| 1 | import _asap | 
|---|
| 2 | from asap import rcParams | 
|---|
| 3 | from asap import print_log | 
|---|
| 4 |  | 
|---|
| 5 | class fitter: | 
|---|
| 6 | """ | 
|---|
| 7 | The fitting class for ASAP. | 
|---|
| 8 | """ | 
|---|
| 9 |  | 
|---|
| 10 | def __init__(self): | 
|---|
| 11 | """ | 
|---|
| 12 | Create a fitter object. No state is set. | 
|---|
| 13 | """ | 
|---|
| 14 | self.fitter = _asap.fitter() | 
|---|
| 15 | self.x = None | 
|---|
| 16 | self.y = None | 
|---|
| 17 | self.mask = None | 
|---|
| 18 | self.fitfunc = None | 
|---|
| 19 | self.fitfuncs = None | 
|---|
| 20 | self.fitted = False | 
|---|
| 21 | self.data = None | 
|---|
| 22 | self.components = 0 | 
|---|
| 23 | self._fittedrow = 0 | 
|---|
| 24 | self._p = None | 
|---|
| 25 | self._selection = None | 
|---|
| 26 |  | 
|---|
| 27 | def set_data(self, xdat, ydat, mask=None): | 
|---|
| 28 | """ | 
|---|
| 29 | Set the absissa and ordinate for the fit. Also set the mask | 
|---|
| 30 | indicationg valid points. | 
|---|
| 31 | This can be used for data vectors retrieved from a scantable. | 
|---|
| 32 | For scantable fitting use 'fitter.set_scan(scan, mask)'. | 
|---|
| 33 | Parameters: | 
|---|
| 34 | xdat:    the abcissa values | 
|---|
| 35 | ydat:    the ordinate values | 
|---|
| 36 | mask:    an optional mask | 
|---|
| 37 |  | 
|---|
| 38 | """ | 
|---|
| 39 | self.fitted = False | 
|---|
| 40 | self.x = xdat | 
|---|
| 41 | self.y = ydat | 
|---|
| 42 | if mask == None: | 
|---|
| 43 | from numarray import ones | 
|---|
| 44 | self.mask = ones(len(xdat)) | 
|---|
| 45 | else: | 
|---|
| 46 | self.mask = mask | 
|---|
| 47 | return | 
|---|
| 48 |  | 
|---|
| 49 | def set_scan(self, thescan=None, mask=None): | 
|---|
| 50 | """ | 
|---|
| 51 | Set the 'data' (a scantable) of the fitter. | 
|---|
| 52 | Parameters: | 
|---|
| 53 | thescan:     a scantable | 
|---|
| 54 | mask:        a msk retireved from the scantable | 
|---|
| 55 | """ | 
|---|
| 56 | if not thescan: | 
|---|
| 57 | msg = "Please give a correct scan" | 
|---|
| 58 | if rcParams['verbose']: | 
|---|
| 59 | print msg | 
|---|
| 60 | return | 
|---|
| 61 | else: | 
|---|
| 62 | raise TypeError(msg) | 
|---|
| 63 | self.fitted = False | 
|---|
| 64 | self.data = thescan | 
|---|
| 65 | self.mask = None | 
|---|
| 66 | if mask is None: | 
|---|
| 67 | from numarray import ones | 
|---|
| 68 | self.mask = ones(self.data.nchan()) | 
|---|
| 69 | else: | 
|---|
| 70 | self.mask = mask | 
|---|
| 71 | return | 
|---|
| 72 |  | 
|---|
| 73 | def set_function(self, **kwargs): | 
|---|
| 74 | """ | 
|---|
| 75 | Set the function to be fit. | 
|---|
| 76 | Parameters: | 
|---|
| 77 | poly:    use a polynomial of the order given | 
|---|
| 78 | gauss:   fit the number of gaussian specified | 
|---|
| 79 | Example: | 
|---|
| 80 | fitter.set_function(gauss=2) # will fit two gaussians | 
