source: trunk/python/asapfitter.py@ 2812

Last change on this file since 2812 was 2681, checked in by Malte Marquarding, 12 years ago

add better description to add_constraint

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 27.1 KB
RevLine 
[113]1import _asap
[1826]2from asap.parameters import rcParams
[1862]3from asap.logging import asaplog, asaplog_post_dec
[1826]4from asap.utils import _n_bools, mask_and
[2666]5from numpy import ndarray
[113]6
7class fitter:
8 """
9 The fitting class for ASAP.
10 """
11 def __init__(self):
12 """
13 Create a fitter object. No state is set.
14 """
15 self.fitter = _asap.fitter()
16 self.x = None
17 self.y = None
18 self.mask = None
19 self.fitfunc = None
[515]20 self.fitfuncs = None
[113]21 self.fitted = False
22 self.data = None
[515]23 self.components = 0
24 self._fittedrow = 0
[113]25 self._p = None
[515]26 self._selection = None
[1391]27 self.uselinear = False
[2666]28 self._constraints = []
[113]29
30 def set_data(self, xdat, ydat, mask=None):
31 """
[158]32 Set the absissa and ordinate for the fit. Also set the mask
[2153]33 indicating valid points.
[113]34 This can be used for data vectors retrieved from a scantable.
35 For scantable fitting use 'fitter.set_scan(scan, mask)'.
36 Parameters:
[158]37 xdat: the abcissa values
[113]38 ydat: the ordinate values
39 mask: an optional mask
[723]40
[113]41 """
42 self.fitted = False
43 self.x = xdat
44 self.y = ydat
45 if mask == None:
[1295]46 self.mask = _n_bools(len(xdat), True)
[113]47 else:
48 self.mask = mask
49 return
50
[1862]51 @asaplog_post_dec
[113]52 def set_scan(self, thescan=None, mask=None):
53 """
54 Set the 'data' (a scantable) of the fitter.
55 Parameters:
56 thescan: a scantable
[1420]57 mask: a msk retrieved from the scantable
[113]58 """
59 if not thescan:
[723]60 msg = "Please give a correct scan"
[1859]61 raise TypeError(msg)
[113]62 self.fitted = False
63 self.data = thescan
[1075]64 self.mask = None
[113]65 if mask is None:
[1295]66 self.mask = _n_bools(self.data.nchan(), True)
[113]67 else:
68 self.mask = mask
69 return
70
[1862]71 @asaplog_post_dec
[113]72 def set_function(self, **kwargs):
73 """
74 Set the function to be fit.
75 Parameters:
[2666]76 poly: use a polynomial of the order given with nonlinear
77 least squares fit
78 lpoly: use polynomial of the order given with linear least
79 squares fit
[2047]80 gauss: fit the number of gaussian specified
81 lorentz: fit the number of lorentzian specified
82 sinusoid: fit the number of sinusoid specified
[113]83 Example:
[2666]84 fitter.set_function(poly=3) # will fit a 3rd order polynomial
85 # via nonlinear method
86 fitter.set_function(lpoly=3) # will fit a 3rd order polynomial
87 # via linear method
[1819]88 fitter.set_function(gauss=2) # will fit two gaussians
89 fitter.set_function(lorentz=2) # will fit two lorentzians
[2047]90 fitter.set_function(sinusoid=3) # will fit three sinusoids
[113]91 """
[723]92 #default poly order 0
[515]93 n=0
[113]94 if kwargs.has_key('poly'):
95 self.fitfunc = 'poly'
[1938]96 self.fitfuncs = ['poly']
[113]97 n = kwargs.get('poly')
[1938]98 self.components = [n+1]
[1589]99 self.uselinear = False
[1391]100 elif kwargs.has_key('lpoly'):
101 self.fitfunc = 'poly'
[1938]102 self.fitfuncs = ['lpoly']
[1391]103 n = kwargs.get('lpoly')
[1938]104 self.components = [n+1]
[1391]105 self.uselinear = True
[113]106 elif kwargs.has_key('gauss'):
107 n = kwargs.get('gauss')
108 self.fitfunc = 'gauss'
[515]109 self.fitfuncs = [ 'gauss' for i in range(n) ]
110 self.components = [ 3 for i in range(n) ]
[1589]111 self.uselinear = False
[1819]112 elif kwargs.has_key('lorentz'):
113 n = kwargs.get('lorentz')
114 self.fitfunc = 'lorentz'
115 self.fitfuncs = [ 'lorentz' for i in range(n) ]
116 self.components = [ 3 for i in range(n) ]
117 self.uselinear = False
[2047]118 elif kwargs.has_key('sinusoid'):
119 n = kwargs.get('sinusoid')
120 self.fitfunc = 'sinusoid'
121 self.fitfuncs = [ 'sinusoid' for i in range(n) ]
122 self.components = [ 3 for i in range(n) ]
123 self.uselinear = False
[2666]124 elif kwargs.has_key('expression'):
125 self.uselinear = False
126 raise RuntimeError("Not yet implemented")
[515]127 else:
[723]128 msg = "Invalid function type."
