[113] | 1 | import _asap
|
---|
[1826] | 2 | from asap.parameters import rcParams
|
---|
[1862] | 3 | from asap.logging import asaplog, asaplog_post_dec
|
---|
[1826] | 4 | from asap.utils import _n_bools, mask_and
|
---|
[113] | 5 |
|
---|
[1826] | 6 |
|
---|
[113] | 7 | class fitter:
|
---|
| 8 | """
|
---|
| 9 | The fitting class for ASAP.
|
---|
| 10 | """
|
---|
| 11 | def __init__(self):
|
---|
| 12 | """
|
---|
| 13 | Create a fitter object. No state is set.
|
---|
| 14 | """
|
---|
| 15 | self.fitter = _asap.fitter()
|
---|
| 16 | self.x = None
|
---|
| 17 | self.y = None
|
---|
| 18 | self.mask = None
|
---|
| 19 | self.fitfunc = None
|
---|
[515] | 20 | self.fitfuncs = None
|
---|
[113] | 21 | self.fitted = False
|
---|
| 22 | self.data = None
|
---|
[515] | 23 | self.components = 0
|
---|
| 24 | self._fittedrow = 0
|
---|
[113] | 25 | self._p = None
|
---|
[515] | 26 | self._selection = None
|
---|
[1391] | 27 | self.uselinear = False
|
---|
[113] | 28 |
|
---|
| 29 | def set_data(self, xdat, ydat, mask=None):
|
---|
| 30 | """
|
---|
[158] | 31 | Set the absissa and ordinate for the fit. Also set the mask
|
---|
[2153] | 32 | indicating valid points.
|
---|
[113] | 33 | This can be used for data vectors retrieved from a scantable.
|
---|
| 34 | For scantable fitting use 'fitter.set_scan(scan, mask)'.
|
---|
| 35 | Parameters:
|
---|
[158] | 36 | xdat: the abcissa values
|
---|
[113] | 37 | ydat: the ordinate values
|
---|
| 38 | mask: an optional mask
|
---|
[723] | 39 |
|
---|
[113] | 40 | """
|
---|
| 41 | self.fitted = False
|
---|
| 42 | self.x = xdat
|
---|
| 43 | self.y = ydat
|
---|
| 44 | if mask == None:
|
---|
[1295] | 45 | self.mask = _n_bools(len(xdat), True)
|
---|
[113] | 46 | else:
|
---|
| 47 | self.mask = mask
|
---|
| 48 | return
|
---|
| 49 |
|
---|
[1862] | 50 | @asaplog_post_dec
|
---|
[113] | 51 | def set_scan(self, thescan=None, mask=None):
|
---|
| 52 | """
|
---|
| 53 | Set the 'data' (a scantable) of the fitter.
|
---|
| 54 | Parameters:
|
---|
| 55 | thescan: a scantable
|
---|
[1420] | 56 | mask: a msk retrieved from the scantable
|
---|
[113] | 57 | """
|
---|
| 58 | if not thescan:
|
---|
[723] | 59 | msg = "Please give a correct scan"
|
---|
[1859] | 60 | raise TypeError(msg)
|
---|
[113] | 61 | self.fitted = False
|
---|
| 62 | self.data = thescan
|
---|
[1075] | 63 | self.mask = None
|
---|
[113] | 64 | if mask is None:
|
---|
[1295] | 65 | self.mask = _n_bools(self.data.nchan(), True)
|
---|
[113] | 66 | else:
|
---|
| 67 | self.mask = mask
|
---|
| 68 | return
|
---|
| 69 |
|
---|
[1862] | 70 | @asaplog_post_dec
|
---|
[113] | 71 | def set_function(self, **kwargs):
|
---|
| 72 | """
|
---|
| 73 | Set the function to be fit.
