1 | import _asap
|
---|
2 | from asap.parameters import rcParams
|
---|
3 | from asap.logging import asaplog, print_log, print_log_dec
|
---|
4 | from asap.utils import _n_bools, mask_and
|
---|
5 |
|
---|
6 |
|
---|
7 | class fitter:
|
---|
8 | """
|
---|
9 | The fitting class for ASAP.
|
---|
10 | """
|
---|
11 |
|
---|
12 | def __init__(self):
|
---|
13 | """
|
---|
14 | Create a fitter object. No state is set.
|
---|
15 | """
|
---|
16 | self.fitter = _asap.fitter()
|
---|
17 | self.x = None
|
---|
18 | self.y = None
|
---|
19 | self.mask = None
|
---|
20 | self.fitfunc = None
|
---|
21 | self.fitfuncs = None
|
---|
22 | self.fitted = False
|
---|
23 | self.data = None
|
---|
24 | self.components = 0
|
---|
25 | self._fittedrow = 0
|
---|
26 | self._p = None
|
---|
27 | self._selection = None
|
---|
28 | self.uselinear = False
|
---|
29 |
|
---|
30 | def set_data(self, xdat, ydat, mask=None):
|
---|
31 | """
|
---|
32 | Set the absissa and ordinate for the fit. Also set the mask
|
---|
33 | indicationg valid points.
|
---|
34 | This can be used for data vectors retrieved from a scantable.
|
---|
35 | For scantable fitting use 'fitter.set_scan(scan, mask)'.
|
---|
36 | Parameters:
|
---|
37 | xdat: the abcissa values
|
---|
38 | ydat: the ordinate values
|
---|
39 | mask: an optional mask
|
---|
40 |
|
---|
41 | """
|
---|
42 | self.fitted = False
|
---|
43 | self.x = xdat
|
---|
44 | self.y = ydat
|
---|
45 | if mask == None:
|
---|
46 | self.mask = _n_bools(len(xdat), True)
|
---|
47 | else:
|
---|
48 | self.mask = mask
|
---|
49 | return
|
---|
50 |
|
---|
51 | @print_log_dec
|
---|
52 | def set_scan(self, thescan=None, mask=None):
|
---|
53 | """
|
---|
54 | Set the 'data' (a scantable) of the fitter.
|
---|
55 | Parameters:
|
---|
56 | thescan: a scantable
|
---|
57 | mask: a msk retrieved from the scantable
|
---|
58 | """
|
---|
59 | if not thescan:
|
---|
60 | msg = "Please give a correct scan"
|
---|
61 | raise TypeError(msg)
|
---|
62 | self.fitted = False
|
---|
63 | self.data = thescan
|
---|
64 | self.mask = None
|
---|
65 | if mask is None:
|
---|
66 | self.mask = _n_bools(self.data.nchan(), True)
|
---|
67 | else:
|
---|
68 | self.mask = mask
|
---|
69 | return
|
---|
70 |
|
---|
71 | @print_log_dec
|
---|
72 | def set_function(self, **kwargs):
|
---|
73 | """
|
---|
74 | Set the function to be fit.