[1859]129 raise TypeError(msg)
[723]130
[113]131 self.fitter.setexpression(self.fitfunc,n)
[2666]132 self._constraints = []
[1232]133 self.fitted = False
[113]134 return
[723]135
[1862]136 @asaplog_post_dec
[1075]137 def fit(self, row=0, estimate=False):
[113]138 """
139 Execute the actual fitting process. All the state has to be set.
140 Parameters:
[1075]141 row: specify the row in the scantable
142 estimate: auto-compute an initial parameter set (default False)
143 This can be used to compute estimates even if fit was
144 called before.
[113]145 Example:
[515]146 s = scantable('myscan.asap')
147 s.set_cursor(thepol=1) # select second pol
[113]148 f = fitter()
149 f.set_scan(s)
150 f.set_function(poly=0)
[723]151 f.fit(row=0) # fit first row
[113]152 """
153 if ((self.x is None or self.y is None) and self.data is None) \
154 or self.fitfunc is None:
[723]155 msg = "Fitter not yet initialised. Please set data & fit function"
[1859]156 raise RuntimeError(msg)
[723]157
[2666]158 if self.data is not None:
159 self.x = self.data._getabcissa(row)
160 self.y = self.data._getspectrum(row)
161 #self.mask = mask_and(self.mask, self.data._getmask(row))
162 if len(self.x) == len(self.mask):
163 self.mask = mask_and(self.mask, self.data._getmask(row))
164 else:
165 asaplog.push('lengths of data and mask are not the same. '
166 'preset mask will be ignored')
167 asaplog.post('WARN','asapfit.fit')
168 self.mask=self.data._getmask(row)
169 asaplog.push("Fitting:")
170 i = row
171 out = "Scan[%d] Beam[%d] IF[%d] Pol[%d] Cycle[%d]" % (
172 self.data.getscan(i),
173 self.data.getbeam(i),
174 self.data.getif(i),
175 self.data.getpol(i),
176 self.data.getcycle(i))
177
178 asaplog.push(out, False)
179
[515]180 self.fitter.setdata(self.x, self.y, self.mask)
[1819]181 if self.fitfunc == 'gauss' or self.fitfunc == 'lorentz':
[113]182 ps = self.fitter.getparameters()
[1075]183 if len(ps) == 0 or estimate:
[113]184 self.fitter.estimate()
[1859]185 fxdpar = list(self.fitter.getfixedparameters())
186 if len(fxdpar) and fxdpar.count(0) == 0:
187 raise RuntimeError,"No point fitting, if all parameters are fixed."
[2666]188 if self._constraints:
189 for c in self._constraints:
190 self.fitter.addconstraint(c[0]+[c[-1]])
[1859]191 if self.uselinear:
192 converged = self.fitter.lfit()
193 else:
194 converged = self.fitter.fit()
195 if not converged:
196 raise RuntimeError,"Fit didn't converge."
[515]197 self._fittedrow = row
[113]198 self.fitted = True
199 return
200
[1232]201 def store_fit(self, filename=None):
[526]202 """
[1232]203 Save the fit parameters.
