" pos.append(self.figure.ginput(n=1, show_clicks=False)[0]) print "Please select the top/right point" pos.append(self.figure.ginput(n=1, show_clicks=False)[0]) return pos def get_point(self): print "Please select the point" pt = self.figure.ginput(n=1, show_clicks=False) if pt: return pt[0] else: return None def region(self): """ Use the mouse to get a rectangular region from a plot. The return value is [x0, y0, x1, y1] in world coordinates. """ def region_start(event): height = self.canvas.figure.bbox.height() self.rect = {'fig': None, 'height': height, 'x': event.x, 'y': height - event.y, 'world': [event.xdata, event.ydata, event.xdata, event.ydata]} self.register('button_press', None) self.register('motion_notify', region_draw) self.register('button_release', region_disable) def region_draw(event): self.canvas._tkcanvas.delete(self.rect['fig']) self.rect['fig'] = self.canvas._tkcanvas.create_rectangle( self.rect['x'], self.rect['y'], event.x, self.rect['height'] - event.y) def region_disable(event): self.register('motion_notify', None) self.register('button_release', None) self.canvas._tkcanvas.delete(self.rect['fig']) self.rect['world'][2:4] = [event.xdata, event.ydata] print '(%.2f, %.2f) (%.2f, %.2f)' % (self.rect['world'][0], self.rect['world'][1], self.rect['world'][2], self.rect['world'][3]) self.register('button_press', region_start) # This has to be modified to block and return the result (currently # printed by region_disable) when that becomes possible in matplotlib. return [0.0, 0.0, 0.0, 0.0] def register(self, type=None, func=None): """ Register, reregister, or deregister events of type 'button_press', 'button_release', or 'motion_notify'. The specified callback function should have the following signature: def func(event) where event is an MplEvent instance containing the following data: name # Event name. canvas # FigureCanvas instance generating the event. x = None # x position - pixels from left of canvas. y = None # y position - pixels from bottom of canvas. button = None # Button pressed: None, 1, 2, 3. key = None # Key pressed: None, chr(range(255)), shift, win, or control inaxes = None # Axes instance if cursor within axes. xdata = None # x world coordinate. ydata = None # y world coordinate. For example: def mouse_move(event): print event.xdata, event.ydata a = asaplot() a.register('motion_notify', mouse_move) If func is None, the event is deregistered. Note that in TkAgg keyboard button presses don't generate an event. """ if not self.events.has_key(type): return if func is None: if self.events[type] is not None: # It's not clear that this does anything. self.canvas.mpl_disconnect(self.events[type]) self.events[type] = None # It seems to be necessary to return events to the toolbar. if type == 'motion_notify': self.canvas.mpl_connect(type + '_event', self.figmgr.toolbar.mouse_move) elif type == 'button_press': self.canvas.mpl_connect(type + '_event', self.figmgr.toolbar.press) elif type == 'button_release': self.canvas.mpl_connect(type + '_event', self.figmgr.toolbar.release) else: self.events[type] = self.canvas.mpl_connect(type + '_event', func) def release(self): """ Release buffered graphics. """ self.buffering = False self.show() def save(self, fname=None, orientation=None, dpi=None, papertype=None): """ Save the plot to a file. fname is the name of the output file. The image format is determined from the file suffix; 'png', 'ps', and 'eps' are recognized. If no file name is specified 'yyyymmdd_hhmmss.png' is created in the current directory. """ from asap import rcParams if papertype is None: papertype = rcParams['plotter.papertype'] if fname is None: from datetime import datetime dstr = datetime.now().strftime('%Y%m%d_%H%M%S') fname = 'asap'+dstr+'.png' d = ['png','.ps','eps'] from os.path import expandvars fname = expandvars(fname) if fname[-3:].lower() in d: try: if fname[-3:].lower() == ".ps": from matplotlib import __version__ as mv w = self.figure.get_figwidth() h = self.figure.get_figheight() if orientation is None: # oriented if w > h: orientation = 'landscape' else: orientation = 'portrait' from matplotlib.backends.backend_ps import papersize pw,ph = papersize[papertype.lower()] ds = None if orientation == 'landscape': ds = min(ph/w, pw/h) else: ds = min(pw/w, ph/h) ow = ds * w oh = ds * h self.figure.set_size_inches((ow, oh)) self.figure.savefig(fname, orientation=orientation, papertype=papertype.lower()) self.figure.set_size_inches((w, h)) print 'Written file %s' % (fname) else: if dpi is None: dpi =150 self.figure.savefig(fname,dpi=dpi) print 