|
---|
75 | Parameters:
|
---|
76 | poly: use a polynomial of the order given with nonlinear least squares fit
|
---|
77 | lpoly: use polynomial of the order given with linear least squares fit
|
---|
78 | gauss: fit the number of gaussian specified
|
---|
79 | lorentz: fit the number of lorentzian specified
|
---|
80 | Example:
|
---|
81 | fitter.set_function(poly=3) # will fit a 3rd order polynomial via nonlinear method
|
---|
82 | fitter.set_function(lpoly=3) # will fit a 3rd order polynomial via linear method
|
---|
83 | fitter.set_function(gauss=2) # will fit two gaussians
|
---|
84 | fitter.set_function(lorentz=2) # will fit two lorentzians
|
---|
85 | """
|
---|
86 | #default poly order 0
|
---|
87 | n=0
|
---|
88 | if kwargs.has_key('poly'):
|
---|
89 | self.fitfunc = 'poly'
|
---|
90 | n = kwargs.get('poly')
|
---|
91 | self.components = [n]
|
---|
92 | self.uselinear = False
|
---|
93 | elif kwargs.has_key('lpoly'):
|
---|
94 | self.fitfunc = 'poly'
|
---|
95 | n = kwargs.get('lpoly')
|
---|
96 | self.components = [n]
|
---|
97 | self.uselinear = True
|
---|
98 | elif kwargs.has_key('gauss'):
|
---|
99 | n = kwargs.get('gauss')
|
---|
100 | self.fitfunc = 'gauss'
|
---|
101 | self.fitfuncs = [ 'gauss' for i in range(n) ]
|
---|
102 | self.components = [ 3 for i in range(n) ]
|
---|
103 | self.uselinear = False
|
---|
104 | elif kwargs.has_key('lorentz'):
|
---|
105 | n = kwargs.get('lorentz')
|
---|
106 | self.fitfunc = 'lorentz'
|
---|
107 | self.fitfuncs = [ 'lorentz' for i in range(n) ]
|
---|
108 | self.components = [ 3 for i in range(n) ]
|
---|
109 | self.uselinear = False
|
---|
110 | else:
|
---|
111 | msg = "Invalid function type."
|
---|
112 | raise TypeError(msg)
|
---|
113 |
|
---|
114 | self.fitter.setexpression(self.fitfunc,n)
|
---|
115 | self.fitted = False
|
---|
116 | return
|
---|
117 |
|
---|
118 | @print_log_dec
|
---|
119 | def fit(self, row=0, estimate=False):
|
---|
120 | """
|
---|
121 | Execute the actual fitting process. All the state has to be set.
|
---|
122 | Parameters:
|
---|
123 | row: specify the row in the scantable
|
---|
124 | estimate: auto-compute an initial parameter set (default False)
|
---|
125 | This can be used to compute estimates even if fit was
|
---|
126 | called before.
|
---|
127 | Example:
|
---|
128 | s = scantable('myscan.asap')
|
---|
129 | s.set_cursor(thepol=1) # select second pol
|
---|
130 | f = fitter()
|
---|
131 | f.set_scan(s)
|
---|
132 | f.set_function(poly=0)
|
---|
133 | f.fit(row=0) # fit first row
|
---|
134 | """
|
---|
135 | if ((self.x is None or self.y is None) and self.data is None) \
|
---|
136 | or self.fitfunc is None:
|
---|
137 | msg = "Fitter not yet initialised. Please set data & fit function"
|
---|
138 | raise RuntimeError(msg)
|
---|
139 |
|
---|
140 | else:
|
---|
141 | if self.data is not None:
|
---|
142 | self.x = self.data._getabcissa(row)
|
---|
143 | self.y = self.data._getspectrum(row)
|
---|
144 | self.mask = mask_and(self.mask, self.data._getmask(row))
|
---|
145 | asaplog.push("Fitting:")
|
---|
146 | i = row
|
---|
147 | out = "Scan[%d] Beam[%d] IF[%d] Pol[%d] Cycle[%d]" % (self.data.getscan(i),
|
---|
148 | self.data.getbeam(i),
|
---|
149 | self.data.getif(i),
|
---|
150 | self.data.getpol(i),
|
---|
151 | self.data.getcycle(i))
|
---|
152 | asaplog.push(out,False)
|
---|
153 | self.fitter.setdata(self.x, self.y, self.mask)
|
---|
154 | if self.fitfunc == 'gauss' or self.fitfunc == 'lorentz':
|
---|
155 | ps = self.fitter.getparameters()
|
---|
156 | if len(ps) == 0 or estimate:
|
---|
157 | self.fitter.estimate()
|
---|
158 | fxdpar = list(self.fitter.getfixedparameters())
|
---|
159 | if len(fxdpar) and fxdpar.count(0) == 0:
|
---|
160 | raise RuntimeError,"No point fitting, if all parameters are fixed."