204 Parameters:
205 filename: if specified save as an ASCII file, if None (default)
206 store it in the scnatable
[526]207 """
[515]208 if self.fitted and self.data is not None:
209 pars = list(self.fitter.getparameters())
210 fixed = list(self.fitter.getfixedparameters())
[975]211 from asap.asapfit import asapfit
212 fit = asapfit()
213 fit.setparameters(pars)
214 fit.setfixedparameters(fixed)
215 fit.setfunctions(self.fitfuncs)
216 fit.setcomponents(self.components)
217 fit.setframeinfo(self.data._getcoordinfo())
[1232]218 if filename is not None:
219 import os
220 filename = os.path.expandvars(os.path.expanduser(filename))
221 if os.path.exists(filename):
222 raise IOError("File '%s' exists." % filename)
223 fit.save(filename)
224 else:
225 self.data._addfit(fit,self._fittedrow)
[515]226
[1862]227 @asaplog_post_dec
[1017]228 def set_parameters(self,*args,**kwargs):
[526]229 """
230 Set the parameters to be fitted.
231 Parameters:
232 params: a vector of parameters
233 fixed: a vector of which parameters are to be held fixed
234 (default is none)
[2047]235 component: in case of multiple gaussians/lorentzians/sinusoidals,
236 the index of the target component
[1017]237 """
238 component = None
239 fixed = None
240 params = None
[1031]241
[1017]242 if len(args) and isinstance(args[0],dict):
243 kwargs = args[0]
244 if kwargs.has_key("fixed"): fixed = kwargs["fixed"]
245 if kwargs.has_key("params"): params = kwargs["params"]
246 if len(args) == 2 and isinstance(args[1], int):
247 component = args[1]
[515]248 if self.fitfunc is None:
[723]249 msg = "Please specify a fitting function first."
[1859]250 raise RuntimeError(msg)
[2666]251 if (self.fitfunc == "gauss" or self.fitfunc == "lorentz"
252 or self.fitfunc == "sinusoid") and component is not None:
[1017]253 if not self.fitted and sum(self.fitter.getparameters()) == 0:
[1295]254 pars = _n_bools(len(self.components)*3, False)
[2047]255 fxd = _n_bools(len(pars), False)
[515]256 else:
[723]257 pars = list(self.fitter.getparameters())
[2047]258 fxd = list(self.fitter.getfixedparameters())
[515]259 i = 3*component
260 pars[i:i+3] = params
[2047]261 fxd[i:i+3] = fixed
[515]262 params = pars
[2047]263 fixed = fxd
[113]264 self.fitter.setparameters(params)
265 if fixed is not None:
266 self.fitter.setfixedparameters(fixed)
267 return
[515]268
[1862]269 @asaplog_post_dec
[1217]270 def set_gauss_parameters(self, peak, centre, fwhm,
[1409]271 peakfixed=0, centrefixed=0,
[1217]272 fwhmfixed=0,
[515]273 component=0):
[113]274 """
[515]275 Set the Parameters of a 'Gaussian' component, set with set_function.
276 Parameters:
[1232]277 peak, centre, fwhm: The gaussian parameters
[515]278 peakfixed,
[1409]279 centrefixed,
[1217]280 fwhmfixed: Optional parameters to indicate if
[515]281 the paramters should be held fixed during
282 the fitting process. The default is to keep
283 all parameters flexible.
[526]284 component: The number of the component (Default is the
285 component 0)
[515]286 """
287 if self.fitfunc != "gauss":
[723]288 msg = "Function only operates on Gaussian components."
[1859]289 raise ValueError(msg)
[515]290 if 0 <= component < len(self.components):
[1217]291 d = {'params':[peak, centre, fwhm],
[1409]292 'fixed':[peakfixed, centrefixed, fwhmfixed]}
[1017]293 self.set_parameters(d, component)
[515]294 else:
[723]295 msg = "Please select a valid component."
[1859]296 raise ValueError(msg)
[723]297
[1862]298 @asaplog_post_dec
[1819]299 def set_lorentz_parameters(self, peak, centre, fwhm,
300 peakfixed=0, centrefixed=0,
301 fwhmfixed=0,
302 component=0):
303 """
304 Set the Parameters of a 'Lorentzian' component, set with set_function.
305 Parameters:
[1927]306 peak, centre, fwhm: The lorentzian parameters
[1819]307 peakfixed,
308 centrefixed,
309 fwhmfixed: Optional parameters to indicate if
310 the paramters should be held fixed during
311 the fitting process. The default is to keep
312 all parameters flexible.