|---|
| 81 | fitter.set_function(poly=3)  # will fit a 3rd order polynomial | 
|---|
| 82 | """ | 
|---|
| 83 | #default poly order 0 | 
|---|
| 84 | n=0 | 
|---|
| 85 | if kwargs.has_key('poly'): | 
|---|
| 86 | self.fitfunc = 'poly' | 
|---|
| 87 | n = kwargs.get('poly') | 
|---|
| 88 | self.components = [n] | 
|---|
| 89 | elif kwargs.has_key('gauss'): | 
|---|
| 90 | n = kwargs.get('gauss') | 
|---|
| 91 | self.fitfunc = 'gauss' | 
|---|
| 92 | self.fitfuncs = [ 'gauss' for i in range(n) ] | 
|---|
| 93 | self.components = [ 3 for i in range(n) ] | 
|---|
| 94 | else: | 
|---|
| 95 | msg = "Invalid function type." | 
|---|
| 96 | if rcParams['verbose']: | 
|---|
| 97 | print msg | 
|---|
| 98 | return | 
|---|
| 99 | else: | 
|---|
| 100 | raise TypeError(msg) | 
|---|
| 101 |  | 
|---|
| 102 | self.fitter.setexpression(self.fitfunc,n) | 
|---|
| 103 | return | 
|---|
| 104 |  | 
|---|
| 105 | def fit(self, row=0, estimate=False): | 
|---|
| 106 | """ | 
|---|
| 107 | Execute the actual fitting process. All the state has to be set. | 
|---|
| 108 | Parameters: | 
|---|
| 109 | row:        specify the row in the scantable | 
|---|
| 110 | estimate:   auto-compute an initial parameter set (default False) | 
|---|
| 111 | This can be used to compute estimates even if fit was | 
|---|
| 112 | called before. | 
|---|
| 113 | Example: | 
|---|
| 114 | s = scantable('myscan.asap') | 
|---|
| 115 | s.set_cursor(thepol=1)        # select second pol | 
|---|
| 116 | f = fitter() | 
|---|
| 117 | f.set_scan(s) | 
|---|
| 118 | f.set_function(poly=0) | 
|---|
| 119 | f.fit(row=0)                  # fit first row | 
|---|
| 120 | """ | 
|---|
| 121 | if ((self.x is None or self.y is None) and self.data is None) \ | 
|---|
| 122 | or self.fitfunc is None: | 
|---|
| 123 | msg = "Fitter not yet initialised. Please set data & fit function" | 
|---|
| 124 | if rcParams['verbose']: | 
|---|
| 125 | print msg | 
|---|
| 126 | return | 
|---|
| 127 | else: | 
|---|
| 128 | raise RuntimeError(msg) | 
|---|
| 129 |  | 
|---|
| 130 | else: | 
|---|
| 131 | if self.data is not None: | 
|---|
| 132 | self.x = self.data._getabcissa(row) | 
|---|
| 133 | self.y = self.data._getspectrum(row) | 
|---|
| 134 | from asap import asaplog | 
|---|
| 135 | asaplog.push("Fitting:") | 
|---|
| 136 | i = row | 
|---|
| 137 | out = "Scan[%d] Beam[%d] IF[%d] Pol[%d] Cycle[%d]" % (self.data.getscan(i),self.data.getbeam(i),self.data.getif(i),self.data.getpol(i), self.data.getcycle(i)) | 
|---|
| 138 | asaplog.push(out,False) | 
|---|
| 139 | self.fitter.setdata(self.x, self.y, self.mask) | 
|---|
| 140 | if self.fitfunc == 'gauss': | 
|---|
| 141 | ps = self.fitter.getparameters() | 
|---|
| 142 | if len(ps) == 0 or estimate: | 
|---|
| 143 | self.fitter.estimate() | 
|---|
| 144 | try: | 
|---|
| 145 | converged = self.fitter.fit() | 
|---|
| 146 | if not converged: | 
