source: trunk/python/asapfitter.py@ 3023

Last change on this file since 3023 was 2961, checked in by Kana Sugimoto, 10 years ago

New Development: No

JIRA Issue: Yes (CAS-6587)

Ready for Test: Yes

Interface Changes: No

What Interface Changed: Please list interface changes

Test Programs:

Put in Release Notes: No

Module(s): asapfitter, asaplinefind

Description: handling of FLAGROW column in STLineFinder::findLines and asapfitter.fit.


  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 27.2 KB
RevLine 
[113]1import _asap
[1826]2from asap.parameters import rcParams
[1862]3from asap.logging import asaplog, asaplog_post_dec
[1826]4from asap.utils import _n_bools, mask_and
[2666]5from numpy import ndarray
[113]6
7class fitter:
8 """
9 The fitting class for ASAP.
10 """
11 def __init__(self):
12 """
13 Create a fitter object. No state is set.
14 """
15 self.fitter = _asap.fitter()
16 self.x = None
17 self.y = None
18 self.mask = None
19 self.fitfunc = None
[515]20 self.fitfuncs = None
[113]21 self.fitted = False
22 self.data = None
[515]23 self.components = 0
24 self._fittedrow = 0
[113]25 self._p = None
[515]26 self._selection = None
[1391]27 self.uselinear = False
[2666]28 self._constraints = []
[113]29
30 def set_data(self, xdat, ydat, mask=None):
31 """
[158]32 Set the absissa and ordinate for the fit. Also set the mask
[2153]33 indicating valid points.
[113]34 This can be used for data vectors retrieved from a scantable.
35 For scantable fitting use 'fitter.set_scan(scan, mask)'.
36 Parameters:
[158]37 xdat: the abcissa values
[113]38 ydat: the ordinate values
39 mask: an optional mask
[723]40
[113]41 """
42 self.fitted = False
43 self.x = xdat
44 self.y = ydat
45 if mask == None:
[1295]46 self.mask = _n_bools(len(xdat), True)
[113]47 else:
48 self.mask = mask
49 return
50
[1862]51 @asaplog_post_dec
[113]52 def set_scan(self, thescan=None, mask=None):
53 """
54 Set the 'data' (a scantable) of the fitter.
55 Parameters:
56 thescan: a scantable
[1420]57 mask: a msk retrieved from the scantable
[113]58 """
59 if not thescan:
[723]60 msg = "Please give a correct scan"
[1859]61 raise TypeError(msg)
[113]62 self.fitted = False
63 self.data = thescan
[1075]64 self.mask = None
[113]65 if mask is None:
[1295]66 self.mask = _n_bools(self.data.nchan(), True)
[113]67 else:
68 self.mask = mask
69 return
70
[1862]71 @asaplog_post_dec
[113]72 def set_function(self, **kwargs):
73 """
74 Set the function to be fit.
75 Parameters:
[2666]76 poly: use a polynomial of the order given with nonlinear
77 least squares fit
78 lpoly: use polynomial of the order given with linear least
79 squares fit
[2047]80 gauss: fit the number of gaussian specified
81 lorentz: fit the number of lorentzian specified
82 sinusoid: fit the number of sinusoid specified
[113]83 Example:
[2666]84 fitter.set_function(poly=3) # will fit a 3rd order polynomial
85 # via nonlinear method
86 fitter.set_function(lpoly=3) # will fit a 3rd order polynomial
87 # via linear method
[1819]88 fitter.set_function(gauss=2) # will fit two gaussians
89 fitter.set_function(lorentz=2) # will fit two lorentzians
[2047]90 fitter.set_function(sinusoid=3) # will fit three sinusoids
[113]91 """
[723]92 #default poly order 0
[515]93 n=0
[113]94 if kwargs.has_key('poly'):
95 self.fitfunc = 'poly'
[1938]96 self.fitfuncs = ['poly']
[113]97 n = kwargs.get('poly')
[1938]98 self.components = [n+1]
[1589]99 self.uselinear = False
[1391]100 elif kwargs.has_key('lpoly'):
101 self.fitfunc = 'poly'
[1938]102 self.fitfuncs = ['lpoly']
[1391]103 n = kwargs.get('lpoly')
[1938]104 self.components = [n+1]
[1391]105 self.uselinear = True
[113]106 elif kwargs.has_key('gauss'):
107 n = kwargs.get('gauss')
108 self.fitfunc = 'gauss'
[515]109 self.fitfuncs = [ 'gauss' for i in range(n) ]
110 self.components = [ 3 for i in range(n) ]
[1589]111 self.uselinear = False
[1819]112 elif kwargs.has_key('lorentz'):
113 n = kwargs.get('lorentz')
114 self.fitfunc = 'lorentz'
115 self.fitfuncs = [ 'lorentz' for i in range(n) ]
116 self.components = [ 3 for i in range(n) ]
117 self.uselinear = False
[2047]118 elif kwargs.has_key('sinusoid'):
119 n = kwargs.get('sinusoid')
120 self.fitfunc = 'sinusoid'
121 self.fitfuncs = [ 'sinusoid' for i in range(n) ]
122 self.components = [ 3 for i in range(n) ]
123 self.uselinear = False
[2666]124 elif kwargs.has_key('expression'):
125 self.uselinear = False
126 raise RuntimeError("Not yet implemented")
[515]127 else:
[723]128 msg = "Invalid function type."