313 component: The number of the component (Default is the
314 component 0)
315 """
316 if self.fitfunc != "lorentz":
317 msg = "Function only operates on Lorentzian components."
[1859]318 raise ValueError(msg)
[1819]319 if 0 <= component < len(self.components):
320 d = {'params':[peak, centre, fwhm],
321 'fixed':[peakfixed, centrefixed, fwhmfixed]}
322 self.set_parameters(d, component)
323 else:
324 msg = "Please select a valid component."
[1859]325 raise ValueError(msg)
[1819]326
[2047]327 @asaplog_post_dec
328 def set_sinusoid_parameters(self, ampl, period, x0,
329 amplfixed=0, periodfixed=0,
330 x0fixed=0,
331 component=0):
332 """
333 Set the Parameters of a 'Sinusoidal' component, set with set_function.
334 Parameters:
335 ampl, period, x0: The sinusoidal parameters
336 amplfixed,
337 periodfixed,
338 x0fixed: Optional parameters to indicate if
339 the paramters should be held fixed during
340 the fitting process. The default is to keep
341 all parameters flexible.
342 component: The number of the component (Default is the
343 component 0)
344 """
345 if self.fitfunc != "sinusoid":
346 msg = "Function only operates on Sinusoidal components."
347 raise ValueError(msg)
348 if 0 <= component < len(self.components):
349 d = {'params':[ampl, period, x0],
350 'fixed': [amplfixed, periodfixed, x0fixed]}
351 self.set_parameters(d, component)
352 else:
353 msg = "Please select a valid component."
354 raise ValueError(msg)
355
[2666]356
357 def add_constraint(self, xpar, y):
358 """Add parameter constraints to the fit. This is done by setting up
359 linear equations for the related parameters.
360
361 For example a two component gaussian fit where the amplitudes are
[2681]362 constraint by amp1 = 2*amp2 and paramaters for the two components
363 in the order [amp1,peakv1,sigma1,amp2,peakv2,sigma2]
364 needs a constraint
[2666]365
[2681]366 add_constraint([1, 0, 0, -2, 0, 0], 0)
[2666]367
[2681]368 as the linear equation is
369
370 1*amp1 + 0*peakv1 + 0*sigma1 -2*amp2 + 0*peakv2 + 0*sigma2 = 0
371
372 and similarly for a velocity difference of v2-v1=17
[2666]373
374 add_constraint([0.,-1.,0.,0.,1.,0.], 17.)
375
376 """
377 self._constraints.append((xpar, y))
378
379
[975]380 def get_area(self, component=None):
381 """
[1819]382 Return the area under the fitted gaussian/lorentzian component.
[975]383 Parameters:
[1819]384 component: the gaussian/lorentzian component selection,
[975]385 default (None) is the sum of all components
386 Note:
[1819]387 This will only work for gaussian/lorentzian fits.
[975]388 """
389 if not self.fitted: return
[1819]390 if self.fitfunc == "gauss" or self.fitfunc == "lorentz":
[975]391 pars = list(self.fitter.getparameters())
392 from math import log,pi,sqrt
[1819]393 if self.fitfunc == "gauss":
394 fac = sqrt(pi/log(16.0))
395 elif self.fitfunc == "lorentz":
396 fac = pi/2.0
[975]397 areas = []
398 for i in range(len(self.components)):
399 j = i*3
400 cpars = pars[j:j+3]
401 areas.append(fac * cpars[0] * cpars[2])
402 else:
403 return None
404 if component is not None:
405 return areas[component]
406 else:
407 return sum(areas)
408
[1862]409 @asaplog_post_dec
[1075]410 def get_errors(self, component=None):
[515]411 """
[1075]412 Return the errors in the parameters.
413 Parameters:
414 component: get the errors for the specified component
415 only, default is all components
416 """
417 if not self.fitted:
418 msg = "Not yet fitted."
[1859]419 raise RuntimeError(msg)
[1075]420 errs = list(self.fitter.geterrors())
421 cerrs = errs
422 if component is not None:
[2666]423 if self.fitfunc == "gauss" or self.fitfunc == "lorentz" \
424 or self.fitfunc == "sinusoid":
[1075]425 i = 3*component
426 if i < len(errs):
427 cerrs = errs[i:i+3]
428 return cerrs
429
[1859]430
[1862]431 @asaplog_post_dec
[1075]432 def get_parameters(self, component=None, errors=False):
433 """
[113]434 Return the fit paramters.