|---|
| 147 | raise RuntimeError,"Fit didn't converge." | 
|---|
| 148 | except RuntimeError, msg: | 
|---|
| 149 | if rcParams['verbose']: | 
|---|
| 150 | print msg | 
|---|
| 151 | else: | 
|---|
| 152 | raise | 
|---|
| 153 | self._fittedrow = row | 
|---|
| 154 | self.fitted = True | 
|---|
| 155 | print_log() | 
|---|
| 156 | return | 
|---|
| 157 |  | 
|---|
| 158 | def store_fit(self): | 
|---|
| 159 | """ | 
|---|
| 160 | Store the fit parameters in the scantable. | 
|---|
| 161 | """ | 
|---|
| 162 | if self.fitted and self.data is not None: | 
|---|
| 163 | pars = list(self.fitter.getparameters()) | 
|---|
| 164 | fixed = list(self.fitter.getfixedparameters()) | 
|---|
| 165 | from asap.asapfit import asapfit | 
|---|
| 166 | fit = asapfit() | 
|---|
| 167 | fit.setparameters(pars) | 
|---|
| 168 | fit.setfixedparameters(fixed) | 
|---|
| 169 | fit.setfunctions(self.fitfuncs) | 
|---|
| 170 | fit.setcomponents(self.components) | 
|---|
| 171 | fit.setframeinfo(self.data._getcoordinfo()) | 
|---|
| 172 | self.data._addfit(fit,self._fittedrow) | 
|---|
| 173 |  | 
|---|
| 174 | #def set_parameters(self, params, fixed=None, component=None): | 
|---|
| 175 | def set_parameters(self,*args,**kwargs): | 
|---|
| 176 | """ | 
|---|
| 177 | Set the parameters to be fitted. | 
|---|
| 178 | Parameters: | 
|---|
| 179 | params:    a vector of parameters | 
|---|
| 180 | fixed:     a vector of which parameters are to be held fixed | 
|---|
| 181 | (default is none) | 
|---|
| 182 | component: in case of multiple gaussians, the index of the | 
|---|
| 183 | component | 
|---|
| 184 | """ | 
|---|
| 185 | component = None | 
|---|
| 186 | fixed = None | 
|---|
| 187 | params = None | 
|---|
| 188 |  | 
|---|
| 189 | if len(args) and isinstance(args[0],dict): | 
|---|
| 190 | kwargs = args[0] | 
|---|
| 191 | if kwargs.has_key("fixed"): fixed = kwargs["fixed"] | 
|---|
| 192 | if kwargs.has_key("params"): params = kwargs["params"] | 
|---|
| 193 | if len(args) == 2 and isinstance(args[1], int): | 
|---|
| 194 | component = args[1] | 
|---|
| 195 | if self.fitfunc is None: | 
|---|
| 196 | msg = "Please specify a fitting function first." | 
|---|
| 197 | if rcParams['verbose']: | 
|---|
| 198 | print msg | 
|---|
| 199 | return | 
|---|
| 200 | else: | 
|---|
| 201 | raise RuntimeError(msg) | 
|---|
| 202 | if self.fitfunc == "gauss" and component is not None: | 
|---|
| 203 | if not self.fitted and sum(self.fitter.getparameters()) == 0: | 
|---|
| 204 | from numarray import zeros | 
|---|
| 205 | pars = list(zeros(len(self.components)*3)) | 
|---|
| 206 | fxd = list(zeros(len(pars))) | 
|---|
| 207 | else: | 
|---|
| 208 | pars = list(self.fitter.getparameters()) | 
|---|
| 209 | fxd = list(self.fitter.getfixedparameters()) | 
|---|
| 210 | i = 3*component | 
|---|
| 211 | pars[i:i+3] = params | 
|---|
| 212 | fxd[i:i+3] = fixed | 