|
---|
161 | if self.uselinear:
|
---|
162 | converged = self.fitter.lfit()
|
---|
163 | else:
|
---|
164 | converged = self.fitter.fit()
|
---|
165 | if not converged:
|
---|
166 | raise RuntimeError,"Fit didn't converge."
|
---|
167 | self._fittedrow = row
|
---|
168 | self.fitted = True
|
---|
169 | return
|
---|
170 |
|
---|
171 | def store_fit(self, filename=None):
|
---|
172 | """
|
---|
173 | Save the fit parameters.
|
---|
174 | Parameters:
|
---|
175 | filename: if specified save as an ASCII file, if None (default)
|
---|
176 | store it in the scnatable
|
---|
177 | """
|
---|
178 | if self.fitted and self.data is not None:
|
---|
179 | pars = list(self.fitter.getparameters())
|
---|
180 | fixed = list(self.fitter.getfixedparameters())
|
---|
181 | from asap.asapfit import asapfit
|
---|
182 | fit = asapfit()
|
---|
183 | fit.setparameters(pars)
|
---|
184 | fit.setfixedparameters(fixed)
|
---|
185 | fit.setfunctions(self.fitfuncs)
|
---|
186 | fit.setcomponents(self.components)
|
---|
187 | fit.setframeinfo(self.data._getcoordinfo())
|
---|
188 | if filename is not None:
|
---|
189 | import os
|
---|
190 | filename = os.path.expandvars(os.path.expanduser(filename))
|
---|
191 | if os.path.exists(filename):
|
---|
192 | raise IOError("File '%s' exists." % filename)
|
---|
193 | fit.save(filename)
|
---|
194 | else:
|
---|
195 | self.data._addfit(fit,self._fittedrow)
|
---|
196 |
|
---|
197 | @print_log_dec
|
---|
198 | def set_parameters(self,*args,**kwargs):
|
---|
199 | """
|
---|
200 | Set the parameters to be fitted.
|
---|
201 | Parameters:
|
---|
202 | params: a vector of parameters
|
---|
203 | fixed: a vector of which parameters are to be held fixed
|
---|
204 | (default is none)
|
---|
205 | component: in case of multiple gaussians, the index of the
|
---|
206 | component
|
---|
207 | """
|
---|
208 | component = None
|
---|
209 | fixed = None
|
---|
210 | params = None
|
---|
211 |
|
---|
212 | if len(args) and isinstance(args[0],dict):
|
---|
213 | kwargs = args[0]
|
---|
214 | if kwargs.has_key("fixed"): fixed = kwargs["fixed"]
|
---|
215 | if kwargs.has_key("params"): params = kwargs["params"]
|
---|
216 | if len(args) == 2 and isinstance(args[1], int):
|
---|
217 | component = args[1]
|
---|
218 | if self.fitfunc is None:
|
---|
219 | msg = "Please specify a fitting function first."
|
---|
220 | raise RuntimeError(msg)
|
---|
221 | if (self.fitfunc == "gauss" or self.fitfunc == 'lorentz') and component is not None:
|
---|
222 | if not self.fitted and sum(self.fitter.getparameters()) == 0:
|
---|
223 | pars = _n_bools(len(self.components)*3, False)
|
---|
224 | fxd = _n_bools(len(pars), False)
|
---|
225 | else:
|
---|
226 | pars = list(self.fitter.getparameters())
|
---|
227 | fxd = list(self.fitter.getfixedparameters())
|
---|
228 | i = 3*component
|
---|
229 | pars[i:i+3] = params
|
---|
230 | fxd[i:i+3] = fixed
|
---|
231 | params = pars
|
---|
232 | fixed = fxd
|
---|
233 | self.fitter.setparameters(params)
|
---|
234 | if fixed is not None:
|
---|
235 | self.fitter.setfixedparameters(fixed)
|
---|
236 | return
|
---|
237 |
|
---|
238 | @print_log_dec
|
---|
239 | def set_gauss_parameters(self, peak, centre, fwhm,
|
---|
240 | peakfixed=0, centrefixed=0,
|
---|
241 | fwhmfixed=0,
|
---|
242 | component=0):
|
---|
243 | """
|
---|
244 | Set the Parameters of a 'Gaussian' component, set with set_function.