[1859]129 raise TypeError(msg)
[723]130
[113]131 self.fitter.setexpression(self.fitfunc,n)
[2666]132 self._constraints = []
[1232]133 self.fitted = False
[113]134 return
[723]135
[1862]136 @asaplog_post_dec
[1075]137 def fit(self, row=0, estimate=False):
[113]138 """
139 Execute the actual fitting process. All the state has to be set.
140 Parameters:
[1075]141 row: specify the row in the scantable
142 estimate: auto-compute an initial parameter set (default False)
143 This can be used to compute estimates even if fit was
144 called before.
[113]145 Example:
[515]146 s = scantable('myscan.asap')
147 s.set_cursor(thepol=1) # select second pol
[113]148 f = fitter()
149 f.set_scan(s)
150 f.set_function(poly=0)
[723]151 f.fit(row=0) # fit first row
[113]152 """
153 if ((self.x is None or self.y is None) and self.data is None) \
154 or self.fitfunc is None:
[723]155 msg = "Fitter not yet initialised. Please set data & fit function"
[1859]156 raise RuntimeError(msg)
[723]157
[2666]158 if self.data is not None:
[2961]159 if self.data._getflagrow(row):
160 raise RuntimeError,"Can not fit flagged row."
[2666]161 self.x = self.data._getabcissa(row)
162 self.y = self.data._getspectrum(row)
163 #self.mask = mask_and(self.mask, self.data._getmask(row))
164 if len(self.x) == len(self.mask):
165 self.mask = mask_and(self.mask, self.data._getmask(row))
166 else:
167 asaplog.push('lengths of data and mask are not the same. '
168 'preset mask will be ignored')
169 asaplog.post('WARN','asapfit.fit')
170 self.mask=self.data._getmask(row)
171 asaplog.push("Fitting:")
172 i = row
173 out = "Scan[%d] Beam[%d] IF[%d] Pol[%d] Cycle[%d]" % (
174 self.data.getscan(i),
175 self.data.getbeam(i),
176 self.data.getif(i),
177 self.data.getpol(i),
178 self.data.getcycle(i))
179
180 asaplog.push(out, False)
181
[515]182 self.fitter.setdata(self.x, self.y, self.mask)
[1819]183 if self.fitfunc == 'gauss' or self.fitfunc == 'lorentz':
[113]184 ps = self.fitter.getparameters()
[1075]185 if len(ps) == 0 or estimate:
[113]186 self.fitter.estimate()
[1859]187 fxdpar = list(self.fitter.getfixedparameters())
188 if len(fxdpar) and fxdpar.count(0) == 0:
189 raise RuntimeError,"No point fitting, if all parameters are fixed."
[2666]190 if self._constraints:
191 for c in self._constraints:
192 self.fitter.addconstraint(c[0]+[c[-1]])
[1859]193 if self.uselinear:
194 converged = self.fitter.lfit()
195 else:
196 converged = self.fitter.fit()
197 if not converged:
198 raise RuntimeError,"Fit didn't converge."
[515]199 self._fittedrow = row
[113]200 self.fitted = True
201 return
202
[1232]203 def store_fit(self, filename=None):
[526]204 """
[1232]205 Save the fit parameters.