[526]435 Parameters:
436 component: get the parameters for the specified component
437 only, default is all components
[113]438 """
439 if not self.fitted:
[723]440 msg = "Not yet fitted."
[1859]441 raise RuntimeError(msg)
[113]442 pars = list(self.fitter.getparameters())
443 fixed = list(self.fitter.getfixedparameters())
[1075]444 errs = list(self.fitter.geterrors())
[1039]445 area = []
[723]446 if component is not None:
[2047]447 if self.fitfunc == "poly" or self.fitfunc == "lpoly":
448 cpars = pars
449 cfixed = fixed
450 cerrs = errs
451 else:
[515]452 i = 3*component
453 cpars = pars[i:i+3]
454 cfixed = fixed[i:i+3]
[1075]455 cerrs = errs[i:i+3]
[2047]456 if self.fitfunc == "gauss" or self.fitfunc == "lorentz":
457 a = self.get_area(component)
458 area = [a for i in range(3)]
[515]459 else:
460 cpars = pars
461 cfixed = fixed
[1075]462 cerrs = errs
[1819]463 if self.fitfunc == "gauss" or self.fitfunc == "lorentz":
[1039]464 for c in range(len(self.components)):
[2047]465 a = self.get_area(c)
466 area += [a for i in range(3)]
[1088]467 fpars = self._format_pars(cpars, cfixed, errors and cerrs, area)
[1859]468 asaplog.push(fpars)
[1075]469 return {'params':cpars, 'fixed':cfixed, 'formatted': fpars,
470 'errors':cerrs}
[723]471
[1075]472 def _format_pars(self, pars, fixed, errors, area):
[113]473 out = ''
[2047]474 if self.fitfunc == "poly" or self.fitfunc == "lpoly":
[113]475 c = 0
[515]476 for i in range(len(pars)):
477 fix = ""
[1232]478 if len(fixed) and fixed[i]: fix = "(fixed)"
[2047]479 out += " p%d%s= %3.6f" % (c, fix, pars[i])
480 if errors : out += " (%1.6f)" % errors[i]
481 out += ","
[113]482 c+=1
[515]483 out = out[:-1] # remove trailing ','
[2047]484 else:
[113]485 i = 0
486 c = 0
[2047]487 if self.fitfunc == "gauss" or self.fitfunc == "lorentz":
488 pnam = ["peak", "centre", "FWHM"]
489 elif self.fitfunc == "sinusoid":
490 pnam = ["amplitude", "period", "x0"]
491 aunit = ""
492 ounit = ""
[113]493 if self.data:
[515]494 aunit = self.data.get_unit()
495 ounit = self.data.get_fluxunit()
[113]496 while i < len(pars):
[2047]497 fix0 = fix1 = fix2 = ""
498 if i < len(fixed)-2:
499 if fixed[i]: fix0 = "(fixed)"
500 if fixed[i+1]: fix1 = "(fixed)"
501 if fixed[i+2]: fix2 = "(fixed)"
502 out += " %2d: " % c
503 out += "%s%s = %3.3f %s, " % (pnam[0], fix0, pars[i], ounit)
504 out += "%s%s = %3.3f %s, " % (pnam[1], fix1, pars[i+1], aunit)
505 out += "%s%s = %3.3f %s\n" % (pnam[2], fix2, pars[i+2], aunit)
[2666]506 if len(area): out += " area = %3.3f %s %s\n" % (area[i],
507 ounit,
508 aunit)
[113]509 c+=1
510 i+=3
511 return out
[723]512
[1859]513
[1862]514 @asaplog_post_dec
[113]515 def get_estimate(self):
516 """
[515]517 Return the parameter estimates (for non-linear functions).
[113]518 """
519 pars = self.fitter.getestimate()
[943]520 fixed = self.fitter.getfixedparameters()
[1927]521 asaplog.push(self._format_pars(pars,fixed,None,None))
[113]522 return pars
523
[1862]524 @asaplog_post_dec
[113]525 def get_residual(self):
526 """
527 Return the residual of the fit.
528 """
529 if not self.fitted:
[723]530 msg = "Not yet fitted."