|
---|
| 74 | Parameters:
|
---|
[2047] | 75 | poly: use a polynomial of the order given with nonlinear least squares fit
|
---|
| 76 | lpoly: use polynomial of the order given with linear least squares fit
|
---|
| 77 | gauss: fit the number of gaussian specified
|
---|
| 78 | lorentz: fit the number of lorentzian specified
|
---|
| 79 | sinusoid: fit the number of sinusoid specified
|
---|
[113] | 80 | Example:
|
---|
[1391] | 81 | fitter.set_function(poly=3) # will fit a 3rd order polynomial via nonlinear method
|
---|
| 82 | fitter.set_function(lpoly=3) # will fit a 3rd order polynomial via linear method
|
---|
[1819] | 83 | fitter.set_function(gauss=2) # will fit two gaussians
|
---|
| 84 | fitter.set_function(lorentz=2) # will fit two lorentzians
|
---|
[2047] | 85 | fitter.set_function(sinusoid=3) # will fit three sinusoids
|
---|
[113] | 86 | """
|
---|
[723] | 87 | #default poly order 0
|
---|
[515] | 88 | n=0
|
---|
[113] | 89 | if kwargs.has_key('poly'):
|
---|
| 90 | self.fitfunc = 'poly'
|
---|
[1938] | 91 | self.fitfuncs = ['poly']
|
---|
[113] | 92 | n = kwargs.get('poly')
|
---|
[1938] | 93 | self.components = [n+1]
|
---|
[1589] | 94 | self.uselinear = False
|
---|
[1391] | 95 | elif kwargs.has_key('lpoly'):
|
---|
| 96 | self.fitfunc = 'poly'
|
---|
[1938] | 97 | self.fitfuncs = ['lpoly']
|
---|
[1391] | 98 | n = kwargs.get('lpoly')
|
---|
[1938] | 99 | self.components = [n+1]
|
---|
[1391] | 100 | self.uselinear = True
|
---|
[113] | 101 | elif kwargs.has_key('gauss'):
|
---|
| 102 | n = kwargs.get('gauss')
|
---|
| 103 | self.fitfunc = 'gauss'
|
---|
[515] | 104 | self.fitfuncs = [ 'gauss' for i in range(n) ]
|
---|
| 105 | self.components = [ 3 for i in range(n) ]
|
---|
[1589] | 106 | self.uselinear = False
|
---|
[1819] | 107 | elif kwargs.has_key('lorentz'):
|
---|
| 108 | n = kwargs.get('lorentz')
|
---|
| 109 | self.fitfunc = 'lorentz'
|
---|
| 110 | self.fitfuncs = [ 'lorentz' for i in range(n) ]
|
---|
| 111 | self.components = [ 3 for i in range(n) ]
|
---|
| 112 | self.uselinear = False
|
---|
[2047] | 113 | elif kwargs.has_key('sinusoid'):
|
---|
| 114 | n = kwargs.get('sinusoid')
|
---|
| 115 | self.fitfunc = 'sinusoid'
|
---|
| 116 | self.fitfuncs = [ 'sinusoid' for i in range(n) ]
|
---|
| 117 | self.components = [ 3 for i in range(n) ]
|
---|
| 118 | self.uselinear = False
|
---|
[515] | 119 | else:
|
---|
[723] | 120 | msg = "Invalid function type."
|
---|
[1859] | 121 | raise TypeError(msg)
|
---|
[723] | 122 |
|
---|
[113] | 123 | self.fitter.setexpression(self.fitfunc,n)
|
---|
[1232] | 124 | self.fitted = False
|
---|
[113] | 125 | return
|
---|
[723] | 126 |
|
---|
[1862] | 127 | @asaplog_post_dec
|
---|
[1075] | 128 | def fit(self, row=0, estimate=False):
|
---|
[113] | 129 | """
|
---|
| 130 | Execute the actual fitting process. All the state has to be set.
|
---|
| 131 | Parameters:
|
---|
[1075] | 132 | row: specify the row in the scantable
|
---|
| 133 | estimate: auto-compute an initial parameter set (default False)
|
---|
| 134 | This can be used to compute estimates even if fit was
|
---|
| 135 | called before.
|
---|
[113] | 136 | Example:
|
---|
[515] | 137 | s = scantable('myscan.asap')
|
---|
| 138 | s.set_cursor(thepol=1) # select second pol
|
---|
[113] | 139 | f = fitter()
|
---|
| 140 | f.set_scan(s)
|
---|
| 141 | f.set_function(poly=0)
|
---|
[723] | 142 | f.fit(row=0) # fit first row
|
---|
[113] | 143 | """
|
---|
| 144 | if ((self.x is None or self.y is None) and self.data is None) \
|
---|
| 145 | or self.fitfunc is None:
|
---|
[723] | 146 | msg = "Fitter not yet initialised. Please set data & fit function"
|
---|
[1859] | 147 | raise RuntimeError(msg)
|
---|
[723] | 148 |
|
---|
[113] | 149 | else:
|
---|
| 150 | if self.data is not None:
|
---|
[515] | 151 | self.x = self.data._getabcissa(row)
|
---|
| 152 | self.y = self.data._getspectrum(row)
|
---|
[1536] | 153 | self.mask = mask_and(self.mask, self.data._getmask(row))
|
---|
[723] | 154 | asaplog.push("Fitting:")
|
---|
[943] | 155 | i = row
|
---|
[1536] | 156 | out = "Scan[%d] Beam[%d] IF[%d] Pol[%d] Cycle[%d]" % (self.data.getscan(i),
|
---|
| 157 | self.data.getbeam(i),
|
---|
| 158 | self.data.getif(i),
|
---|
[1589] | 159 | self.data.getpol(i),
|
---|
[1536] | 160 | self.data.getcycle(i))
|
---|
[1075] | 161 | asaplog.push(out,False)
|
---|
[515] | 162 | self.fitter.setdata(self.x, self.y, self.mask)
|
---|
[1819] | 163 | if self.fitfunc == 'gauss' or self.fitfunc == 'lorentz':
|
---|
[113] | 164 | ps = self.fitter.getparameters()
|
---|
[1075] | 165 | if len(ps) == 0 or estimate:
|
---|
[113] | 166 | self.fitter.estimate()
|
---|
[1859] | 167 | fxdpar = list(self.fitter.getfixedparameters())
|
---|
| 168 | if len(fxdpar) and fxdpar.count(0) == 0:
|
---|
| 169 | raise RuntimeError,"No point fitting, if all parameters are fixed."