|
---|
245 | Parameters:
|
---|
246 | peak, centre, fwhm: The gaussian parameters
|
---|
247 | peakfixed,
|
---|
248 | centrefixed,
|
---|
249 | fwhmfixed: Optional parameters to indicate if
|
---|
250 | the paramters should be held fixed during
|
---|
251 | the fitting process. The default is to keep
|
---|
252 | all parameters flexible.
|
---|
253 | component: The number of the component (Default is the
|
---|
254 | component 0)
|
---|
255 | """
|
---|
256 | if self.fitfunc != "gauss":
|
---|
257 | msg = "Function only operates on Gaussian components."
|
---|
258 | raise ValueError(msg)
|
---|
259 | if 0 <= component < len(self.components):
|
---|
260 | d = {'params':[peak, centre, fwhm],
|
---|
261 | 'fixed':[peakfixed, centrefixed, fwhmfixed]}
|
---|
262 | self.set_parameters(d, component)
|
---|
263 | else:
|
---|
264 | msg = "Please select a valid component."
|
---|
265 | raise ValueError(msg)
|
---|
266 |
|
---|
267 | @print_log_dec
|
---|
268 | def set_lorentz_parameters(self, peak, centre, fwhm,
|
---|
269 | peakfixed=0, centrefixed=0,
|
---|
270 | fwhmfixed=0,
|
---|
271 | component=0):
|
---|
272 | """
|
---|
273 | Set the Parameters of a 'Lorentzian' component, set with set_function.
|
---|
274 | Parameters:
|
---|
275 | peak, centre, fwhm: The gaussian parameters
|
---|
276 | peakfixed,
|
---|
277 | centrefixed,
|
---|
278 | fwhmfixed: Optional parameters to indicate if
|
---|
279 | the paramters should be held fixed during
|
---|
280 | the fitting process. The default is to keep
|
---|
281 | all parameters flexible.
|
---|
282 | component: The number of the component (Default is the
|
---|
283 | component 0)
|
---|
284 | """
|
---|
285 | if self.fitfunc != "lorentz":
|
---|
286 | msg = "Function only operates on Lorentzian components."
|
---|
287 | raise ValueError(msg)
|
---|
288 | if 0 <= component < len(self.components):
|
---|
289 | d = {'params':[peak, centre, fwhm],
|
---|
290 | 'fixed':[peakfixed, centrefixed, fwhmfixed]}
|
---|
291 | self.set_parameters(d, component)
|
---|
292 | else:
|
---|
293 | msg = "Please select a valid component."
|
---|
294 | raise ValueError(msg)
|
---|
295 |
|
---|
296 | def get_area(self, component=None):
|
---|
297 | """
|
---|
298 | Return the area under the fitted gaussian/lorentzian component.
|
---|
299 | Parameters:
|
---|
300 | component: the gaussian/lorentzian component selection,
|
---|
301 | default (None) is the sum of all components
|
---|
302 | Note:
|
---|
303 | This will only work for gaussian/lorentzian fits.