|---|
| 213 | params = pars | 
|---|
| 214 | fixed = fxd | 
|---|
| 215 | self.fitter.setparameters(params) | 
|---|
| 216 | if fixed is not None: | 
|---|
| 217 | self.fitter.setfixedparameters(fixed) | 
|---|
| 218 | print_log() | 
|---|
| 219 | return | 
|---|
| 220 |  | 
|---|
| 221 | def set_gauss_parameters(self, peak, centre, fhwm, | 
|---|
| 222 | peakfixed=0, centerfixed=0, | 
|---|
| 223 | fhwmfixed=0, | 
|---|
| 224 | component=0): | 
|---|
| 225 | """ | 
|---|
| 226 | Set the Parameters of a 'Gaussian' component, set with set_function. | 
|---|
| 227 | Parameters: | 
|---|
| 228 | peak, centre, fhwm:  The gaussian parameters | 
|---|
| 229 | peakfixed, | 
|---|
| 230 | centerfixed, | 
|---|
| 231 | fhwmfixed:           Optional parameters to indicate if | 
|---|
| 232 | the paramters should be held fixed during | 
|---|
| 233 | the fitting process. The default is to keep | 
|---|
| 234 | all parameters flexible. | 
|---|
| 235 | component:           The number of the component (Default is the | 
|---|
| 236 | component 0) | 
|---|
| 237 | """ | 
|---|
| 238 | if self.fitfunc != "gauss": | 
|---|
| 239 | msg = "Function only operates on Gaussian components." | 
|---|
| 240 | if rcParams['verbose']: | 
|---|
| 241 | print msg | 
|---|
| 242 | return | 
|---|
| 243 | else: | 
|---|
| 244 | raise ValueError(msg) | 
|---|
| 245 | if 0 <= component < len(self.components): | 
|---|
| 246 | d = {'params':[peak, centre, fhwm], | 
|---|
| 247 | 'fixed':[peakfixed, centerfixed, fhwmfixed]} | 
|---|
| 248 | self.set_parameters(d, component) | 
|---|
| 249 | else: | 
|---|
| 250 | msg = "Please select a valid  component." | 
|---|
| 251 | if rcParams['verbose']: | 
|---|
| 252 | print msg | 
|---|
| 253 | return | 
|---|
| 254 | else: | 
|---|
| 255 | raise ValueError(msg) | 
|---|
| 256 |  | 
|---|
| 257 | def get_area(self, component=None): | 
|---|
| 258 | """ | 
|---|
| 259 | Return the area under the fitted gaussian component. | 
|---|
| 260 | Parameters: | 
|---|
| 261 | component:   the gaussian component selection, | 
|---|
| 262 | default (None) is the sum of all components | 
|---|
| 263 | Note: | 
|---|
| 264 | This will only work for gaussian fits. | 
|---|
| 265 | """ | 
|---|
| 266 | if not self.fitted: return | 
|---|
| 267 | if self.fitfunc == "gauss": | 
|---|
| 268 | pars = list(self.fitter.getparameters()) | 
|---|
| 269 | from math import log,pi,sqrt | 
|---|
| 270 | fac = sqrt(pi/log(16.0)) | 
|---|
| 271 | areas = [] | 
|---|
| 272 | for i in range(len(self.components)): | 
|---|
| 273 | j = i*3 | 
|---|
| 274 | cpars = pars[j:j+3] | 
|---|
| 275 | areas.append(fac * cpars[0] * cpars[2]) | 
|---|
| 276 | else: | 
|---|
| 277 | return None | 
|---|
| 278 | if component is not None: | 
|---|
| 279 | return areas[component] | 
|---|
| 280 | else: | 
|---|
| 281 | return sum(areas) | 
|---|
| 282 |  | 