206 Parameters:
207 filename: if specified save as an ASCII file, if None (default)
208 store it in the scnatable
[526]209 """
[515]210 if self.fitted and self.data is not None:
211 pars = list(self.fitter.getparameters())
212 fixed = list(self.fitter.getfixedparameters())
[975]213 from asap.asapfit import asapfit
214 fit = asapfit()
215 fit.setparameters(pars)
216 fit.setfixedparameters(fixed)
217 fit.setfunctions(self.fitfuncs)
218 fit.setcomponents(self.components)
219 fit.setframeinfo(self.data._getcoordinfo())
[1232]220 if filename is not None:
221 import os
222 filename = os.path.expandvars(os.path.expanduser(filename))
223 if os.path.exists(filename):
224 raise IOError("File '%s' exists." % filename)
225 fit.save(filename)
226 else:
227 self.data._addfit(fit,self._fittedrow)
[515]228
[1862]229 @asaplog_post_dec
[1017]230 def set_parameters(self,*args,**kwargs):
[526]231 """
232 Set the parameters to be fitted.
233 Parameters:
234 params: a vector of parameters
235 fixed: a vector of which parameters are to be held fixed
236 (default is none)
[2047]237 component: in case of multiple gaussians/lorentzians/sinusoidals,
238 the index of the target component
[1017]239 """
240 component = None
241 fixed = None
242 params = None
[1031]243
[1017]244 if len(args) and isinstance(args[0],dict):
245 kwargs = args[0]
246 if kwargs.has_key("fixed"): fixed = kwargs["fixed"]
247 if kwargs.has_key("params"): params = kwargs["params"]
248 if len(args) == 2 and isinstance(args[1], int):
249 component = args[1]
[515]250 if self.fitfunc is None:
[723]251 msg = "Please specify a fitting function first."
[1859]252 raise RuntimeError(msg)
[2666]253 if (self.fitfunc == "gauss" or self.fitfunc == "lorentz"
254 or self.fitfunc == "sinusoid") and component is not None:
[1017]255 if not self.fitted and sum(self.fitter.getparameters()) == 0:
[1295]256 pars = _n_bools(len(self.components)*3, False)
[2047]257 fxd = _n_bools(len(pars), False)
[515]258 else:
[723]259 pars = list(self.fitter.getparameters())
[2047]260 fxd = list(self.fitter.getfixedparameters())
[515]261 i = 3*component
262 pars[i:i+3] = params
[2047]263 fxd[i:i+3] = fixed
[515]264 params = pars
[2047]265 fixed = fxd
[113]266 self.fitter.setparameters(params)
267 if fixed is not None:
268 self.fitter.setfixedparameters(fixed)
269 return
[515]270
[1862]271 @asaplog_post_dec
[1217]272 def set_gauss_parameters(self, peak, centre, fwhm,
[1409]273 peakfixed=0, centrefixed=0,
[1217]274 fwhmfixed=0,
[515]275 component=0):
[113]276 """
[515]277 Set the Parameters of a 'Gaussian' component, set with set_function.
278 Parameters:
[1232]279 peak, centre, fwhm: The gaussian parameters
[515]280 peakfixed,
[1409]281 centrefixed,
[1217]282 fwhmfixed: Optional parameters to indicate if
[515]283 the paramters should be held fixed during
284 the fitting process. The default is to keep
285 all parameters flexible.
[526]286 component: The number of the component (Default is the
287 component 0)
[515]288 """
289 if self.fitfunc != "gauss":
[723]290 msg = "Function only operates on Gaussian components."
[1859]291 raise ValueError(msg)
[515]292 if 0 <= component < len(self.components):
[1217]293 d = {'params':[peak, centre, fwhm],
[1409]294 'fixed':[peakfixed, centrefixed, fwhmfixed]}
[1017]295 self.set_parameters(d, component)
[515]296 else:
[723]297 msg = "Please select a valid component."
[1859]298 raise ValueError(msg)
[723]299
[1862]300 @asaplog_post_dec
[1819]301 def set_lorentz_parameters(self, peak, centre, fwhm,
302 peakfixed=0, centrefixed=0,
303 fwhmfixed=0,
304 component=0):
305 """
306 Set the Parameters of a 'Lorentzian' component, set with set_function.
307 Parameters:
[1927]308 peak, centre, fwhm: The lorentzian parameters
[1819]309 peakfixed,
310 centrefixed,
311 fwhmfixed: Optional parameters to indicate if
312 the paramters should be held fixed during
313 the fitting process. The default is to keep
314 all parameters flexible.