|
---|
304 | """
|
---|
305 | if not self.fitted: return
|
---|
306 | if self.fitfunc == "gauss" or self.fitfunc == "lorentz":
|
---|
307 | pars = list(self.fitter.getparameters())
|
---|
308 | from math import log,pi,sqrt
|
---|
309 | if self.fitfunc == "gauss":
|
---|
310 | fac = sqrt(pi/log(16.0))
|
---|
311 | elif self.fitfunc == "lorentz":
|
---|
312 | fac = pi/2.0
|
---|
313 | areas = []
|
---|
314 | for i in range(len(self.components)):
|
---|
315 | j = i*3
|
---|
316 | cpars = pars[j:j+3]
|
---|
317 | areas.append(fac * cpars[0] * cpars[2])
|
---|
318 | else:
|
---|
319 | return None
|
---|
320 | if component is not None:
|
---|
321 | return areas[component]
|
---|
322 | else:
|
---|
323 | return sum(areas)
|
---|
324 |
|
---|
325 | @print_log_dec
|
---|
326 | def get_errors(self, component=None):
|
---|
327 | """
|
---|
328 | Return the errors in the parameters.
|
---|
329 | Parameters:
|
---|
330 | component: get the errors for the specified component
|
---|
331 | only, default is all components
|
---|
332 | """
|
---|
333 | if not self.fitted:
|
---|
334 | msg = "Not yet fitted."
|
---|
335 | raise RuntimeError(msg)
|
---|
336 | errs = list(self.fitter.geterrors())
|
---|
337 | cerrs = errs
|
---|
338 | if component is not None:
|
---|
339 | if self.fitfunc == "gauss" or self.fitfunc == "lorentz":
|
---|
340 | i = 3*component
|
---|
341 | if i < len(errs):
|
---|
342 | cerrs = errs[i:i+3]
|
---|
343 | return cerrs
|
---|
344 |
|
---|
345 |
|
---|
346 | @print_log_dec
|
---|
347 | def get_parameters(self, component=None, errors=False):
|
---|
348 | """
|
---|
349 | Return the fit paramters.
|
---|
350 | Parameters:
|
---|
351 | component: get the parameters for the specified component
|
---|
352 | only, default is all components
|
---|
353 | """
|
---|
354 | if not self.fitted:
|
---|
355 | msg = "Not yet fitted."
|
---|
356 | raise RuntimeError(msg)
|
---|
357 | pars = list(self.fitter.getparameters())
|
---|
358 | fixed = list(self.fitter.getfixedparameters())
|
---|
359 | errs = list(self.fitter.geterrors())
|
---|
360 | area = []
|
---|
361 | if component is not None:
|
---|
362 | if self.fitfunc == "gauss" or self.fitfunc == "lorentz":
|
---|
363 | i = 3*component
|
---|
364 | cpars = pars[i:i+3]
|
---|
365 | cfixed = fixed[i:i+3]
|
---|
366 | cerrs = errs[i:i+3]
|
---|
367 | a = self.get_area(component)
|
---|
368 | area = [a for i in range(3)]
|
---|
369 | else:
|
---|
370 | cpars = pars
|
---|
371 | cfixed = fixed
|
---|
372 | cerrs = errs
|
---|
373 | else:
|
---|
374 | cpars = pars
|
---|
375 | cfixed = fixed
|
---|
376 | cerrs = errs
|
---|
377 | if self.fitfunc == "gauss" or self.fitfunc == "lorentz":
|
---|
378 | for c in range(len(self.components)):
|
---|
379 | a = self.get_area(c)
|
---|
380 | area += [a for i in range(3)]
|
---|
381 | fpars = self._format_pars(cpars, cfixed, errors and cerrs, area)
|
---|
382 | asaplog.push(fpars)
|
---|