|---|
| 283 | def get_errors(self, component=None): | 
|---|
| 284 | """ | 
|---|
| 285 | Return the errors in the parameters. | 
|---|
| 286 | Parameters: | 
|---|
| 287 | component:    get the errors for the specified component | 
|---|
| 288 | only, default is all components | 
|---|
| 289 | """ | 
|---|
| 290 | if not self.fitted: | 
|---|
| 291 | msg = "Not yet fitted." | 
|---|
| 292 | if rcParams['verbose']: | 
|---|
| 293 | print msg | 
|---|
| 294 | return | 
|---|
| 295 | else: | 
|---|
| 296 | raise RuntimeError(msg) | 
|---|
| 297 | errs = list(self.fitter.geterrors()) | 
|---|
| 298 | cerrs = errs | 
|---|
| 299 | if component is not None: | 
|---|
| 300 | if self.fitfunc == "gauss": | 
|---|
| 301 | i = 3*component | 
|---|
| 302 | if i < len(errs): | 
|---|
| 303 | cerrs = errs[i:i+3] | 
|---|
| 304 | return cerrs | 
|---|
| 305 |  | 
|---|
| 306 | def get_parameters(self, component=None, errors=False): | 
|---|
| 307 | """ | 
|---|
| 308 | Return the fit paramters. | 
|---|
| 309 | Parameters: | 
|---|
| 310 | component:    get the parameters for the specified component | 
|---|
| 311 | only, default is all components | 
|---|
| 312 | """ | 
|---|
| 313 | if not self.fitted: | 
|---|
| 314 | msg = "Not yet fitted." | 
|---|
| 315 | if rcParams['verbose']: | 
|---|
| 316 | print msg | 
|---|
| 317 | return | 
|---|
| 318 | else: | 
|---|
| 319 | raise RuntimeError(msg) | 
|---|
| 320 | pars = list(self.fitter.getparameters()) | 
|---|
| 321 | fixed = list(self.fitter.getfixedparameters()) | 
|---|
| 322 | errs = list(self.fitter.geterrors()) | 
|---|
| 323 | area = [] | 
|---|
| 324 | if component is not None: | 
|---|
| 325 | if self.fitfunc == "gauss": | 
|---|
| 326 | i = 3*component | 
|---|
| 327 | cpars = pars[i:i+3] | 
|---|
| 328 | cfixed = fixed[i:i+3] | 
|---|
| 329 | cerrs = errs[i:i+3] | 
|---|
| 330 | a = self.get_area(component) | 
|---|
| 331 | area = [a for i in range(3)] | 
|---|
| 332 | else: | 
|---|
| 333 | cpars = pars | 
|---|
| 334 | cfixed = fixed | 
|---|
| 335 | cerrs = errs | 
|---|
| 336 | else: | 
|---|
| 337 | cpars = pars | 
|---|
| 338 | cfixed = fixed | 
|---|
| 339 | cerrs = errs | 
|---|
| 340 | if self.fitfunc == "gauss": | 
|---|
| 341 | for c in range(len(self.components)): | 
|---|
| 342 | a = self.get_area(c) | 
|---|
| 343 | area += [a for i in range(3)] | 
|---|
| 344 | fpars = self._format_pars(cpars, cfixed, None, area) | 
|---|
| 345 | if rcParams['verbose']: | 
|---|
| 346 | print fpars | 
|---|
| 347 | return {'params':cpars, 'fixed':cfixed, 'formatted': fpars, | 
|---|
| 348 | 'errors':cerrs} | 
|---|
| 349 |  | 
|---|
| 350 | def _format_pars(self, pars, fixed, errors, area): | 
|---|
| 351 | out = '' | 
|---|
| 352 | if self.fitfunc == 'poly': | 
|---|
| 353 | c = 0 | 
|---|
| 354 | for i in range(len(pars)): | 
|---|
| 355 | fix = "" | 
|---|
