1 | import numpy
|
---|
2 | from asap import rcParams
|
---|
3 | from asap.scantable import scantable
|
---|
4 | from asap.selector import selector
|
---|
5 | from asap._asap import stgrid
|
---|
6 | import pylab as pl
|
---|
7 | from logging import asaplog
|
---|
8 |
|
---|
9 | class asapgrid:
|
---|
10 | """
|
---|
11 | The asapgrid class is defined to convolve data onto regular
|
---|
12 | spatial grid. Typical usage is as follows:
|
---|
13 |
|
---|
14 | # create asapgrid instance with two input data
|
---|
15 | g = asapgrid( ['testimage1.asap','testimage2.asap'] )
|
---|
16 | # set IFNO if necessary
|
---|
17 | g.setIF( 0 )
|
---|
18 | # set POLNOs if necessary
|
---|
19 | g.setPolList( [0,1] )
|
---|
20 | # set SCANNOs if necessary
|
---|
21 | g.setScanList( [22,23,24] )
|
---|
22 | # define image with full specification
|
---|
23 | # you can skip some parameters (see help for defineImage)
|
---|
24 | g.defineImage( nx=12, ny=12, cellx='10arcsec', celly='10arcsec',
|
---|
25 | center='J2000 10h10m10s -5d05m05s' )
|
---|
26 | # set convolution function
|
---|
27 | g.setFunc( func='sf', width=3 )
|
---|
28 | # actual gridding
|
---|
29 | g.grid()
|
---|
30 | # save result
|
---|
31 | g.save( outfile='grid.asap' )
|
---|
32 | # plot result
|
---|
33 | g.plot( plotchan=1246, plotpol=-1, plotgrid=True, plotobs=True )
|
---|
34 | """
|
---|
35 | def __init__( self, infile ):
|
---|
36 | """
|
---|
37 | Create asapgrid instance.
|
---|
38 |
|
---|
39 | infile -- input data as a string or string list if you want
|
---|
40 | to grid more than one data at once.
|
---|
41 | """
|
---|
42 | self.outfile = None
|
---|
43 | self.ifno = None
|
---|
44 | self.gridder = stgrid()
|
---|
45 | self.setData( infile )
|
---|
46 |
|
---|
47 | def setData( self, infile ):
|
---|
48 | """
|
---|
49 | Set data to be processed.
|
---|
50 |
|
---|
51 | infile -- input data as a string or string list if you want
|
---|
52 | to grid more than one data at once.
|
---|
53 | """
|
---|
54 | if isinstance( infile, str ):
|
---|
55 | self.gridder._setin( infile )
|
---|
56 | else:
|
---|
57 | self.gridder._setfiles( infile )
|
---|
58 | self.infile = infile
|
---|
59 |
|
---|
60 | def setIF( self, ifno ):
|
---|
61 | """
|
---|
62 | Set IFNO to be processed. Currently, asapgrid allows to process
|
---|
63 | only one IFNO for one gridding run even if the data contains
|
---|
64 | multiple IFs. If you didn't specify IFNO, default value, which
|
---|
65 | is IFNO in the first spectrum, will be processed.
|
---|
66 |
|
---|
67 | ifno -- IFNO to be processed.
|
---|
68 | """
|
---|
69 | self.ifno = ifno
|
---|
70 | self.gridder._setif( self.ifno )
|
---|
71 |
|
---|
72 | def setPolList( self, pollist ):
|
---|
73 | """
|
---|
74 | Set list of polarization components you want to process.
|
---|
75 | If not specified, all POLNOs will be processed.
|
---|
76 |
|
---|
77 | pollist -- list of POLNOs.
|
---|
78 | """
|
---|
79 | self.gridder._setpollist( pollist )
|
---|
80 |
|
---|
81 | def setScanList( self, scanlist ):
|
---|
82 | """
|
---|
83 | Set list of scans you want to process. If not specified, all
|
---|
84 | scans will be processed.
|
---|
85 |
|
---|
86 | scanlist -- list of SCANNOs.