383 | return {'params':cpars, 'fixed':cfixed, 'formatted': fpars,
|
---|
384 | 'errors':cerrs}
|
---|
385 |
|
---|
386 | def _format_pars(self, pars, fixed, errors, area):
|
---|
387 | out = ''
|
---|
388 | if self.fitfunc == 'poly':
|
---|
389 | c = 0
|
---|
390 | for i in range(len(pars)):
|
---|
391 | fix = ""
|
---|
392 | if len(fixed) and fixed[i]: fix = "(fixed)"
|
---|
393 | if errors :
|
---|
394 | out += ' p%d%s= %3.6f (%1.6f),' % (c,fix,pars[i], errors[i])
|
---|
395 | else:
|
---|
396 | out += ' p%d%s= %3.6f,' % (c,fix,pars[i])
|
---|
397 | c+=1
|
---|
398 | out = out[:-1] # remove trailing ','
|
---|
399 | elif self.fitfunc == 'gauss' or self.fitfunc == 'lorentz':
|
---|
400 | i = 0
|
---|
401 | c = 0
|
---|
402 | aunit = ''
|
---|
403 | ounit = ''
|
---|
404 | if self.data:
|
---|
405 | aunit = self.data.get_unit()
|
---|
406 | ounit = self.data.get_fluxunit()
|
---|
407 | while i < len(pars):
|
---|
408 | if len(area):
|
---|
409 | out += ' %2d: peak = %3.3f %s , centre = %3.3f %s, FWHM = %3.3f %s\n area = %3.3f %s %s\n' % (c,pars[i],ounit,pars[i+1],aunit,pars[i+2],aunit, area[i],ounit,aunit)
|
---|
410 | else:
|
---|
411 | out += ' %2d: peak = %3.3f %s , centre = %3.3f %s, FWHM = %3.3f %s\n' % (c,pars[i],ounit,pars[i+1],aunit,pars[i+2],aunit,ounit,aunit)
|
---|
412 | c+=1
|
---|
413 | i+=3
|
---|
414 | return out
|
---|
415 |
|
---|
416 |
|
---|
417 | @print_log_dec
|
---|
418 | def get_estimate(self):
|
---|
419 | """
|
---|
420 | Return the parameter estimates (for non-linear functions).
|
---|
421 | """
|
---|
422 | pars = self.fitter.getestimate()
|
---|
423 | fixed = self.fitter.getfixedparameters()
|
---|
424 | asaplog.push(self._format_pars(pars,fixed,None))
|
---|
425 | return pars
|
---|
426 |
|
---|
427 | @print_log_dec
|
---|
428 | def get_residual(self):
|
---|
429 | """
|
---|
430 | Return the residual of the fit.
|
---|
431 | """
|
---|
432 | if not self.fitted:
|
---|
433 | msg = "Not yet fitted."
|
---|
434 | raise RuntimeError(msg)
|
---|
435 | return self.fitter.getresidual()
|
---|
436 |
|
---|
437 | @print_log_dec
|
---|
438 | def get_chi2(self):
|
---|
439 | """
|
---|
440 | Return chi^2.
|
---|
441 | """
|
---|
442 | if not self.fitted:
|
---|
443 | msg = "Not yet fitted."
|
---|
444 | raise RuntimeError(msg)
|
---|
445 | ch2 = self.fitter.getchi2()
|
---|
446 | asaplog.push( 'Chi^2 = %3.3f' % (ch2) )
|
---|
447 | return ch2
|
---|
448 |
|
---|
449 | @print_log_dec
|
---|
450 | def get_fit(self):
|
---|
451 | """
|
---|
452 | Return the fitted ordinate values.
|
---|
453 | """
|
---|
454 | if not self.fitted:
|
---|
455 | msg = "Not yet fitted."
|
---|
456 | raise RuntimeError(msg)
|
---|
457 | return self.fitter.getfit()
|
---|
458 |
|
---|
459 | @print_log_dec
|
---|
460 | def commit(self):
|
---|
461 | """
|
---|
462 | Return a new scan where the fits have been commited (subtracted)
|
---|
463 | """
|
---|
464 | if not self.fitted:
|
---|
465 | msg = "Not yet fitted."