| 356 | if fixed[i]: fix = "(fixed)" | 
|---|
| 357 | out += '  p%d%s= %3.6f,' % (c,fix,pars[i]) | 
|---|
| 358 | c+=1 | 
|---|
| 359 | out = out[:-1]  # remove trailing ',' | 
|---|
| 360 | elif self.fitfunc == 'gauss': | 
|---|
| 361 | i = 0 | 
|---|
| 362 | c = 0 | 
|---|
| 363 | aunit = '' | 
|---|
| 364 | ounit = '' | 
|---|
| 365 | if self.data: | 
|---|
| 366 | aunit = self.data.get_unit() | 
|---|
| 367 | ounit = self.data.get_fluxunit() | 
|---|
| 368 | while i < len(pars): | 
|---|
| 369 | if len(area): | 
|---|
| 370 | out += '  %2d: peak = %3.3f %s , centre = %3.3f %s, FWHM = %3.3f %s\n      area = %3.3f %s %s\n' % (c,pars[i],ounit,pars[i+1],aunit,pars[i+2],aunit, area[i],ounit,aunit) | 
|---|
| 371 | else: | 
|---|
| 372 | out += '  %2d: peak = %3.3f %s , centre = %3.3f %s, FWHM = %3.3f %s\n' % (c,pars[i],ounit,pars[i+1],aunit,pars[i+2],aunit,ounit,aunit) | 
|---|
| 373 | c+=1 | 
|---|
| 374 | i+=3 | 
|---|
| 375 | return out | 
|---|
| 376 |  | 
|---|
| 377 | def get_estimate(self): | 
|---|
| 378 | """ | 
|---|
| 379 | Return the parameter estimates (for non-linear functions). | 
|---|
| 380 | """ | 
|---|
| 381 | pars = self.fitter.getestimate() | 
|---|
| 382 | fixed = self.fitter.getfixedparameters() | 
|---|
| 383 | if rcParams['verbose']: | 
|---|
| 384 | print self._format_pars(pars,fixed,None) | 
|---|
| 385 | return pars | 
|---|
| 386 |  | 
|---|
| 387 | def get_residual(self): | 
|---|
| 388 | """ | 
|---|
| 389 | Return the residual of the fit. | 
|---|
| 390 | """ | 
|---|
| 391 | if not self.fitted: | 
|---|
| 392 | msg = "Not yet fitted." | 
|---|
| 393 | if rcParams['verbose']: | 
|---|
| 394 | print msg | 
|---|
| 395 | return | 
|---|
| 396 | else: | 
|---|
| 397 | raise RuntimeError(msg) | 
|---|
| 398 | return self.fitter.getresidual() | 
|---|
| 399 |  | 
|---|
| 400 | def get_chi2(self): | 
|---|
| 401 | """ | 
|---|
| 402 | Return chi^2. | 
|---|
| 403 | """ | 
|---|
| 404 | if not self.fitted: | 
|---|
| 405 | msg = "Not yet fitted." | 
|---|
| 406 | if rcParams['verbose']: | 
|---|
| 407 | print msg | 
|---|
| 408 | return | 
|---|
| 409 | else: | 
|---|
| 410 | raise RuntimeError(msg) | 
|---|
| 411 | ch2 = self.fitter.getchi2() | 
|---|
| 412 | if rcParams['verbose']: | 
|---|
| 413 | print 'Chi^2 = %3.3f' % (ch2) | 
|---|
| 414 | return ch2 | 
|---|
| 415 |  | 
|---|
| 416 | def get_fit(self): | 
|---|
| 417 | """ | 
|---|
| 418 | Return the fitted ordinate values. | 
|---|
| 419 | """ | 
|---|
| 420 | if not self.fitted: | 
|---|
| 421 | msg = "Not yet fitted." | 
|---|
| 422 | if rcParams['verbose']: | 
|---|
| 423 | print msg | 
|---|
| 424 | return | 
|---|
| 425 | else: | 
|---|
| 426 | raise RuntimeError(msg) | 
|---|
| 427 | return self.fitter.getfit() | 
|---|
| 428 |  | 
|---|
| 429 | def commit(self): | 
|---|
| 430 | """ | 
|---|
| 431 | Return a new scan where the fits have been commited (subtracted) | 