315 component: The number of the component (Default is the
316 component 0)
317 """
318 if self.fitfunc != "lorentz":
319 msg = "Function only operates on Lorentzian components."
[1859]320 raise ValueError(msg)
[1819]321 if 0 <= component < len(self.components):
322 d = {'params':[peak, centre, fwhm],
323 'fixed':[peakfixed, centrefixed, fwhmfixed]}
324 self.set_parameters(d, component)
325 else:
326 msg = "Please select a valid component."
[1859]327 raise ValueError(msg)
[1819]328
[2047]329 @asaplog_post_dec
330 def set_sinusoid_parameters(self, ampl, period, x0,
331 amplfixed=0, periodfixed=0,
332 x0fixed=0,
333 component=0):
334 """
335 Set the Parameters of a 'Sinusoidal' component, set with set_function.
336 Parameters:
337 ampl, period, x0: The sinusoidal parameters
338 amplfixed,
339 periodfixed,
340 x0fixed: Optional parameters to indicate if
341 the paramters should be held fixed during
342 the fitting process. The default is to keep
343 all parameters flexible.
344 component: The number of the component (Default is the
345 component 0)
346 """
347 if self.fitfunc != "sinusoid":
348 msg = "Function only operates on Sinusoidal components."
349 raise ValueError(msg)
350 if 0 <= component < len(self.components):
351 d = {'params':[ampl, period, x0],
352 'fixed': [amplfixed, periodfixed, x0fixed]}
353 self.set_parameters(d, component)
354 else:
355 msg = "Please select a valid component."
356 raise ValueError(msg)
357
[2666]358
359 def add_constraint(self, xpar, y):
360 """Add parameter constraints to the fit. This is done by setting up
361 linear equations for the related parameters.
362
363 For example a two component gaussian fit where the amplitudes are
[2681]364 constraint by amp1 = 2*amp2 and paramaters for the two components
365 in the order [amp1,peakv1,sigma1,amp2,peakv2,sigma2]
366 needs a constraint
[2666]367
[2681]368 add_constraint([1, 0, 0, -2, 0, 0], 0)
[2666]369
[2681]370 as the linear equation is
371
372 1*amp1 + 0*peakv1 + 0*sigma1 -2*amp2 + 0*peakv2 + 0*sigma2 = 0
373
374 and similarly for a velocity difference of v2-v1=17
[2666]375
376 add_constraint([0.,-1.,0.,0.,1.,0.], 17.)
377
378 """
379 self._constraints.append((xpar, y))
380
381
[975]382 def get_area(self, component=None):
383 """
[1819]384 Return the area under the fitted gaussian/lorentzian component.
[975]385 Parameters:
[1819]386 component: the gaussian/lorentzian component selection,
[975]387 default (None) is the sum of all components
388 Note:
[1819]389 This will only work for gaussian/lorentzian fits.
[975]390 """
391 if not self.fitted: return
[1819]392 if self.fitfunc == "gauss" or self.fitfunc == "lorentz":
[975]393 pars = list(self.fitter.getparameters())
394 from math import log,pi,sqrt
[1819]395 if self.fitfunc == "gauss":
396 fac = sqrt(pi/log(16.0))
397 elif self.fitfunc == "lorentz":
398 fac = pi/2.0
[975]399 areas = []
400 for i in range(len(self.components)):
401 j = i*3
402 cpars = pars[j:j+3]
403 areas.append(fac * cpars[0] * cpars[2])
404 else:
405 return None
406 if component is not None:
407 return areas[component]
408 else:
409 return sum(areas)
410
[1862]411 @asaplog_post_dec
[1075]412 def get_errors(self, component=None):
[515]413 """
[1075]414 Return the errors in the parameters.
415 Parameters:
416 component: get the errors for the specified component
417 only, default is all components
418 """
419 if not self.fitted:
420 msg = "Not yet fitted."
