| [113] | 1 | import _asap | 
|---|
| [259] | 2 | from asap import rcParams | 
|---|
| [1589] | 3 | from asap import print_log_dec | 
|---|
| [1295] | 4 | from asap import _n_bools | 
|---|
| [1536] | 5 | from asap import mask_and | 
|---|
| [113] | 6 |  | 
|---|
|  | 7 | class fitter: | 
|---|
|  | 8 | """ | 
|---|
|  | 9 | The fitting class for ASAP. | 
|---|
|  | 10 | """ | 
|---|
| [723] | 11 |  | 
|---|
| [113] | 12 | def __init__(self): | 
|---|
|  | 13 | """ | 
|---|
|  | 14 | Create a fitter object. No state is set. | 
|---|
|  | 15 | """ | 
|---|
|  | 16 | self.fitter = _asap.fitter() | 
|---|
|  | 17 | self.x = None | 
|---|
|  | 18 | self.y = None | 
|---|
|  | 19 | self.mask = None | 
|---|
|  | 20 | self.fitfunc = None | 
|---|
| [515] | 21 | self.fitfuncs = None | 
|---|
| [113] | 22 | self.fitted = False | 
|---|
|  | 23 | self.data = None | 
|---|
| [515] | 24 | self.components = 0 | 
|---|
|  | 25 | self._fittedrow = 0 | 
|---|
| [113] | 26 | self._p = None | 
|---|
| [515] | 27 | self._selection = None | 
|---|
| [1391] | 28 | self.uselinear = False | 
|---|
| [113] | 29 |  | 
|---|
|  | 30 | def set_data(self, xdat, ydat, mask=None): | 
|---|
|  | 31 | """ | 
|---|
| [158] | 32 | Set the absissa and ordinate for the fit. Also set the mask | 
|---|
| [113] | 33 | indicationg valid points. | 
|---|
|  | 34 | This can be used for data vectors retrieved from a scantable. | 
|---|
|  | 35 | For scantable fitting use 'fitter.set_scan(scan, mask)'. | 
|---|
|  | 36 | Parameters: | 
|---|
| [158] | 37 | xdat:    the abcissa values | 
|---|
| [113] | 38 | ydat:    the ordinate values | 
|---|
|  | 39 | mask:    an optional mask | 
|---|
| [723] | 40 |  | 
|---|
| [113] | 41 | """ | 
|---|
|  | 42 | self.fitted = False | 
|---|
|  | 43 | self.x = xdat | 
|---|
|  | 44 | self.y = ydat | 
|---|
|  | 45 | if mask == None: | 
|---|
| [1295] | 46 | self.mask = _n_bools(len(xdat), True) | 
|---|
| [113] | 47 | else: | 
|---|
|  | 48 | self.mask = mask | 
|---|
|  | 49 | return | 
|---|
|  | 50 |  | 
|---|
|  | 51 | def set_scan(self, thescan=None, mask=None): | 
|---|
|  | 52 | """ | 
|---|
|  | 53 | Set the 'data' (a scantable) of the fitter. | 
|---|
|  | 54 | Parameters: | 
|---|
|  | 55 | thescan:     a scantable | 
|---|
| [1420] | 56 | mask:        a msk retrieved from the scantable | 
|---|
| [113] | 57 | """ | 
|---|
|  | 58 | if not thescan: | 
|---|
| [723] | 59 | msg = "Please give a correct scan" | 
|---|
|  | 60 | if rcParams['verbose']: | 
|---|
|  | 61 | print msg | 
|---|
|  | 62 | return | 
|---|
|  | 63 | else: | 
|---|
|  | 64 | raise TypeError(msg) | 
|---|
| [113] | 65 | self.fitted = False | 
|---|
|  | 66 | self.data = thescan | 
|---|
| [1075] | 67 | self.mask = None | 
|---|
| [113] | 68 | if mask is None: | 
|---|
| [1295] | 69 | self.mask = _n_bools(self.data.nchan(), True) | 
|---|
| [113] | 70 | else: | 
|---|
|  | 71 | self.mask = mask | 