|---|
| 432 | """ | 
|---|
| 433 | if not self.fitted: | 
|---|
| 434 | print "Not yet fitted." | 
|---|
| 435 | msg = "Not yet fitted." | 
|---|
| 436 | if rcParams['verbose']: | 
|---|
| 437 | print msg | 
|---|
| 438 | return | 
|---|
| 439 | else: | 
|---|
| 440 | raise RuntimeError(msg) | 
|---|
| 441 | from asap import scantable | 
|---|
| 442 | if not isinstance(self.data, scantable): | 
|---|
| 443 | msg = "Not a scantable" | 
|---|
| 444 | if rcParams['verbose']: | 
|---|
| 445 | print msg | 
|---|
| 446 | return | 
|---|
| 447 | else: | 
|---|
| 448 | raise TypeError(msg) | 
|---|
| 449 | scan = self.data.copy() | 
|---|
| 450 | scan._setspectrum(self.fitter.getresidual()) | 
|---|
| 451 | print_log() | 
|---|
| 452 |  | 
|---|
| 453 | def plot(self, residual=False, components=None, plotparms=False, filename=None): | 
|---|
| 454 | """ | 
|---|
| 455 | Plot the last fit. | 
|---|
| 456 | Parameters: | 
|---|
| 457 | residual:    an optional parameter indicating if the residual | 
|---|
| 458 | should be plotted (default 'False') | 
|---|
| 459 | components:  a list of components to plot, e.g [0,1], | 
|---|
| 460 | -1 plots the total fit. Default is to only | 
|---|
| 461 | plot the total fit. | 
|---|
| 462 | plotparms:   Inidicates if the parameter values should be present | 
|---|
| 463 | on the plot | 
|---|
| 464 | """ | 
|---|
| 465 | if not self.fitted: | 
|---|
| 466 | return | 
|---|
| 467 | if not self._p or self._p.is_dead: | 
|---|
| 468 | if rcParams['plotter.gui']: | 
|---|
| 469 | from asap.asaplotgui import asaplotgui as asaplot | 
|---|
| 470 | else: | 
|---|
| 471 | from asap.asaplot import asaplot | 
|---|
| 472 | self._p = asaplot() | 
|---|
| 473 | self._p.hold() | 
|---|
| 474 | self._p.clear() | 
|---|
| 475 | self._p.set_panels() | 
|---|
| 476 | self._p.palette(0) | 
|---|
| 477 | tlab = 'Spectrum' | 
|---|
| 478 | xlab = 'Abcissa' | 
|---|
| 479 | ylab = 'Ordinate' | 
|---|
| 480 | m = None | 
|---|
| 481 | if self.data: | 
|---|
| 482 | tlab = self.data._getsourcename(self._fittedrow) | 
|---|
| 483 | xlab = self.data._getabcissalabel(self._fittedrow) | 
|---|
| 484 | m = self.data._getmask(self._fittedrow) | 
|---|
| 485 | ylab = self.data._get_ordinate_label() | 
|---|
| 486 |  | 
|---|
| 487 | colours = ["#777777","#dddddd","red","orange","purple","green","magenta", "cyan"] | 
|---|
| 488 | self._p.palette(0,colours) | 
|---|
| 489 | self._p.set_line(label='Spectrum') | 
|---|
| 490 | self._p.plot(self.x, self.y, m) | 
|---|
| 491 | if residual: | 
|---|
| 492 | self._p.palette(1) | 
|---|
| 493 | self._p.set_line(label='Residual') | 
|---|
| 494 | self._p.plot(self.x, self.get_residual(), m) | 
|---|
| 495 | self._p.palette(2) | 
|---|
| 496 | if components is not None: | 
|---|
| 497 | cs = components | 
|---|
| 498 | if isinstance(components,int): cs = [components] | 