|
---|
| 170 | if self.uselinear:
|
---|
| 171 | converged = self.fitter.lfit()
|
---|
| 172 | else:
|
---|
| 173 | converged = self.fitter.fit()
|
---|
| 174 | if not converged:
|
---|
| 175 | raise RuntimeError,"Fit didn't converge."
|
---|
[515] | 176 | self._fittedrow = row
|
---|
[113] | 177 | self.fitted = True
|
---|
| 178 | return
|
---|
| 179 |
|
---|
[1232] | 180 | def store_fit(self, filename=None):
|
---|
[526] | 181 | """
|
---|
[1232] | 182 | Save the fit parameters.
|
---|
| 183 | Parameters:
|
---|
| 184 | filename: if specified save as an ASCII file, if None (default)
|
---|
| 185 | store it in the scnatable
|
---|
[526] | 186 | """
|
---|
[515] | 187 | if self.fitted and self.data is not None:
|
---|
| 188 | pars = list(self.fitter.getparameters())
|
---|
| 189 | fixed = list(self.fitter.getfixedparameters())
|
---|
[975] | 190 | from asap.asapfit import asapfit
|
---|
| 191 | fit = asapfit()
|
---|
| 192 | fit.setparameters(pars)
|
---|
| 193 | fit.setfixedparameters(fixed)
|
---|
| 194 | fit.setfunctions(self.fitfuncs)
|
---|
| 195 | fit.setcomponents(self.components)
|
---|
| 196 | fit.setframeinfo(self.data._getcoordinfo())
|
---|
[1232] | 197 | if filename is not None:
|
---|
| 198 | import os
|
---|
| 199 | filename = os.path.expandvars(os.path.expanduser(filename))
|
---|
| 200 | if os.path.exists(filename):
|
---|
| 201 | raise IOError("File '%s' exists." % filename)
|
---|
| 202 | fit.save(filename)
|
---|
| 203 | else:
|
---|
| 204 | self.data._addfit(fit,self._fittedrow)
|
---|
[515] | 205 |
|
---|
[1862] | 206 | @asaplog_post_dec
|
---|
[1017] | 207 | def set_parameters(self,*args,**kwargs):
|
---|
[526] | 208 | """
|
---|
| 209 | Set the parameters to be fitted.
|
---|
| 210 | Parameters:
|
---|
| 211 | params: a vector of parameters
|
---|
| 212 | fixed: a vector of which parameters are to be held fixed
|
---|
| 213 | (default is none)
|
---|
[2047] | 214 | component: in case of multiple gaussians/lorentzians/sinusoidals,
|
---|
| 215 | the index of the target component
|
---|
[1017] | 216 | """
|
---|
| 217 | component = None
|
---|
| 218 | fixed = None
|
---|
| 219 | params = None
|
---|
[1031] | 220 |
|
---|
[1017] | 221 | if len(args) and isinstance(args[0],dict):
|
---|
| 222 | kwargs = args[0]
|
---|
| 223 | if kwargs.has_key("fixed"): fixed = kwargs["fixed"]
|
---|
| 224 | if kwargs.has_key("params"): params = kwargs["params"]
|
---|
| 225 | if len(args) == 2 and isinstance(args[1], int):
|
---|
| 226 | component = args[1]
|
---|
[515] | 227 | if self.fitfunc is None:
|
---|
[723] | 228 | msg = "Please specify a fitting function first."
|
---|
[1859] | 229 | raise RuntimeError(msg)
|
---|
[2047] | 230 | if (self.fitfunc == "gauss" or self.fitfunc == "lorentz" or self.fitfunc == "sinusoid") and component is not None:
|
---|
[1017] | 231 | if not self.fitted and sum(self.fitter.getparameters()) == 0:
|
---|
[1295] | 232 | pars = _n_bools(len(self.components)*3, False)
|
---|
[2047] | 233 | fxd = _n_bools(len(pars), False)
|
---|
[515] | 234 | else:
|
---|
[723] | 235 | pars = list(self.fitter.getparameters())
|
---|
[2047] | 236 | fxd = list(self.fitter.getfixedparameters())
|
---|
[515] | 237 | i = 3*component
|
---|
| 238 | pars[i:i+3] = params
|
---|
[2047] | 239 | fxd[i:i+3] = fixed
|
---|
[515] | 240 | params = pars
|
---|
[2047] | 241 | fixed = fxd
|
---|
[113] | 242 | self.fitter.setparameters(params)
|
---|
| 243 | if fixed is not None:
|
---|
| 244 | self.fitter.setfixedparameters(fixed)
|
---|
| 245 | return
|
---|
[515] | 246 |
|
---|
[1862] | 247 | @asaplog_post_dec
|
---|
[1217] | 248 | def set_gauss_parameters(self, peak, centre, fwhm,
|
---|
[1409] | 249 | peakfixed=0, centrefixed=0,
|
---|
[1217] | 250 | fwhmfixed=0,
|
---|
[515] | 251 | component=0):
|
---|
[113] | 252 | """
|
---|
[515] | 253 | Set the Parameters of a 'Gaussian' component, set with set_function.