|
---|
466 | raise RuntimeError(msg)
|
---|
467 | from asap import scantable
|
---|
468 | if not isinstance(self.data, scantable):
|
---|
469 | msg = "Not a scantable"
|
---|
470 | raise TypeError(msg)
|
---|
471 | scan = self.data.copy()
|
---|
472 | scan._setspectrum(self.fitter.getresidual())
|
---|
473 | return scan
|
---|
474 |
|
---|
475 | @print_log_dec
|
---|
476 | def plot(self, residual=False, components=None, plotparms=False,
|
---|
477 | filename=None):
|
---|
478 | """
|
---|
479 | Plot the last fit.
|
---|
480 | Parameters:
|
---|
481 | residual: an optional parameter indicating if the residual
|
---|
482 | should be plotted (default 'False')
|
---|
483 | components: a list of components to plot, e.g [0,1],
|
---|
484 | -1 plots the total fit. Default is to only
|
---|
485 | plot the total fit.
|
---|
486 | plotparms: Inidicates if the parameter values should be present
|
---|
487 | on the plot
|
---|
488 | """
|
---|
489 | if not self.fitted:
|
---|
490 | return
|
---|
491 | if not self._p or self._p.is_dead:
|
---|
492 | if rcParams['plotter.gui']:
|
---|
493 | from asap.asaplotgui import asaplotgui as asaplot
|
---|
494 | else:
|
---|
495 | from asap.asaplot import asaplot
|
---|
496 | self._p = asaplot()
|
---|
497 | self._p.hold()
|
---|
498 | self._p.clear()
|
---|
499 | self._p.set_panels()
|
---|
500 | self._p.palette(0)
|
---|
501 | tlab = 'Spectrum'
|
---|
502 | xlab = 'Abcissa'
|
---|
503 | ylab = 'Ordinate'
|
---|
504 | from numpy import ma,logical_not,logical_and,array
|
---|
505 | m = self.mask
|
---|
506 | if self.data:
|
---|
507 | tlab = self.data._getsourcename(self._fittedrow)
|
---|
508 | xlab = self.data._getabcissalabel(self._fittedrow)
|
---|
509 | m = logical_and(self.mask,
|
---|
510 | array(self.data._getmask(self._fittedrow),
|
---|
511 | copy=False))
|
---|
512 |
|
---|
513 | ylab = self.data._get_ordinate_label()
|
---|
514 |
|
---|
515 | colours = ["#777777","#dddddd","red","orange","purple","green","magenta", "cyan"]
|
---|
516 | nomask=True
|
---|
517 | for i in range(len(m)):
|
---|
518 | nomask = nomask and m[i]
|
---|
519 | label0='Masked Region'
|
---|
520 | label1='Spectrum'
|
---|
521 | if ( nomask ):
|
---|
522 | label0=label1
|
---|
523 | else:
|
---|
524 | y = ma.masked_array( self.y, mask = m )
|
---|
525 | self._p.palette(1,colours)
|
---|
526 | self._p.set_line( label = label1 )
|
---|
527 | self._p.plot( self.x, y )
|
---|
528 | self._p.palette(0,colours)
|
---|
529 | self._p.set_line(label=label0)
|
---|
530 | y = ma.masked_array(self.y,mask=logical_not(m))
|
---|
531 | self._p.plot(self.x, y)
|
---|
532 | if residual:
|
---|
533 | self._p.palette(7)
|
---|
534 | self._p.set_line(label='Residual')
|
---|
535 | y = ma.masked_array(self.get_residual(),
|
---|
536 | mask=logical_not(m))
|
---|
537 | self._p.plot(self.x, y)
|
---|
538 | self._p.palette(2)
|
---|
539 | if components is not None:
|
---|
540 | cs = components
|
---|
541 | if isinstance(components,int): cs = [components]
|
---|
542 | if plotparms:
|
---|