[1859]531 raise RuntimeError(msg)
[113]532 return self.fitter.getresidual()
533
[1862]534 @asaplog_post_dec
[113]535 def get_chi2(self):
536 """
537 Return chi^2.
538 """
539 if not self.fitted:
[723]540 msg = "Not yet fitted."
[1859]541 raise RuntimeError(msg)
[113]542 ch2 = self.fitter.getchi2()
[1859]543 asaplog.push( 'Chi^2 = %3.3f' % (ch2) )
[723]544 return ch2
[113]545
[1862]546 @asaplog_post_dec
[113]547 def get_fit(self):
548 """
549 Return the fitted ordinate values.
550 """
551 if not self.fitted:
[723]552 msg = "Not yet fitted."
[1859]553 raise RuntimeError(msg)
[113]554 return self.fitter.getfit()
555
[1862]556 @asaplog_post_dec
[113]557 def commit(self):
558 """
[526]559 Return a new scan where the fits have been commited (subtracted)
[113]560 """
561 if not self.fitted:
[723]562 msg = "Not yet fitted."
[1859]563 raise RuntimeError(msg)
[975]564 from asap import scantable
565 if not isinstance(self.data, scantable):
[723]566 msg = "Not a scantable"
[1859]567 raise TypeError(msg)
[113]568 scan = self.data.copy()
[259]569 scan._setspectrum(self.fitter.getresidual())
[1092]570 return scan
[113]571
[1862]572 @asaplog_post_dec
[1689]573 def plot(self, residual=False, components=None, plotparms=False,
574 filename=None):
[113]575 """
576 Plot the last fit.
577 Parameters:
578 residual: an optional parameter indicating if the residual
579 should be plotted (default 'False')
[526]580 components: a list of components to plot, e.g [0,1],
581 -1 plots the total fit. Default is to only
582 plot the total fit.
583 plotparms: Inidicates if the parameter values should be present
584 on the plot
[113]585 """
[2538]586 from matplotlib import rc as rcp
[113]587 if not self.fitted:
588 return
[2541]589 #if not self._p or self._p.is_dead:
590 if not (self._p and self._p._alive()):
[2150]591 from asap.asapplotter import new_asaplot
[2451]592 del self._p
[2150]593 self._p = new_asaplot(rcParams['plotter.gui'])
[723]594 self._p.hold()
[113]595 self._p.clear()
[2535]596 rcp('lines', linewidth=1)
[515]597 self._p.set_panels()
[652]598 self._p.palette(0)
[113]599 tlab = 'Spectrum'
[723]600 xlab = 'Abcissa'
[1017]601 ylab = 'Ordinate'
[1739]602 from numpy import ma,logical_not,logical_and,array
[1273]603 m = self.mask
[113]604 if self.data:
[515]605 tlab = self.data._getsourcename(self._fittedrow)
606 xlab = self.data._getabcissalabel(self._fittedrow)
[2153]607 if self.data._getflagrow(self._fittedrow):
608 m = [False]
609 else:
610 m = logical_and(self.mask,
611 array(self.data._getmask(self._fittedrow),
612 copy=False))
[1589]613
[626]614 ylab = self.data._get_ordinate_label()
[515]615
[2666]616 colours = ["#777777","#dddddd","red","orange","purple","green",
617 "magenta", "cyan"]
[1819]618 nomask=True
619 for i in range(len(m)):
620 nomask = nomask and m[i]
[2153]621 if len(m) == 1:
622 m = m[0]
623 invm = (not m)
624 else:
625 invm = logical_not(m)
[1819]626 label0='Masked Region'
627 label1='Spectrum'
628 if ( nomask ):
629 label0=label1
630 else:
631 y = ma.masked_array( self.y, mask = m )
632 self._p.palette(1,colours)
633 self._p.set_line( label = label1 )
634 self._p.plot( self.x, y )
[652]635 self._p.palette(0,colours)
[1819]636 self._p.set_line(label=label0)
[2153]637 y = ma.masked_array(self.y,mask=invm)
[1088]638 self._p.plot(self.x, y)
[113]639 if residual:
[1819]640 self._p.palette(7)
[515]641 self._p.set_line(label='Residual')
[1116]642 y = ma.masked_array(self.get_residual(),
[2153]643 mask=invm)
[1088]644 self._p.plot(self.x, y)
[652]645 self._p.palette(2)
[515]646 if components is not None:
647 cs = components
648 if isinstance(components,int): cs = [components]
[526]649 if plotparms:
[2666]650 self._p.text(0.15,0.15,
651 str(self.get_parameters()['formatted']),size=8)
[515]652 n = len(self.components)
[652]653 self._p.palette(3)
[515]654 for c in cs:
655 if 0 <= c < n:
656 lab = self.fitfuncs[c]+str(c)
657 self._p.set_line(label=lab)
[2153]658 y = ma.masked_array(self.fitter.evaluate(c), mask=invm)
[1088]659
660 self._p.plot(self.x, y)
[515]661 elif c == -1:
[652]662 self._p.palette(2)
[515]663 self._p.set_line(label="Total Fit")
[1116]664 y = ma.masked_array(self.fitter.getfit(),
[2153]665 mask=invm)
[1088]666 self._p.plot(self.x, y)
[515]667 else:
[652]668 self._p.palette(2)
[515]669 self._p.set_line(label='Fit')
[2153]670 y = ma.masked_array(self.fitter.getfit(),mask=invm)
[1088]671 self._p.plot(self.x, y)
[723]672 xlim=[min(self.x),max(self.x)]
673 self._p.axes.set_xlim(xlim)
[113]674 self._p.set_axes('xlabel',xlab)
675 self._p.set_axes('ylabel',ylab)
676 self._p.set_axes('title',tlab)
677 self._p.release()
[723]678 if (not rcParams['plotter.gui']):
679 self._p.save(filename)
[113]680
[1862]681 @asaplog_post_dec
[1061]682 def auto_fit(self, insitu=None, plot=False):
[113]683 """
[515]684 Return a scan where the function is applied to all rows for
685 all Beams/IFs/Pols.
[723]686
[113]687 """
688 from asap import scantable
[515]689 if not isinstance(self.data, scantable) :
[723]690 msg = "Data is not a scantable"
[1859]691 raise TypeError(msg)
[259]692 if insitu is None: insitu = rcParams['insitu']
693 if not insitu:
694 scan = self.data.copy()
695 else:
696 scan = self.data
[880]697 rows = xrange(scan.nrow())
[1826]698 # Save parameters of baseline fits as a class attribute.
[1819]699 # NOTICE: This does not reflect changes in scantable!
700 if len(rows) > 0: self.blpars=[]
[876]701 asaplog.push("Fitting:")
702 for r in rows:
[2666]703 out = " Scan[%d] Beam[%d] IF[%d] Pol[%d] Cycle[%d]" % (
704 scan.getscan(r),
705 scan.getbeam(r),
706 scan.getif(r),
707 scan.getpol(r),
708 scan.getcycle(r)
709 )
[880]710 asaplog.push(out, False)
[876]711 self.x = scan._getabcissa(r)
712 self.y = scan._getspectrum(r)
[2409]713 #self.mask = mask_and(self.mask, scan._getmask(r))
[2408]714 if len(self.x) == len(self.mask):
715 self.mask = mask_and(self.mask, self.data._getmask(row))
716 else:
[2666]717 asaplog.push('lengths of data and mask are not the same. '
718 'preset mask will be ignored')
[2408]719 asaplog.post('WARN','asapfit.fit')
[2409]720 self.mask=self.data._getmask(row)
[876]721 self.data = None
722 self.fit()
723 x = self.get_parameters()
[1819]724 fpar = self.get_parameters()
[1061]725 if plot:
726 self.plot(residual=True)
727 x = raw_input("Accept fit ([y]/n): ")
728 if x.upper() == 'N':
[1819]729 self.blpars.append(None)
[1061]730 continue
[880]731 scan._setspectrum(self.fitter.getresidual(), r)
[1819]732 self.blpars.append(fpar)
[1061]733 if plot:
[2151]734 self._p.quit()
735 del self._p
[1061]736 self._p = None
[876]737 return scan
Note: See TracBrowser for help on using the repository browser.