|
---|
| 254 | Parameters:
|
---|
[1232] | 255 | peak, centre, fwhm: The gaussian parameters
|
---|
[515] | 256 | peakfixed,
|
---|
[1409] | 257 | centrefixed,
|
---|
[1217] | 258 | fwhmfixed: Optional parameters to indicate if
|
---|
[515] | 259 | the paramters should be held fixed during
|
---|
| 260 | the fitting process. The default is to keep
|
---|
| 261 | all parameters flexible.
|
---|
[526] | 262 | component: The number of the component (Default is the
|
---|
| 263 | component 0)
|
---|
[515] | 264 | """
|
---|
| 265 | if self.fitfunc != "gauss":
|
---|
[723] | 266 | msg = "Function only operates on Gaussian components."
|
---|
[1859] | 267 | raise ValueError(msg)
|
---|
[515] | 268 | if 0 <= component < len(self.components):
|
---|
[1217] | 269 | d = {'params':[peak, centre, fwhm],
|
---|
[1409] | 270 | 'fixed':[peakfixed, centrefixed, fwhmfixed]}
|
---|
[1017] | 271 | self.set_parameters(d, component)
|
---|
[515] | 272 | else:
|
---|
[723] | 273 | msg = "Please select a valid component."
|
---|
[1859] | 274 | raise ValueError(msg)
|
---|
[723] | 275 |
|
---|
[1862] | 276 | @asaplog_post_dec
|
---|
[1819] | 277 | def set_lorentz_parameters(self, peak, centre, fwhm,
|
---|
| 278 | peakfixed=0, centrefixed=0,
|
---|
| 279 | fwhmfixed=0,
|
---|
| 280 | component=0):
|
---|
| 281 | """
|
---|
| 282 | Set the Parameters of a 'Lorentzian' component, set with set_function.
|
---|
| 283 | Parameters:
|
---|
[1927] | 284 | peak, centre, fwhm: The lorentzian parameters
|
---|
[1819] | 285 | peakfixed,
|
---|
| 286 | centrefixed,
|
---|
| 287 | fwhmfixed: Optional parameters to indicate if
|
---|
| 288 | the paramters should be held fixed during
|
---|
| 289 | the fitting process. The default is to keep
|
---|
| 290 | all parameters flexible.
|
---|
| 291 | component: The number of the component (Default is the
|
---|
| 292 | component 0)
|
---|
| 293 | """
|
---|
| 294 | if self.fitfunc != "lorentz":
|
---|
| 295 | msg = "Function only operates on Lorentzian components."
|
---|
[1859] | 296 | raise ValueError(msg)
|
---|
[1819] | 297 | if 0 <= component < len(self.components):
|
---|
| 298 | d = {'params':[peak, centre, fwhm],
|
---|
| 299 | 'fixed':[peakfixed, centrefixed, fwhmfixed]}
|
---|
| 300 | self.set_parameters(d, component)
|
---|
| 301 | else:
|
---|
| 302 | msg = "Please select a valid component."
|
---|
[1859] | 303 | raise ValueError(msg)
|
---|
[1819] | 304 |
|
---|
[2047] | 305 | @asaplog_post_dec
|
---|
| 306 | def set_sinusoid_parameters(self, ampl, period, x0,
|
---|
| 307 | amplfixed=0, periodfixed=0,
|
---|
| 308 | x0fixed=0,
|
---|
| 309 | component=0):
|
---|
| 310 | """
|
---|
| 311 | Set the Parameters of a 'Sinusoidal' component, set with set_function.
|
---|
| 312 | Parameters:
|
---|
| 313 | ampl, period, x0: The sinusoidal parameters
|
---|
| 314 | amplfixed,
|
---|
| 315 | periodfixed,
|
---|
| 316 | x0fixed: Optional parameters to indicate if
|
---|
| 317 | the paramters should be held fixed during
|
---|
| 318 | the fitting process. The default is to keep
|
---|
| 319 | all parameters flexible.
|
---|
| 320 | component: The number of the component (Default is the
|
---|
| 321 | component 0)
|
---|
| 322 | """
|
---|
| 323 | if self.fitfunc != "sinusoid":
|
---|
| 324 | msg = "Function only operates on Sinusoidal components."
|
---|
| 325 | raise ValueError(msg)
|
---|
| 326 | if 0 <= component < len(self.components):
|
---|
| 327 | d = {'params':[ampl, period, x0],
|
---|
| 328 | 'fixed': [amplfixed, periodfixed, x0fixed]}
|
---|
| 329 | self.set_parameters(d, component)
|
---|
| 330 | else:
|
---|
| 331 | msg = "Please select a valid component."
|
---|
| 332 | raise ValueError(msg)
|
---|
| 333 |
|
---|
[975] | 334 | def get_area(self, component=None):
|
---|
| 335 | """
|
---|
[1819] | 336 | Return the area under the fitted gaussian/lorentzian component.
|
---|
[975] | 337 | Parameters:
|
---|
[1819] | 338 | component: the gaussian/lorentzian component selection,
|
---|
[975] | 339 | default (None) is the sum of all components
|
---|
| 340 | Note:
|
---|
[1819] | 341 | This will only work for gaussian/lorentzian fits.