543 | self._p.text(0.15,0.15,str(self.get_parameters()['formatted']),size=8)
|
---|
544 | n = len(self.components)
|
---|
545 | self._p.palette(3)
|
---|
546 | for c in cs:
|
---|
547 | if 0 <= c < n:
|
---|
548 | lab = self.fitfuncs[c]+str(c)
|
---|
549 | self._p.set_line(label=lab)
|
---|
550 | y = ma.masked_array(self.fitter.evaluate(c),
|
---|
551 | mask=logical_not(m))
|
---|
552 |
|
---|
553 | self._p.plot(self.x, y)
|
---|
554 | elif c == -1:
|
---|
555 | self._p.palette(2)
|
---|
556 | self._p.set_line(label="Total Fit")
|
---|
557 | y = ma.masked_array(self.fitter.getfit(),
|
---|
558 | mask=logical_not(m))
|
---|
559 | self._p.plot(self.x, y)
|
---|
560 | else:
|
---|
561 | self._p.palette(2)
|
---|
562 | self._p.set_line(label='Fit')
|
---|
563 | y = ma.masked_array(self.fitter.getfit(),
|
---|
564 | mask=logical_not(m))
|
---|
565 | self._p.plot(self.x, y)
|
---|
566 | xlim=[min(self.x),max(self.x)]
|
---|
567 | self._p.axes.set_xlim(xlim)
|
---|
568 | self._p.set_axes('xlabel',xlab)
|
---|
569 | self._p.set_axes('ylabel',ylab)
|
---|
570 | self._p.set_axes('title',tlab)
|
---|
571 | self._p.release()
|
---|
572 | if (not rcParams['plotter.gui']):
|
---|
573 | self._p.save(filename)
|
---|
574 |
|
---|
575 | @print_log_dec
|
---|
576 | def auto_fit(self, insitu=None, plot=False):
|
---|
577 | """
|
---|
578 | Return a scan where the function is applied to all rows for
|
---|
579 | all Beams/IFs/Pols.
|
---|
580 |
|
---|
581 | """
|
---|
582 | from asap import scantable
|
---|
583 | if not isinstance(self.data, scantable) :
|
---|
584 | msg = "Data is not a scantable"
|
---|
585 | raise TypeError(msg)
|
---|
586 | if insitu is None: insitu = rcParams['insitu']
|
---|
587 | if not insitu:
|
---|
588 | scan = self.data.copy()
|
---|
589 | else:
|
---|
590 | scan = self.data
|
---|
591 | rows = xrange(scan.nrow())
|
---|
592 | # Save parameters of baseline fits as a class attribute.
|
---|
593 | # NOTICE: This does not reflect changes in scantable!
|
---|
594 | if len(rows) > 0: self.blpars=[]
|
---|
595 | asaplog.push("Fitting:")
|
---|
596 | for r in rows:
|
---|
597 | out = " Scan[%d] Beam[%d] IF[%d] Pol[%d] Cycle[%d]" % (scan.getscan(r),
|
---|
598 | scan.getbeam(r),
|
---|
599 | scan.getif(r),
|
---|
600 | scan.getpol(r),
|
---|
601 | scan.getcycle(r))
|
---|
602 | asaplog.push(out, False)
|
---|
603 | self.x = scan._getabcissa(r)
|
---|
604 | self.y = scan._getspectrum(r)
|
---|
605 | self.mask = mask_and(self.mask, scan._getmask(r))
|
---|
606 | self.data = None
|
---|
607 | self.fit()
|
---|
608 | x = self.get_parameters()
|
---|
609 | fpar = self.get_parameters()
|
---|
610 | if plot:
|
---|
611 | self.plot(residual=True)
|
---|
612 | x = raw_input("Accept fit ([y]/n): ")
|
---|
613 | if x.upper() == 'N':
|
---|
614 | self.blpars.append(None)
|
---|
615 | continue
|
---|
616 | scan._setspectrum(self.fitter.getresidual(), r)
|
---|
617 | self.blpars.append(fpar)
|
---|
618 | if plot:
|
---|
619 | self._p.unmap()
|
---|
620 | self._p = None
|
---|
621 | return scan
|
---|