|
---|
87 | """
|
---|
88 | self.gridder._setscanlist( scanlist )
|
---|
89 |
|
---|
90 | def defineImage( self, nx=-1, ny=-1, cellx='', celly='', center='' ):
|
---|
91 | """
|
---|
92 | Define spatial grid.
|
---|
93 |
|
---|
94 | First two parameters, nx and ny, define number of pixels of
|
---|
95 | the grid. If which of those is not specified, it will be set
|
---|
96 | to the same value as the other. If none of them are specified,
|
---|
97 | it will be determined from map extent and cell size.
|
---|
98 |
|
---|
99 | Next two parameters, cellx and celly, define size of pixel.
|
---|
100 | You should set those parameters as string, which is constructed
|
---|
101 | numerical value and unit, e.g. '0.5arcmin', or numerical value.
|
---|
102 | If those values are specified as numerical value, their units
|
---|
103 | will be assumed to 'arcmin'. If which of those is not specified,
|
---|
104 | it will be set to the same value as the other. If none of them
|
---|
105 | are specified, it will be determined from map extent and number
|
---|
106 | of pixels, or set to '1arcmin' if neither nx nor ny is set.
|
---|
107 |
|
---|
108 | The last parameter, center, define the central coordinate of
|
---|
109 | the grid. You should specify its value as a string, like,
|
---|
110 |
|
---|
111 | 'J2000 05h08m50s -16d23m30s'
|
---|
112 |
|
---|
113 | or
|
---|
114 |
|
---|
115 | 'J2000 05:08:50 -16.23.30'
|
---|
116 |
|
---|
117 | You can omit equinox when you specify center coordinate. In that
|
---|
118 | case, J2000 is assumed. If center is not specified, it will be
|
---|
119 | determined from the observed positions of input data.
|
---|
120 |
|
---|
121 | nx -- number of pixels along x (R.A.) direction.
|
---|
122 | ny -- number of pixels along y (Dec.) direction.
|
---|
123 | cellx -- size of pixel in x (R.A.) direction.
|
---|
124 | celly -- size of pixel in y (Dec.) direction.
|
---|
125 | center -- central position of the grid.
|
---|
126 | """
|
---|
127 | if not isinstance( cellx, str ):
|
---|
128 | cellx = '%sarcmin'%(cellx)
|
---|
129 | if not isinstance( celly, str ):
|
---|
130 | celly = '%sarcmin'%(celly)
|
---|
131 | self.gridder._defineimage( nx, ny, cellx, celly, center )
|
---|
132 |
|
---|
133 | def setFunc( self, func='box', width=-1 ):
|
---|
134 | """
|
---|
135 | Set convolution function. Possible options are 'box' (Box-car,
|
---|
136 | default), 'sf' (prolate spheroidal), and 'gauss' (Gaussian).
|
---|
137 | Width of convolution function can be set using width parameter.
|
---|
138 | By default (-1), width is automatically set depending on each
|
---|
139 | convolution function. Default values for width are:
|
---|
140 |
|
---|
141 | 'box': 1 pixel
|
---|
142 | 'sf': 3 pixels
|
---|
143 | 'gauss': 3 pixels (width is used as HWHM)
|
---|
144 |
|
---|
145 | func -- Function type ('box', 'sf', 'gauss').
|
---|
146 | width -- Width of convolution function. Default (-1) is to
|
---|
147 | choose pre-defined value for each convolution function.
|
---|
148 | """
|
---|
149 | self.gridder._setfunc( func, width )
|
---|
150 |
|
---|
151 | def setWeight( self, weightType='uniform' ):
|
---|
152 | """
|
---|
153 | Set weight type. Possible options are 'uniform' (default),
|
---|
154 | 'tint' (weight by integration time), 'tsys' (weight by
|
---|
155 | Tsys: 1/Tsys**2), and 'tintsys' (weight by integration time
|
---|
156 | as well as Tsys: tint/Tsys**2).