|
---|
[975] | 342 | """
|
---|
| 343 | if not self.fitted: return
|
---|
[1819] | 344 | if self.fitfunc == "gauss" or self.fitfunc == "lorentz":
|
---|
[975] | 345 | pars = list(self.fitter.getparameters())
|
---|
| 346 | from math import log,pi,sqrt
|
---|
[1819] | 347 | if self.fitfunc == "gauss":
|
---|
| 348 | fac = sqrt(pi/log(16.0))
|
---|
| 349 | elif self.fitfunc == "lorentz":
|
---|
| 350 | fac = pi/2.0
|
---|
[975] | 351 | areas = []
|
---|
| 352 | for i in range(len(self.components)):
|
---|
| 353 | j = i*3
|
---|
| 354 | cpars = pars[j:j+3]
|
---|
| 355 | areas.append(fac * cpars[0] * cpars[2])
|
---|
| 356 | else:
|
---|
| 357 | return None
|
---|
| 358 | if component is not None:
|
---|
| 359 | return areas[component]
|
---|
| 360 | else:
|
---|
| 361 | return sum(areas)
|
---|
| 362 |
|
---|
[1862] | 363 | @asaplog_post_dec
|
---|
[1075] | 364 | def get_errors(self, component=None):
|
---|
[515] | 365 | """
|
---|
[1075] | 366 | Return the errors in the parameters.
|
---|
| 367 | Parameters:
|
---|
| 368 | component: get the errors for the specified component
|
---|
| 369 | only, default is all components
|
---|
| 370 | """
|
---|
| 371 | if not self.fitted:
|
---|
| 372 | msg = "Not yet fitted."
|
---|
[1859] | 373 | raise RuntimeError(msg)
|
---|
[1075] | 374 | errs = list(self.fitter.geterrors())
|
---|
| 375 | cerrs = errs
|
---|
| 376 | if component is not None:
|
---|
[2047] | 377 | if self.fitfunc == "gauss" or self.fitfunc == "lorentz" or self.fitfunc == "sinusoid":
|
---|
[1075] | 378 | i = 3*component
|
---|
| 379 | if i < len(errs):
|
---|
| 380 | cerrs = errs[i:i+3]
|
---|
| 381 | return cerrs
|
---|
| 382 |
|
---|
[1859] | 383 |
|
---|
[1862] | 384 | @asaplog_post_dec
|
---|
[1075] | 385 | def get_parameters(self, component=None, errors=False):
|
---|
| 386 | """
|
---|
[113] | 387 | Return the fit paramters.
|
---|
[526] | 388 | Parameters:
|
---|
| 389 | component: get the parameters for the specified component
|
---|
| 390 | only, default is all components
|
---|
[113] | 391 | """
|
---|
| 392 | if not self.fitted:
|
---|
[723] | 393 | msg = "Not yet fitted."
|
---|
[1859] | 394 | raise RuntimeError(msg)
|
---|
[113] | 395 | pars = list(self.fitter.getparameters())
|
---|
| 396 | fixed = list(self.fitter.getfixedparameters())
|
---|
[1075] | 397 | errs = list(self.fitter.geterrors())
|
---|
[1039] | 398 | area = []
|
---|
[723] | 399 | if component is not None:
|
---|
[2047] | 400 | if self.fitfunc == "poly" or self.fitfunc == "lpoly":
|
---|
| 401 | cpars = pars
|
---|
| 402 | cfixed = fixed
|
---|
| 403 | cerrs = errs
|
---|
| 404 | else:
|
---|
[515] | 405 | i = 3*component
|
---|
| 406 | cpars = pars[i:i+3]
|
---|
| 407 | cfixed = fixed[i:i+3]
|
---|
[1075] | 408 | cerrs = errs[i:i+3]
|
---|
[2047] | 409 | if self.fitfunc == "gauss" or self.fitfunc == "lorentz":
|
---|
| 410 | a = self.get_area(component)
|
---|
| 411 | area = [a for i in range(3)]
|
---|
[515] | 412 | else:
|
---|
| 413 | cpars = pars
|
---|
| 414 | cfixed = fixed
|
---|
[1075] | 415 | cerrs = errs
|
---|
[1819] | 416 | if self.fitfunc == "gauss" or self.fitfunc == "lorentz":
|
---|
[1039] | 417 | for c in range(len(self.components)):
|
---|
[2047] | 418 | a = self.get_area(c)
|
---|
| 419 | area += [a for i in range(3)]
|
---|
[1088] | 420 | fpars = self._format_pars(cpars, cfixed, errors and cerrs, area)
|
---|
[1859] | 421 | asaplog.push(fpars)
|
---|
[1075] | 422 | return {'params':cpars, 'fixed':cfixed, 'formatted': fpars,
|
---|
| 423 | 'errors':cerrs}
|
---|
[723] | 424 |
|
---|
[1075] | 425 | def _format_pars(self, pars, fixed, errors, area):