[1859]421 raise RuntimeError(msg)
[1075]422 errs = list(self.fitter.geterrors())
423 cerrs = errs
424 if component is not None:
[2666]425 if self.fitfunc == "gauss" or self.fitfunc == "lorentz" \
426 or self.fitfunc == "sinusoid":
[1075]427 i = 3*component
428 if i < len(errs):
429 cerrs = errs[i:i+3]
430 return cerrs
431
[1859]432
[1862]433 @asaplog_post_dec
[1075]434 def get_parameters(self, component=None, errors=False):
435 """
[113]436 Return the fit paramters.
[526]437 Parameters:
438 component: get the parameters for the specified component
439 only, default is all components
[113]440 """
441 if not self.fitted:
[723]442 msg = "Not yet fitted."
[1859]443 raise RuntimeError(msg)
[113]444 pars = list(self.fitter.getparameters())
445 fixed = list(self.fitter.getfixedparameters())
[1075]446 errs = list(self.fitter.geterrors())
[1039]447 area = []
[723]448 if component is not None:
[2047]449 if self.fitfunc == "poly" or self.fitfunc == "lpoly":
450 cpars = pars
451 cfixed = fixed
452 cerrs = errs
453 else:
[515]454 i = 3*component
455 cpars = pars[i:i+3]
456 cfixed = fixed[i:i+3]
[1075]457 cerrs = errs[i:i+3]
[2047]458 if self.fitfunc == "gauss" or self.fitfunc == "lorentz":
459 a = self.get_area(component)
460 area = [a for i in range(3)]
[515]461 else:
462 cpars = pars
463 cfixed = fixed
[1075]464 cerrs = errs
[1819]465 if self.fitfunc == "gauss" or self.fitfunc == "lorentz":
[1039]466 for c in range(len(self.components)):
[2047]467 a = self.get_area(c)
468 area += [a for i in range(3)]
[1088]469 fpars = self._format_pars(cpars, cfixed, errors and cerrs, area)
[1859]470 asaplog.push(fpars)
[1075]471 return {'params':cpars, 'fixed':cfixed, 'formatted': fpars,
472 'errors':cerrs}
[723]473
[1075]474 def _format_pars(self, pars, fixed, errors, area):
[113]475 out = ''
[2047]476 if self.fitfunc == "poly" or self.fitfunc == "lpoly":
[113]477 c = 0
[515]478 for i in range(len(pars)):
479 fix = ""
[1232]480 if len(fixed) and fixed[i]: fix = "(fixed)"
[2047]481 out += " p%d%s= %3.6f" % (c, fix, pars[i])
482 if errors : out += " (%1.6f)" % errors[i]
483 out += ","
[113]484 c+=1
[515]485 out = out[:-1] # remove trailing ','
[2047]486 else:
[113]487 i = 0
488 c = 0
[2047]489 if self.fitfunc == "gauss" or self.fitfunc == "lorentz":
490 pnam = ["peak", "centre", "FWHM"]
491 elif self.fitfunc == "sinusoid":
492 pnam = ["amplitude", "period", "x0"]
493 aunit = ""
494 ounit = ""
[113]495 if self.data:
[515]496 aunit = self.data.get_unit()
497 ounit = self.data.get_fluxunit()
[113]498 while i < len(pars):
[2047]499 fix0 = fix1 = fix2 = ""
500 if i < len(fixed)-2:
501 if fixed[i]: fix0 = "(fixed)"
502 if fixed[i+1]: fix1 = "(fixed)"
503 if fixed[i+2]: fix2 = "(fixed)"
504 out += " %2d: " % c
505 out += "%s%s = %3.3f %s, " % (pnam[0], fix0, pars[i], ounit)
506 out += "%s%s = %3.3f %s, " % (pnam[1], fix1, pars[i+1], aunit)
507 out += "%s%s = %3.3f %s\n" % (pnam[2], fix2, pars[i+2], aunit)
[2666]508 if len(area): out += " area = %3.3f %s %s\n" % (area[i],
509 ounit,
510 aunit)
[113]511 c+=1
512 i+=3
513 return out
[723]514
[1859]515
[1862]516 @asaplog_post_dec
[113]517 def get_estimate(self):
518 """
[515]519 Return the parameter estimates (for non-linear functions).