|
---|
157 |
|
---|
158 | weightType -- weight type ('uniform', 'tint', 'tsys', 'tintsys')
|
---|
159 | """
|
---|
160 | self.gridder._setweight( weightType )
|
---|
161 |
|
---|
162 | def enableClip( self ):
|
---|
163 | """
|
---|
164 | Enable min/max clipping.
|
---|
165 |
|
---|
166 | By default, min/max clipping is disabled so that you should
|
---|
167 | call this method before actual gridding if you want to do
|
---|
168 | clipping.
|
---|
169 | """
|
---|
170 | self.gridder._enableclip()
|
---|
171 |
|
---|
172 | def disableClip( self ):
|
---|
173 | """
|
---|
174 | Disable min/max clipping.
|
---|
175 | """
|
---|
176 | self.gridder._disableclip()
|
---|
177 |
|
---|
178 | def grid( self ):
|
---|
179 | """
|
---|
180 | Actual gridding which will be done based on several user inputs.
|
---|
181 | """
|
---|
182 | self.gridder._grid()
|
---|
183 |
|
---|
184 | def save( self, outfile='' ):
|
---|
185 | """
|
---|
186 | Save result. By default, output data name will be constructed
|
---|
187 | from first element of input data name list (e.g. 'input.asap.grid').
|
---|
188 |
|
---|
189 | outfile -- output data name.
|
---|
190 | """
|
---|
191 | self.outfile = self.gridder._save( outfile )
|
---|
192 |
|
---|
193 | def plot( self, plotchan=-1, plotpol=-1, plotobs=False, plotgrid=False ):
|
---|
194 | """
|
---|
195 | Plot gridded data.
|
---|
196 |
|
---|
197 | plotchan -- Which channel you want to plot. Default (-1) is
|
---|
198 | to average all the channels.
|
---|
199 | plotpol -- Which polarization component you want to plot.
|
---|
200 | Default (-1) is to average all the polarization
|
---|
201 | components.
|
---|
202 | plotobs -- Also plot observed position if True. Default
|
---|
203 | is False. Setting True for large amount of spectra
|
---|
204 | might be time consuming.
|
---|
205 | plotgrid -- Also plot grid center if True. Default is False.
|
---|
206 | Setting True for large number of grids might be
|
---|
207 | time consuming.
|
---|
208 | """
|
---|
209 | import time
|
---|
210 | t0=time.time()
|
---|
211 | # to load scantable on disk
|
---|
212 | storg = rcParams['scantable.storage']
|
---|
213 | rcParams['scantable.storage'] = 'disk'
|
---|
214 | plotter = _SDGridPlotter( self.infile, self.outfile, self.ifno )
|
---|
215 | plotter.plot( chan=plotchan, pol=plotpol, plotobs=plotobs, plotgrid=plotgrid )
|
---|
216 | # back to original setup
|
---|
217 | rcParams['scantable.storage'] = storg
|
---|
218 | t1=time.time()
|
---|
219 | asaplog.push('plot: elapsed time %s sec'%(t1-t0))
|
---|
220 | asaplog.post('DEBUG','asapgrid.plot')
|
---|
221 |
|
---|
222 | class _SDGridPlotter:
|
---|
223 | def __init__( self, infile, outfile=None, ifno=-1 ):
|
---|
224 | if isinstance( infile, str ):
|
---|
225 | self.infile = [infile]
|
---|
226 | else:
|
---|
227 | self.infile = infile
|
---|
228 | self.outfile = outfile
|
---|
229 | if self.outfile is None:
|
---|
230 | self.outfile = self.infile[0].rstrip('/')+'.grid'
|
---|
231 | self.nx = -1
|
---|
232 | self.ny = -1