|
---|
[113] | 426 | out = ''
|
---|
[2047] | 427 | if self.fitfunc == "poly" or self.fitfunc == "lpoly":
|
---|
[113] | 428 | c = 0
|
---|
[515] | 429 | for i in range(len(pars)):
|
---|
| 430 | fix = ""
|
---|
[1232] | 431 | if len(fixed) and fixed[i]: fix = "(fixed)"
|
---|
[2047] | 432 | out += " p%d%s= %3.6f" % (c, fix, pars[i])
|
---|
| 433 | if errors : out += " (%1.6f)" % errors[i]
|
---|
| 434 | out += ","
|
---|
[113] | 435 | c+=1
|
---|
[515] | 436 | out = out[:-1] # remove trailing ','
|
---|
[2047] | 437 | else:
|
---|
[113] | 438 | i = 0
|
---|
| 439 | c = 0
|
---|
[2047] | 440 | if self.fitfunc == "gauss" or self.fitfunc == "lorentz":
|
---|
| 441 | pnam = ["peak", "centre", "FWHM"]
|
---|
| 442 | elif self.fitfunc == "sinusoid":
|
---|
| 443 | pnam = ["amplitude", "period", "x0"]
|
---|
| 444 | aunit = ""
|
---|
| 445 | ounit = ""
|
---|
[113] | 446 | if self.data:
|
---|
[515] | 447 | aunit = self.data.get_unit()
|
---|
| 448 | ounit = self.data.get_fluxunit()
|
---|
[113] | 449 | while i < len(pars):
|
---|
[2047] | 450 | fix0 = fix1 = fix2 = ""
|
---|
| 451 | if i < len(fixed)-2:
|
---|
| 452 | if fixed[i]: fix0 = "(fixed)"
|
---|
| 453 | if fixed[i+1]: fix1 = "(fixed)"
|
---|
| 454 | if fixed[i+2]: fix2 = "(fixed)"
|
---|
| 455 | out += " %2d: " % c
|
---|
| 456 | out += "%s%s = %3.3f %s, " % (pnam[0], fix0, pars[i], ounit)
|
---|
| 457 | out += "%s%s = %3.3f %s, " % (pnam[1], fix1, pars[i+1], aunit)
|
---|
| 458 | out += "%s%s = %3.3f %s\n" % (pnam[2], fix2, pars[i+2], aunit)
|
---|
| 459 | if len(area): out += " area = %3.3f %s %s\n" % (area[i], ounit, aunit)
|
---|
[113] | 460 | c+=1
|
---|
| 461 | i+=3
|
---|
| 462 | return out
|
---|
[723] | 463 |
|
---|
[1859] | 464 |
|
---|
[1862] | 465 | @asaplog_post_dec
|
---|
[113] | 466 | def get_estimate(self):
|
---|
| 467 | """
|
---|
[515] | 468 | Return the parameter estimates (for non-linear functions).
|
---|
[113] | 469 | """
|
---|
| 470 | pars = self.fitter.getestimate()
|
---|
[943] | 471 | fixed = self.fitter.getfixedparameters()
|
---|
[1927] | 472 | asaplog.push(self._format_pars(pars,fixed,None,None))
|
---|
[113] | 473 | return pars
|
---|
| 474 |
|
---|
[1862] | 475 | @asaplog_post_dec
|
---|
[113] | 476 | def get_residual(self):
|
---|
| 477 | """
|
---|
| 478 | Return the residual of the fit.
|
---|
| 479 | """
|
---|
| 480 | if not self.fitted:
|
---|
[723] | 481 | msg = "Not yet fitted."
|
---|
[1859] | 482 | raise RuntimeError(msg)
|
---|
[113] | 483 | return self.fitter.getresidual()
|
---|
| 484 |
|
---|
[1862] | 485 | @asaplog_post_dec
|
---|
[113] | 486 | def get_chi2(self):
|
---|
| 487 | """
|
---|
| 488 | Return chi^2.
|
---|
| 489 | """
|
---|
| 490 | if not self.fitted:
|
---|
[723] | 491 | msg = "Not yet fitted."
|
---|
[1859] | 492 | raise RuntimeError(msg)
|
---|
[113] | 493 | ch2 = self.fitter.getchi2()
|
---|
[1859] | 494 | asaplog.push( 'Chi^2 = %3.3f' % (ch2) )
|
---|
[723] | 495 | return ch2
|
---|
[113] | 496 |
|
---|
[1862] | 497 | @asaplog_post_dec
|
---|
[113] | 498 | def get_fit(self):
|
---|
| 499 | """
|
---|
| 500 | Return the fitted ordinate values.
|
---|
| 501 | """
|
---|
| 502 | if not self.fitted:
|
---|
[723] | 503 | msg = "Not yet fitted."
|
---|
[1859] | 504 | raise RuntimeError(msg)
|
---|
[113] | 505 | return self.fitter.getfit()
|
---|
| 506 |
|
---|
[1862] | 507 | @asaplog_post_dec
|
---|
[113] | 508 | def commit(self):
|
---|
| 509 | """
|
---|
[526] | 510 | Return a new scan where the fits have been commited (subtracted)
|
---|
[113] | 511 | """
|
---|
| 512 | if not self.fitted:
|
---|
[723] | 513 | msg = "Not yet fitted."