|---|
|  | 72 | return | 
|---|
|  | 73 |  | 
|---|
|  | 74 | def set_function(self, **kwargs): | 
|---|
|  | 75 | """ | 
|---|
|  | 76 | Set the function to be fit. | 
|---|
|  | 77 | Parameters: | 
|---|
| [1589] | 78 | poly:    use a polynomial of the order given with nonlinear least squares fit | 
|---|
| [1391] | 79 | lpoly:   use polynomial of the order given with linear least squares fit | 
|---|
| [113] | 80 | gauss:   fit the number of gaussian specified | 
|---|
|  | 81 | Example: | 
|---|
|  | 82 | fitter.set_function(gauss=2) # will fit two gaussians | 
|---|
| [1391] | 83 | fitter.set_function(poly=3)  # will fit a 3rd order polynomial via nonlinear method | 
|---|
|  | 84 | fitter.set_function(lpoly=3)  # will fit a 3rd order polynomial via linear method | 
|---|
| [113] | 85 | """ | 
|---|
| [723] | 86 | #default poly order 0 | 
|---|
| [515] | 87 | n=0 | 
|---|
| [113] | 88 | if kwargs.has_key('poly'): | 
|---|
|  | 89 | self.fitfunc = 'poly' | 
|---|
|  | 90 | n = kwargs.get('poly') | 
|---|
| [515] | 91 | self.components = [n] | 
|---|
| [1589] | 92 | self.uselinear = False | 
|---|
| [1391] | 93 | elif kwargs.has_key('lpoly'): | 
|---|
|  | 94 | self.fitfunc = 'poly' | 
|---|
|  | 95 | n = kwargs.get('lpoly') | 
|---|
|  | 96 | self.components = [n] | 
|---|
|  | 97 | self.uselinear = True | 
|---|
| [113] | 98 | elif kwargs.has_key('gauss'): | 
|---|
|  | 99 | n = kwargs.get('gauss') | 
|---|
|  | 100 | self.fitfunc = 'gauss' | 
|---|
| [515] | 101 | self.fitfuncs = [ 'gauss' for i in range(n) ] | 
|---|
|  | 102 | self.components = [ 3 for i in range(n) ] | 
|---|
| [1589] | 103 | self.uselinear = False | 
|---|
| [515] | 104 | else: | 
|---|
| [723] | 105 | msg = "Invalid function type." | 
|---|
|  | 106 | if rcParams['verbose']: | 
|---|
|  | 107 | print msg | 
|---|
|  | 108 | return | 
|---|
|  | 109 | else: | 
|---|
|  | 110 | raise TypeError(msg) | 
|---|
|  | 111 |  | 
|---|
| [113] | 112 | self.fitter.setexpression(self.fitfunc,n) | 
|---|
| [1232] | 113 | self.fitted = False | 
|---|
| [113] | 114 | return | 
|---|
| [723] | 115 |  | 
|---|
| [1589] | 116 | @print_log_dec | 
|---|
| [1075] | 117 | def fit(self, row=0, estimate=False): | 
|---|
| [113] | 118 | """ | 
|---|
|  | 119 | Execute the actual fitting process. All the state has to be set. | 
|---|
|  | 120 | Parameters: | 
|---|
| [1075] | 121 | row:        specify the row in the scantable | 
|---|
|  | 122 | estimate:   auto-compute an initial parameter set (default False) | 
|---|
|  | 123 | This can be used to compute estimates even if fit was | 
|---|
|  | 124 | called before. | 
|---|
| [113] | 125 | Example: | 
|---|
| [515] | 126 | s = scantable('myscan.asap') | 
|---|
|  | 127 | s.set_cursor(thepol=1)        # select second pol | 
|---|
| [113] | 128 | f = fitter() | 
|---|
|  | 129 | f.set_scan(s) | 
|---|
|  | 130 | f.set_function(poly=0) | 
|---|