[113]520 """
521 pars = self.fitter.getestimate()
[943]522 fixed = self.fitter.getfixedparameters()
[1927]523 asaplog.push(self._format_pars(pars,fixed,None,None))
[113]524 return pars
525
[1862]526 @asaplog_post_dec
[113]527 def get_residual(self):
528 """
529 Return the residual of the fit.
530 """
531 if not self.fitted:
[723]532 msg = "Not yet fitted."
[1859]533 raise RuntimeError(msg)
[113]534 return self.fitter.getresidual()
535
[1862]536 @asaplog_post_dec
[113]537 def get_chi2(self):
538 """
539 Return chi^2.
540 """
541 if not self.fitted:
[723]542 msg = "Not yet fitted."
[1859]543 raise RuntimeError(msg)
[113]544 ch2 = self.fitter.getchi2()
[1859]545 asaplog.push( 'Chi^2 = %3.3f' % (ch2) )
[723]546 return ch2
[113]547
[1862]548 @asaplog_post_dec
[113]549 def get_fit(self):
550 """
551 Return the fitted ordinate values.
552 """
553 if not self.fitted:
[723]554 msg = "Not yet fitted."
[1859]555 raise RuntimeError(msg)
[113]556 return self.fitter.getfit()
557
[1862]558 @asaplog_post_dec
[113]559 def commit(self):
560 """
[526]561 Return a new scan where the fits have been commited (subtracted)
[113]562 """
563 if not self.fitted:
[723]564 msg = "Not yet fitted."
[1859]565 raise RuntimeError(msg)
[975]566 from asap import scantable
567 if not isinstance(self.data, scantable):
[723]568 msg = "Not a scantable"
[1859]569 raise TypeError(msg)
[113]570 scan = self.data.copy()
[259]571 scan._setspectrum(self.fitter.getresidual())
[1092]572 return scan
[113]573
[1862]574 @asaplog_post_dec
[1689]575 def plot(self, residual=False, components=None, plotparms=False,
576 filename=None):
[113]577 """
578 Plot the last fit.
579 Parameters:
580 residual: an optional parameter indicating if the residual
581 should be plotted (default 'False')
[526]582 components: a list of components to plot, e.g [0,1],
583 -1 plots the total fit. Default is to only
584 plot the total fit.
585 plotparms: Inidicates if the parameter values should be present
586 on the plot
[113]587 """
[2538]588 from matplotlib import rc as rcp
[113]589 if not self.fitted:
590 return
[2541]591 #if not self._p or self._p.is_dead:
592 if not (self._p and self._p._alive()):
[2150]593 from asap.asapplotter import new_asaplot
[2451]594 del self._p
[2150]595 self._p = new_asaplot(rcParams['plotter.gui'])
[723]596 self._p.hold()
[113]597 self._p.clear()
[2535]598 rcp('lines', linewidth=1)
[515]599 self._p.set_panels()
[652]600 self._p.palette(0)
[113]601 tlab = 'Spectrum'
[723]602 xlab = 'Abcissa'
[1017]603 ylab = 'Ordinate'
[1739]604 from numpy import ma,logical_not,logical_and,array
[1273]605 m = self.mask
[113]606 if self.data:
[515]607 tlab = self.data._getsourcename(self._fittedrow)
608 xlab = self.data._getabcissalabel(self._fittedrow)
[2153]609 if self.data._getflagrow(self._fittedrow):
610 m = [False]
611 else:
612 m = logical_and(self.mask,
613 array(self.data._getmask(self._fittedrow),
614 copy=False))
[1589]615
[626]616 ylab = self.data._get_ordinate_label()
[515]617
[2666]618 colours = ["#777777","#dddddd","red","orange","purple","green",
619 "magenta", "cyan"]
[1819]620 nomask=True
621 for i in range(len(m)):
622 nomask = nomask and m[i]
[2153]623 if len(m) == 1:
624 m = m[0]
625 invm = (not m)
626 else:
627 invm = logical_not(m)
[1819]628 label0='Masked Region'
629 label1='Spectrum'
630 if ( nomask ):
631 label0=label1
632 else:
633 y = ma.masked_array( self.y, mask = m )
634 self._p.palette(1,colours)
635 self._p.set_line( label = label1 )
636 self._p.plot( self.x, y )