|
---|
[1859] | 514 | raise RuntimeError(msg)
|
---|
[975] | 515 | from asap import scantable
|
---|
| 516 | if not isinstance(self.data, scantable):
|
---|
[723] | 517 | msg = "Not a scantable"
|
---|
[1859] | 518 | raise TypeError(msg)
|
---|
[113] | 519 | scan = self.data.copy()
|
---|
[259] | 520 | scan._setspectrum(self.fitter.getresidual())
|
---|
[1092] | 521 | return scan
|
---|
[113] | 522 |
|
---|
[1862] | 523 | @asaplog_post_dec
|
---|
[1689] | 524 | def plot(self, residual=False, components=None, plotparms=False,
|
---|
| 525 | filename=None):
|
---|
[113] | 526 | """
|
---|
| 527 | Plot the last fit.
|
---|
| 528 | Parameters:
|
---|
| 529 | residual: an optional parameter indicating if the residual
|
---|
| 530 | should be plotted (default 'False')
|
---|
[526] | 531 | components: a list of components to plot, e.g [0,1],
|
---|
| 532 | -1 plots the total fit. Default is to only
|
---|
| 533 | plot the total fit.
|
---|
| 534 | plotparms: Inidicates if the parameter values should be present
|
---|
| 535 | on the plot
|
---|
[113] | 536 | """
|
---|
| 537 | if not self.fitted:
|
---|
| 538 | return
|
---|
[723] | 539 | if not self._p or self._p.is_dead:
|
---|
[2150] | 540 | #if rcParams['plotter.gui']:
|
---|
| 541 | # from asap.asaplotgui import asaplotgui as asaplot
|
---|
| 542 | #else:
|
---|
| 543 | # from asap.asaplot import asaplot
|
---|
| 544 | #self._p = asaplot()
|
---|
| 545 | from asap.asapplotter import new_asaplot
|
---|
| 546 | self._p = new_asaplot(rcParams['plotter.gui'])
|
---|
[723] | 547 | self._p.hold()
|
---|
[113] | 548 | self._p.clear()
|
---|
[515] | 549 | self._p.set_panels()
|
---|
[652] | 550 | self._p.palette(0)
|
---|
[113] | 551 | tlab = 'Spectrum'
|
---|
[723] | 552 | xlab = 'Abcissa'
|
---|
[1017] | 553 | ylab = 'Ordinate'
|
---|
[1739] | 554 | from numpy import ma,logical_not,logical_and,array
|
---|
[1273] | 555 | m = self.mask
|
---|
[113] | 556 | if self.data:
|
---|
[515] | 557 | tlab = self.data._getsourcename(self._fittedrow)
|
---|
| 558 | xlab = self.data._getabcissalabel(self._fittedrow)
|
---|
[2153] | 559 | if self.data._getflagrow(self._fittedrow):
|
---|
| 560 | m = [False]
|
---|
| 561 | else:
|
---|
| 562 | m = logical_and(self.mask,
|
---|
| 563 | array(self.data._getmask(self._fittedrow),
|
---|
| 564 | copy=False))
|
---|
[1589] | 565 |
|
---|
[626] | 566 | ylab = self.data._get_ordinate_label()
|
---|
[515] | 567 |
|
---|
[1075] | 568 | colours = ["#777777","#dddddd","red","orange","purple","green","magenta", "cyan"]
|
---|
[1819] | 569 | nomask=True
|
---|
| 570 | for i in range(len(m)):
|
---|
| 571 | nomask = nomask and m[i]
|
---|
[2153] | 572 | if len(m) == 1:
|
---|
| 573 | m = m[0]
|
---|
| 574 | invm = (not m)
|
---|
| 575 | else:
|
---|
| 576 | invm = logical_not(m)
|
---|
[1819] | 577 | label0='Masked Region'
|
---|
| 578 | label1='Spectrum'
|
---|
| 579 | if ( nomask ):
|
---|
| 580 | label0=label1
|
---|
| 581 | else:
|
---|
| 582 | y = ma.masked_array( self.y, mask = m )
|
---|
| 583 | self._p.palette(1,colours)
|
---|
| 584 | self._p.set_line( label = label1 )
|
---|
| 585 | self._p.plot( self.x, y )
|
---|
[652] | 586 | self._p.palette(0,colours)
|
---|
[1819] | 587 | self._p.set_line(label=label0)
|
---|
[2153] | 588 | y = ma.masked_array(self.y,mask=invm)
|
---|
[1088] | 589 | self._p.plot(self.x, y)
|
---|
[113] | 590 | if residual:
|
---|
[1819] | 591 | self._p.palette(7)
|
---|
[515] | 592 | self._p.set_line(label='Residual')
|
---|
[1116] | 593 | y = ma.masked_array(self.get_residual(),
|
---|
[2153] | 594 | mask=invm)
|
---|
[1088] | 595 | self._p.plot(self.x, y)
|
---|
[652] | 596 | self._p.palette(2)
|
---|