'Written file %s' % (fname) except IOError, msg: print 'Failed to save %s: Error msg was\n\n%s' % (fname, msg) return else: print "Invalid image type. Valid types are:" print "'ps', 'eps', 'png'" def set_axes(self, what=None, *args, **kwargs): """ Set attributes for the axes by calling the relevant Axes.set_*() method. Colour translation is done as described in the doctext for palette(). """ if what is None: return if what[-6:] == 'colour': what = what[:-6] + 'color' key = "colour" if kwargs.has_key(key): val = kwargs.pop(key) kwargs["color"] = val getattr(self.axes, "set_%s"%what)(*args, **kwargs) self.show(hardrefresh=False) def set_figure(self, what=None, *args, **kwargs): """ Set attributes for the figure by calling the relevant Figure.set_*() method. Colour translation is done as described in the doctext for palette(). """ if what is None: return if what[-6:] == 'colour': what = what[:-6] + 'color' #if what[-5:] == 'color' and len(args): # args = (get_colour(args[0]),) newargs = {} for k, v in kwargs.iteritems(): k = k.lower() if k == 'colour': k = 'color' newargs[k] = v getattr(self.figure, "set_%s"%what)(*args, **newargs) self.show(hardrefresh=False) def set_limits(self, xlim=None, ylim=None): """ Set x-, and y-limits for each subplot. xlim = [xmin, xmax] as in axes.set_xlim(). ylim = [ymin, ymax] as in axes.set_ylim(). """ for s in self.subplots: self.axes = s['axes'] self.lines = s['lines'] oldxlim = list(self.axes.get_xlim()) oldylim = list(self.axes.get_ylim()) if xlim is not None: for i in range(len(xlim)): if xlim[i] is not None: oldxlim[i] = xlim[i] if ylim is not None: for i in range(len(ylim)): if ylim[i] is not None: oldylim[i] = ylim[i] self.axes.set_xlim(oldxlim) self.axes.set_ylim(oldylim) return def set_line(self, number=None, **kwargs): """ Set attributes for the specified line, or else the next line(s) to be plotted. number is the 0-relative number of a line that has already been plotted. If no such line exists, attributes are recorded and used for the next line(s) to be plotted. Keyword arguments specify Line2D attributes, e.g. color='r'. Do import matplotlib help(matplotlib.lines) The set_* methods of class Line2D define the attribute names and values. For non-US usage, "colour" is recognized as synonymous with "color". Set the value to None to delete an attribute. Colour translation is done as described in the doctext for palette(). """ redraw = False for k, v in kwargs.iteritems(): k = k.lower() if k == 'colour': k = 'color' if 0 <= number < len(self.lines): if self.lines[number] is not None: for line in self.lines[number]: getattr(line, "set_%s"%k)(v) redraw = True else: if v is None: del self.attributes[k] else: self.attributes[k] = v if redraw: self.show(hardrefresh=False) def set_panels(self, rows=1, cols=0, n=-1, nplots=-1, ganged=True): """ Set the panel layout. rows and cols, if cols != 0, specify the number of rows and columns in a regular layout. (Indexing of these panels in matplotlib is row- major, i.e. column varies fastest.) cols == 0 is interpreted as a retangular layout that accomodates 'rows' panels, e.g. rows == 6, cols == 0 is equivalent to rows == 2, cols == 3. 0 <= n < rows*cols is interpreted as the 0-relative panel number in the configuration specified by rows and cols to be added to the current figure as its next 0-relative panel number (i). This allows non-regular panel layouts to be constructed via multiple calls. Any other value of n clears the plot and produces a rectangular array of empty panels. The number of these may be limited by nplots. """ if n < 0 and len(self.subplots): self.figure.clear() self.set_title() if rows < 1: rows = 1 if cols <= 0: i = int(sqrt(rows)) if i*i < rows: i += 1 cols = i if i*(i-1) >= rows: i -= 1 rows = i if 0 <= n < rows*cols: i = len(self.subplots) self.subplots.append({}) self.subplots[i]['axes'] = self.figure.add_subplot(rows, cols, n+1) self.subplots[i]['lines'] = [] if i == 0: self.subplot(0) self.rows = 0 self.cols = 0 else: self.subplots = [] if nplots < 1 or rows*cols < nplots: nplots = rows*cols if ganged: hsp,wsp = None,None if rows > 1: hsp = 0.0001 if cols > 1: wsp = 0.0001 self.figure.subplots_adjust(wspace=wsp,hspace=hsp) for i in range(nplots): self.subplots.append({}) self.subplots[i]['lines'] = [] if not ganged: self.subplots[i]['axes'] = self.figure.add_subplot(rows, cols, i+1) if asaprcParams['plotter.axesformatting'] != 'mpl': self.subplots[i]['axes'].xaxis.set_major_formatter(OldScalarFormatter()) else: if i == 0: self.subplots[i]['axes'] = self.figure.add_subplot(rows, cols, i+1) if