[652]637 self._p.palette(0,colours)
[1819]638 self._p.set_line(label=label0)
[2153]639 y = ma.masked_array(self.y,mask=invm)
[1088]640 self._p.plot(self.x, y)
[113]641 if residual:
[1819]642 self._p.palette(7)
[515]643 self._p.set_line(label='Residual')
[1116]644 y = ma.masked_array(self.get_residual(),
[2153]645 mask=invm)
[1088]646 self._p.plot(self.x, y)
[652]647 self._p.palette(2)
[515]648 if components is not None:
649 cs = components
650 if isinstance(components,int): cs = [components]
[526]651 if plotparms:
[2666]652 self._p.text(0.15,0.15,
653 str(self.get_parameters()['formatted']),size=8)
[515]654 n = len(self.components)
[652]655 self._p.palette(3)
[515]656 for c in cs:
657 if 0 <= c < n:
658 lab = self.fitfuncs[c]+str(c)
659 self._p.set_line(label=lab)
[2153]660 y = ma.masked_array(self.fitter.evaluate(c), mask=invm)
[1088]661
662 self._p.plot(self.x, y)
[515]663 elif c == -1:
[652]664 self._p.palette(2)
[515]665 self._p.set_line(label="Total Fit")
[1116]666 y = ma.masked_array(self.fitter.getfit(),
[2153]667 mask=invm)
[1088]668 self._p.plot(self.x, y)
[515]669 else:
[652]670 self._p.palette(2)
[515]671 self._p.set_line(label='Fit')
[2153]672 y = ma.masked_array(self.fitter.getfit(),mask=invm)
[1088]673 self._p.plot(self.x, y)
[723]674 xlim=[min(self.x),max(self.x)]
675 self._p.axes.set_xlim(xlim)
[113]676 self._p.set_axes('xlabel',xlab)
677 self._p.set_axes('ylabel',ylab)
678 self._p.set_axes('title',tlab)
679 self._p.release()
[723]680 if (not rcParams['plotter.gui']):
681 self._p.save(filename)
[113]682
[1862]683 @asaplog_post_dec
[1061]684 def auto_fit(self, insitu=None, plot=False):
[113]685 """
[515]686 Return a scan where the function is applied to all rows for
687 all Beams/IFs/Pols.
[723]688
[113]689 """
690 from asap import scantable
[515]691 if not isinstance(self.data, scantable) :
[723]692 msg = "Data is not a scantable"
[1859]693 raise TypeError(msg)
[259]694 if insitu is None: insitu = rcParams['insitu']
695 if not insitu:
696 scan = self.data.copy()
697 else:
698 scan = self.data
[880]699 rows = xrange(scan.nrow())
[1826]700 # Save parameters of baseline fits as a class attribute.
[1819]701 # NOTICE: This does not reflect changes in scantable!
702 if len(rows) > 0: self.blpars=[]
[876]703 asaplog.push("Fitting:")
704 for r in rows:
[2666]705 out = " Scan[%d] Beam[%d] IF[%d] Pol[%d] Cycle[%d]" % (
706 scan.getscan(r),
707 scan.getbeam(r),
708 scan.getif(r),
709 scan.getpol(r),
710 scan.getcycle(r)
711 )
[880]712 asaplog.push(out, False)
[876]713 self.x = scan._getabcissa(r)
714 self.y = scan._getspectrum(r)
[2409]715 #self.mask = mask_and(self.mask, scan._getmask(r))
[2408]716 if len(self.x) == len(self.mask):
717 self.mask = mask_and(self.mask, self.data._getmask(row))
718 else:
[2666]719 asaplog.push('lengths of data and mask are not the same. '
720 'preset mask will be ignored')
[2408]721 asaplog.post('WARN','asapfit.fit')
[2409]722 self.mask=self.data._getmask(row)
[876]723 self.data = None
724 self.fit()
725 x = self.get_parameters()
[1819]726 fpar = self.get_parameters()
[1061]727 if plot:
728 self.plot(residual=True)
729 x = raw_input("Accept fit ([y]/n): ")
730 if x.upper() == 'N':
[1819]731 self.blpars.append(None)
[1061]732 continue
[880]733 scan._setspectrum(self.fitter.getresidual(), r)
[1819]734 self.blpars.append(fpar)
[1061]735 if plot:
[2151]736 self._p.quit()
737 del self._p
[1061]738 self._p = None
[876]739 return scan
Note: See TracBrowser for help on using the repository browser.