|---|
| 499 | if plotparms: | 
|---|
| 500 | self._p.text(0.15,0.15,str(self.get_parameters()['formatted']),size=8) | 
|---|
| 501 | n = len(self.components) | 
|---|
| 502 | self._p.palette(3) | 
|---|
| 503 | for c in cs: | 
|---|
| 504 | if 0 <= c < n: | 
|---|
| 505 | lab = self.fitfuncs[c]+str(c) | 
|---|
| 506 | self._p.set_line(label=lab) | 
|---|
| 507 | self._p.plot(self.x, self.fitter.evaluate(c), m) | 
|---|
| 508 | elif c == -1: | 
|---|
| 509 | self._p.palette(2) | 
|---|
| 510 | self._p.set_line(label="Total Fit") | 
|---|
| 511 | self._p.plot(self.x, self.get_fit(), m) | 
|---|
| 512 | else: | 
|---|
| 513 | self._p.palette(2) | 
|---|
| 514 | self._p.set_line(label='Fit') | 
|---|
| 515 | self._p.plot(self.x, self.get_fit(), m) | 
|---|
| 516 | xlim=[min(self.x),max(self.x)] | 
|---|
| 517 | self._p.axes.set_xlim(xlim) | 
|---|
| 518 | self._p.set_axes('xlabel',xlab) | 
|---|
| 519 | self._p.set_axes('ylabel',ylab) | 
|---|
| 520 | self._p.set_axes('title',tlab) | 
|---|
| 521 | self._p.release() | 
|---|
| 522 | if (not rcParams['plotter.gui']): | 
|---|
| 523 | self._p.save(filename) | 
|---|
| 524 | print_log() | 
|---|
| 525 |  | 
|---|
| 526 | def auto_fit(self, insitu=None, plot=False): | 
|---|
| 527 | """ | 
|---|
| 528 | Return a scan where the function is applied to all rows for | 
|---|
| 529 | all Beams/IFs/Pols. | 
|---|
| 530 |  | 
|---|
| 531 | """ | 
|---|
| 532 | from asap import scantable | 
|---|
| 533 | if not isinstance(self.data, scantable) : | 
|---|
| 534 | msg = "Data is not a scantable" | 
|---|
| 535 | if rcParams['verbose']: | 
|---|
| 536 | print msg | 
|---|
| 537 | return | 
|---|
| 538 | else: | 
|---|
| 539 | raise TypeError(msg) | 
|---|
| 540 | if insitu is None: insitu = rcParams['insitu'] | 
|---|
| 541 | if not insitu: | 
|---|
| 542 | scan = self.data.copy() | 
|---|
| 543 | else: | 
|---|
| 544 | scan = self.data | 
|---|
| 545 | rows = xrange(scan.nrow()) | 
|---|
| 546 | from asap import asaplog | 
|---|
| 547 | asaplog.push("Fitting:") | 
|---|
| 548 | for r in rows: | 
|---|
| 549 | out = " Scan[%d] Beam[%d] IF[%d] Pol[%d] Cycle[%d]" % (scan.getscan(r),scan.getbeam(r),scan.getif(r),scan.getpol(r), scan.getcycle(r)) | 
|---|
| 550 | asaplog.push(out, False) | 
|---|
| 551 | self.x = scan._getabcissa(r) | 
|---|
| 552 | self.y = scan._getspectrum(r) | 
|---|
| 553 | self.data = None | 
|---|
| 554 | self.fit() | 
|---|
| 555 | x = self.get_parameters() | 
|---|
| 556 | if plot: | 
|---|
| 557 | self.plot(residual=True) | 
|---|
| 558 | x = raw_input("Accept fit ([y]/n): ") | 
|---|
| 559 | if x.upper() == 'N': | 
|---|
| 560 | continue | 
|---|
| 561 | scan._setspectrum(self.fitter.getresidual(), r) | 
|---|
| 562 | if plot: | 
|---|
| 563 | self._p.unmap() | 
|---|
| 564 | self._p = None | 
|---|
| 565 | print_log() | 
|---|
| 566 | return scan | 
|---|
| 567 |  | 
|---|