asaprcParams['plotter.axesformatting'] != 'mpl': self.subplots[i]['axes'].xaxis.set_major_formatter(OldScalarFormatter()) else: self.subplots[i]['axes'] = self.figure.add_subplot(rows, cols, i+1, sharex=self.subplots[0]['axes'], sharey=self.subplots[0]['axes']) # Suppress tick labelling for interior subplots. if i <= (rows-1)*cols - 1: if i+cols < nplots: # Suppress x-labels for frames width # adjacent frames for tick in self.subplots[i]['axes'].xaxis.majorTicks: tick.label1On = False self.subplots[i]['axes'].xaxis.label.set_visible(False) if i%cols: # Suppress y-labels for frames not in the left column. for tick in self.subplots[i]['axes'].yaxis.majorTicks: tick.label1On = False self.subplots[i]['axes'].yaxis.label.set_visible(False) # disable the first tick of [1:ncol-1] of the last row #if i+1 < nplots: # self.subplots[i]['axes'].xaxis.majorTicks[0].label1On = False self.rows = rows self.cols = cols self.subplot(0) def tidy(self): # this needs to be exceuted after the first "refresh" nplots = len(self.subplots) if nplots == 1: return for i in xrange(nplots): ax = self.subplots[i]['axes'] if i%self.cols: ax.xaxis.majorTicks[0].label1On = False else: if i != 0: ax.yaxis.majorTicks[-1].label1On = False def set_title(self, title=None): """ Set the title of the plot window. Use the previous title if title is omitted. """ if title is not None: self.title = title self.figure.text(0.5, 0.95, self.title, horizontalalignment='center') def show(self, hardrefresh=True): """ Show graphics dependent on the current buffering state. """ if not hardrefresh: return if not self.buffering: if self.loc is not None: for sp in self.subplots: lines = [] labels = [] i = 0 for line in sp['lines']: i += 1 if line is not None: lines.append(line[0]) lbl = line[0].get_label() if lbl == '': lbl = str(i) labels.append(lbl) if len(lines): fp = FP(size=rcParams['legend.fontsize']) fsz = fp.get_size_in_points() - len(lines) fp.set_size(max(fsz,6)) sp['axes'].legend(tuple(lines), tuple(labels), self.loc, prop=fp) else: sp['axes'].legend((' ')) from matplotlib.artist import setp fpx = FP(size=rcParams['xtick.labelsize']) xts = fpx.get_size_in_points()- (self.cols)/2 fpy = FP(size=rcParams['ytick.labelsize']) yts = fpy.get_size_in_points() - (self.rows)/2 fpa = FP(size=rcParams['axes.labelsize']) fpat = FP(size=rcParams['axes.titlesize']) axsize = fpa.get_size_in_points() tsize = fpat.get_size_in_points() for sp in self.subplots: ax = sp['axes'] off = 0 if len(self.subplots) > 1: off = self.cols+self.rows ax.title.set_size(tsize-off) setp(ax.get_xticklabels(), fontsize=xts) setp(ax.get_yticklabels(), fontsize=yts) off = 0 if self.cols > 1: off = self.cols ax.xaxis.label.set_size(axsize-off) if self.rows > 1: off = self.rows ax.yaxis.label.set_size(axsize-off) def subplot(self, i=None, inc=None): """ Set the subplot to the 0-relative panel number as defined by one or more invokations of set_panels(). """ l = len(self.subplots) if l: if i is not None: self.i = i if inc is not None: self.i += inc self.i %= l self.axes = self.subplots[self.i]['axes'] self.lines = self.subplots[self.i]['lines'] def text(self, *args, **kwargs): """ Add text to the figure. """ self.figure.text(*args, **kwargs) self.show() def vline_with_label(self, x, y, label, location='bottom', rotate=0.0, **kwargs): """ Plot a vertical line with label. It takes "world" values fo x and y. """ ax = self.axes # need this to suppress autoscaling during this function self.axes.set_autoscale_on(False) ymin = 0.0 ymax = 1.0 valign = 'center' if location.lower() == 'top': y = max(0.0, y) elif location.lower() == 'bottom': y = min(0.0, y) lbloffset = 0.06 # a rough estimate for the bb of the text if rotate > 0.0: lbloffset = 0.03*len(label) peakoffset = 0.01 xy = None xy0 = None # matplotlib api change 0.98 is using transform now if hasattr(ax.transData, "inverse_xy_tup"): # get relative coords xy0 = ax.transData.xy_tup((x,y)) xy = ax.transAxes.inverse_xy_tup(xy0) else: xy0 = ax.transData.transform((x,y)) # get relative coords xy = ax.transAxes.inverted().transform(xy0) if location.lower() == 'top': ymax = 1.0-lbloffset ymin = xy[1]+peakoffset valign = 'bottom' ylbl = ymax+0.01 elif location.lower() == 'bottom': ymin = lbloffset ymax = xy[1]-peakoffset valign = 'top' ylbl = ymin-0.01 trans = blended_transform_factory(ax.transData, ax.transAxes) l = ax.axvline(x, ymin, ymax, color='black', **kwargs) t = ax.text(x, ylbl ,label, verticalalignment=valign, horizontalalignment='center', rotation=rotate,transform = trans) self.axes.set_autoscale_on(True)