|
---|
233 | self.nchan = 0
|
---|
234 | self.npol = 0
|
---|
235 | self.pollist = []
|
---|
236 | self.cellx = 0.0
|
---|
237 | self.celly = 0.0
|
---|
238 | self.center = [0.0,0.0]
|
---|
239 | self.nonzero = [[0.0],[0.0]]
|
---|
240 | self.ifno = ifno
|
---|
241 | self.tablein = None
|
---|
242 | self.nrow = 0
|
---|
243 | self.blc = None
|
---|
244 | self.trc = None
|
---|
245 | self.get()
|
---|
246 |
|
---|
247 | def get( self ):
|
---|
248 | s = scantable( self.outfile, average=False )
|
---|
249 | self.nchan = len(s._getspectrum(0))
|
---|
250 | nrow = s.nrow()
|
---|
251 | pols = numpy.ones( nrow, dtype=int )
|
---|
252 | for i in xrange(nrow):
|
---|
253 | pols[i] = s.getpol(i)
|
---|
254 | self.pollist, indices = numpy.unique( pols, return_inverse=True )
|
---|
255 | self.npol = len(self.pollist)
|
---|
256 | self.pollist = self.pollist[indices[:self.npol]]
|
---|
257 | #print 'pollist=',self.pollist
|
---|
258 | #print 'npol=',self.npol
|
---|
259 | #print 'nrow=',nrow
|
---|
260 |
|
---|
261 | idx = 0
|
---|
262 | d0 = s.get_direction( 0 ).split()[-1]
|
---|
263 | while ( s.get_direction(self.npol*idx).split()[-1] == d0 ):
|
---|
264 | idx += 1
|
---|
265 |
|
---|
266 | self.nx = idx
|
---|
267 | self.ny = nrow / (self.npol * idx )
|
---|
268 | #print 'nx,ny=',self.nx,self.ny
|
---|
269 |
|
---|
270 | self.blc = s.get_directionval( 0 )
|
---|
271 | self.trc = s.get_directionval( nrow-self.npol )
|
---|
272 | #print self.blc
|
---|
273 | #print self.trc
|
---|
274 | incrx = s.get_directionval( self.npol )
|
---|
275 | incry = s.get_directionval( self.nx*self.npol )
|
---|
276 | self.cellx = abs( self.blc[0] - incrx[0] )
|
---|
277 | self.celly = abs( self.blc[1] - incry[1] )
|
---|
278 | #print 'cellx,celly=',self.cellx,self.celly
|
---|
279 |
|
---|
280 | def plot( self, chan=-1, pol=-1, plotobs=False, plotgrid=False ):
|
---|
281 | if pol < 0:
|
---|
282 | opt = 'averaged over pol'
|
---|
283 | else:
|
---|
284 | opt = 'pol %s'%(pol)
|
---|
285 | if chan < 0:
|
---|
286 | opt += ', averaged over channel'
|
---|
287 | else:
|
---|
288 | opt += ', channel %s'%(chan)
|
---|
289 | data = self.getData( chan, pol )
|
---|
290 | title = 'Gridded Image (%s)'%(opt)
|
---|
291 | pl.figure(10)
|
---|
292 | pl.clf()
|
---|
293 | # plot grid position
|
---|
294 | if plotgrid:
|
---|
295 | x = numpy.arange(self.blc[0],self.trc[0]+0.5*self.cellx,self.cellx,dtype=float)
|
---|
296 | #print 'len(x)=',len(x)
|
---|
297 | #print 'x=',x
|
---|
298 | ybase = numpy.ones(self.nx,dtype=float)*self.blc[1]
|
---|
299 | #print 'len(ybase)=',len(ybase)
|
---|
300 | incr = self.celly
|
---|
301 | for iy in xrange(self.ny):
|
---|
302 | y = ybase + iy * incr
|
---|
303 | #print y
|
---|
304 | pl.plot(x,y,',',color='blue')
|
---|
305 | # plot observed position
|
---|
306 | if plotobs:
|
---|
307 | for i in xrange(len(self.infile)):
|
---|
308 | self.createTableIn( self.infile[i] )
|
---|
309 | irow = 0
|
---|
310 | while ( irow < self.nrow ):
|
---|
311 | chunk = self.getPointingChunk( irow )