[515] | 597 | if components is not None:
|
---|
| 598 | cs = components
|
---|
| 599 | if isinstance(components,int): cs = [components]
|
---|
[526] | 600 | if plotparms:
|
---|
[1031] | 601 | self._p.text(0.15,0.15,str(self.get_parameters()['formatted']),size=8)
|
---|
[515] | 602 | n = len(self.components)
|
---|
[652] | 603 | self._p.palette(3)
|
---|
[515] | 604 | for c in cs:
|
---|
| 605 | if 0 <= c < n:
|
---|
| 606 | lab = self.fitfuncs[c]+str(c)
|
---|
| 607 | self._p.set_line(label=lab)
|
---|
[2153] | 608 | y = ma.masked_array(self.fitter.evaluate(c), mask=invm)
|
---|
[1088] | 609 |
|
---|
| 610 | self._p.plot(self.x, y)
|
---|
[515] | 611 | elif c == -1:
|
---|
[652] | 612 | self._p.palette(2)
|
---|
[515] | 613 | self._p.set_line(label="Total Fit")
|
---|
[1116] | 614 | y = ma.masked_array(self.fitter.getfit(),
|
---|
[2153] | 615 | mask=invm)
|
---|
[1088] | 616 | self._p.plot(self.x, y)
|
---|
[515] | 617 | else:
|
---|
[652] | 618 | self._p.palette(2)
|
---|
[515] | 619 | self._p.set_line(label='Fit')
|
---|
[2153] | 620 | y = ma.masked_array(self.fitter.getfit(),mask=invm)
|
---|
[1088] | 621 | self._p.plot(self.x, y)
|
---|
[723] | 622 | xlim=[min(self.x),max(self.x)]
|
---|
| 623 | self._p.axes.set_xlim(xlim)
|
---|
[113] | 624 | self._p.set_axes('xlabel',xlab)
|
---|
| 625 | self._p.set_axes('ylabel',ylab)
|
---|
| 626 | self._p.set_axes('title',tlab)
|
---|
| 627 | self._p.release()
|
---|
[723] | 628 | if (not rcParams['plotter.gui']):
|
---|
| 629 | self._p.save(filename)
|
---|
[113] | 630 |
|
---|
[1862] | 631 | @asaplog_post_dec
|
---|
[1061] | 632 | def auto_fit(self, insitu=None, plot=False):
|
---|
[113] | 633 | """
|
---|
[515] | 634 | Return a scan where the function is applied to all rows for
|
---|
| 635 | all Beams/IFs/Pols.
|
---|
[723] | 636 |
|
---|
[113] | 637 | """
|
---|
| 638 | from asap import scantable
|
---|
[515] | 639 | if not isinstance(self.data, scantable) :
|
---|
[723] | 640 | msg = "Data is not a scantable"
|
---|
[1859] | 641 | raise TypeError(msg)
|
---|
[259] | 642 | if insitu is None: insitu = rcParams['insitu']
|
---|
| 643 | if not insitu:
|
---|
| 644 | scan = self.data.copy()
|
---|
| 645 | else:
|
---|
| 646 | scan = self.data
|
---|
[880] | 647 | rows = xrange(scan.nrow())
|
---|
[1826] | 648 | # Save parameters of baseline fits as a class attribute.
|
---|
[1819] | 649 | # NOTICE: This does not reflect changes in scantable!
|
---|
| 650 | if len(rows) > 0: self.blpars=[]
|
---|
[876] | 651 | asaplog.push("Fitting:")
|
---|
| 652 | for r in rows:
|
---|
[1536] | 653 | out = " Scan[%d] Beam[%d] IF[%d] Pol[%d] Cycle[%d]" % (scan.getscan(r),
|
---|
| 654 | scan.getbeam(r),
|
---|
| 655 | scan.getif(r),
|
---|
[1589] | 656 | scan.getpol(r),
|
---|
[1536] | 657 | scan.getcycle(r))
|
---|
[880] | 658 | asaplog.push(out, False)
|
---|
[876] | 659 | self.x = scan._getabcissa(r)
|
---|
| 660 | self.y = scan._getspectrum(r)
|
---|
[1536] | 661 | self.mask = mask_and(self.mask, scan._getmask(r))
|
---|
[876] | 662 | self.data = None
|
---|
| 663 | self.fit()
|
---|
| 664 | x = self.get_parameters()
|
---|
[1819] | 665 | fpar = self.get_parameters()
|
---|
[1061] | 666 | if plot:
|
---|
| 667 | self.plot(residual=True)
|
---|
| 668 | x = raw_input("Accept fit ([y]/n): ")
|
---|
| 669 | if x.upper() == 'N':
|
---|
[1819] | 670 | self.blpars.append(None)
|
---|
[1061] | 671 | continue
|
---|
[880] | 672 | scan._setspectrum(self.fitter.getresidual(), r)
|
---|
[1819] | 673 | self.blpars.append(fpar)
|
---|
[1061] | 674 | if plot:
|
---|
[2151] | 675 | self._p.quit()
|
---|
| 676 | del self._p
|
---|
[1061] | 677 | self._p = None
|
---|
[876] | 678 | return scan
|
---|