|
---|
312 | #print chunk
|
---|
313 | pl.plot(chunk[0],chunk[1],',',color='green')
|
---|
314 | irow += chunk.shape[1]
|
---|
315 | #print irow
|
---|
316 | # show image
|
---|
317 | extent=[self.blc[0]-0.5*self.cellx,
|
---|
318 | self.trc[0]+0.5*self.cellx,
|
---|
319 | self.blc[1]-0.5*self.celly,
|
---|
320 | self.trc[1]+0.5*self.celly]
|
---|
321 | pl.imshow(data,extent=extent,origin='lower',interpolation='nearest')
|
---|
322 | pl.colorbar()
|
---|
323 | pl.xlabel('R.A. [rad]')
|
---|
324 | pl.ylabel('Dec. [rad]')
|
---|
325 | pl.title( title )
|
---|
326 |
|
---|
327 | def createTableIn( self, tab ):
|
---|
328 | del self.tablein
|
---|
329 | self.tablein = scantable( tab, average=False )
|
---|
330 | if self.ifno < 0:
|
---|
331 | ifno = self.tablein.getif(0)
|
---|
332 | print 'ifno=',ifno
|
---|
333 | else:
|
---|
334 | ifno = self.ifno
|
---|
335 | sel = selector()
|
---|
336 | sel.set_ifs( ifno )
|
---|
337 | self.tablein.set_selection( sel )
|
---|
338 | self.nchan = len(self.tablein._getspectrum(0))
|
---|
339 | self.nrow = self.tablein.nrow()
|
---|
340 | del sel
|
---|
341 |
|
---|
342 |
|
---|
343 | def getPointingChunk( self, irow ):
|
---|
344 | numchunk = 1000
|
---|
345 | nrow = min( self.nrow-irow, numchunk )
|
---|
346 | #print 'nrow=',nrow
|
---|
347 | v = numpy.zeros( (2,nrow), dtype=float )
|
---|
348 | idx = 0
|
---|
349 | for i in xrange(irow,irow+nrow):
|
---|
350 | d = self.tablein.get_directionval( i )
|
---|
351 | v[0,idx] = d[0]
|
---|
352 | v[1,idx] = d[1]
|
---|
353 | idx += 1
|
---|
354 | return v
|
---|
355 |
|
---|
356 | def getData( self, chan=-1, pol=-1 ):
|
---|
357 | if chan == -1:
|
---|
358 | spectra = self.__chanAverage()
|
---|
359 | else:
|
---|
360 | spectra = self.__chanIndex( chan )
|
---|
361 | data = spectra.reshape( (self.npol,self.ny,self.nx) )
|
---|
362 | if pol == -1:
|
---|
363 | retval = data.mean(axis=0)
|
---|
364 | else:
|
---|
365 | retval = data[pol]
|
---|
366 | return retval
|
---|
367 |
|
---|
368 | def __chanAverage( self ):
|
---|
369 | s = scantable( self.outfile, average=False )
|
---|
370 | nrow = s.nrow()
|
---|
371 | spectra = numpy.zeros( (self.npol,nrow/self.npol), dtype=float )
|
---|
372 | irow = 0
|
---|
373 | sp = [0 for i in xrange(self.nchan)]
|
---|
374 | for i in xrange(nrow/self.npol):
|
---|
375 | for ip in xrange(self.npol):
|
---|
376 | sp = s._getspectrum( irow )
|
---|
377 | spectra[ip,i] = numpy.mean( sp )
|
---|
378 | irow += 1
|
---|
379 | return spectra
|
---|
380 |
|
---|
381 | def __chanIndex( self, idx ):
|
---|
382 | s = scantable( self.outfile, average=False )
|
---|
383 | nrow = s.nrow()
|
---|
384 | spectra = numpy.zeros( (self.npol,nrow/self.npol), dtype=float )
|
---|
385 | irow = 0
|
---|
386 | sp = [0 for i in xrange(self.nchan)]
|
---|
387 | for i in xrange(nrow/self.npol):
|
---|
388 | for ip in xrange(self.npol):
|
---|
389 | sp = s._getspectrum( irow )
|
---|
390 | spectra[ip,i] = sp[idx]
|
---|
391 | irow += 1
|
---|
392 | return spectra
|
---|
393 |
|
---|
394 |
|
---|