| [723] | 131 | f.fit(row=0)                  # fit first row | 
|---|
| [113] | 132 | """ | 
|---|
|  | 133 | if ((self.x is None or self.y is None) and self.data is None) \ | 
|---|
|  | 134 | or self.fitfunc is None: | 
|---|
| [723] | 135 | msg = "Fitter not yet initialised. Please set data & fit function" | 
|---|
|  | 136 | if rcParams['verbose']: | 
|---|
|  | 137 | print msg | 
|---|
|  | 138 | return | 
|---|
|  | 139 | else: | 
|---|
|  | 140 | raise RuntimeError(msg) | 
|---|
|  | 141 |  | 
|---|
| [113] | 142 | else: | 
|---|
|  | 143 | if self.data is not None: | 
|---|
| [515] | 144 | self.x = self.data._getabcissa(row) | 
|---|
|  | 145 | self.y = self.data._getspectrum(row) | 
|---|
| [1536] | 146 | self.mask = mask_and(self.mask, self.data._getmask(row)) | 
|---|
| [723] | 147 | from asap import asaplog | 
|---|
|  | 148 | asaplog.push("Fitting:") | 
|---|
| [943] | 149 | i = row | 
|---|
| [1536] | 150 | out = "Scan[%d] Beam[%d] IF[%d] Pol[%d] Cycle[%d]" % (self.data.getscan(i), | 
|---|
|  | 151 | self.data.getbeam(i), | 
|---|
|  | 152 | self.data.getif(i), | 
|---|
| [1589] | 153 | self.data.getpol(i), | 
|---|
| [1536] | 154 | self.data.getcycle(i)) | 
|---|
| [1075] | 155 | asaplog.push(out,False) | 
|---|
| [515] | 156 | self.fitter.setdata(self.x, self.y, self.mask) | 
|---|
| [113] | 157 | if self.fitfunc == 'gauss': | 
|---|
|  | 158 | ps = self.fitter.getparameters() | 
|---|
| [1075] | 159 | if len(ps) == 0 or estimate: | 
|---|
| [113] | 160 | self.fitter.estimate() | 
|---|
| [626] | 161 | try: | 
|---|
| [1232] | 162 | fxdpar = list(self.fitter.getfixedparameters()) | 
|---|
|  | 163 | if len(fxdpar) and fxdpar.count(0) == 0: | 
|---|
|  | 164 | raise RuntimeError,"No point fitting, if all parameters are fixed." | 
|---|
| [1391] | 165 | if self.uselinear: | 
|---|
|  | 166 | converged = self.fitter.lfit() | 
|---|
|  | 167 | else: | 
|---|
|  | 168 | converged = self.fitter.fit() | 
|---|
| [1075] | 169 | if not converged: | 
|---|
|  | 170 | raise RuntimeError,"Fit didn't converge." | 
|---|
| [626] | 171 | except RuntimeError, msg: | 
|---|
| [723] | 172 | if rcParams['verbose']: | 
|---|
|  | 173 | print msg | 
|---|
|  | 174 | else: | 
|---|
|  | 175 | raise | 
|---|
| [515] | 176 | self._fittedrow = row | 
|---|
| [113] | 177 | self.fitted = True | 
|---|
|  | 178 | return | 
|---|
|  | 179 |  | 
|---|
| [1232] | 180 | def store_fit(self, filename=None): | 
|---|
| [526] | 181 | """ | 
|---|
| [1232] | 182 | Save the fit parameters. | 
|---|
|  | 183 | Parameters: | 
|---|
|  | 184 | filename:    if specified save as an ASCII file, if None (default) | 
|---|
|  | 185 | store it in the scnatable | 
|---|
| [526] | 186 | """ | 
|---|
| [515] | 187 | if self.fitted and self.data is not None: | 
|---|
|  | 188 | pars = list(self.fitter.getparameters()) | 
|---|
|  | 189 | fixed = list(self.fitter.getfixedparameters()) | 
|---|
| [975] | 190 | from asap.asapfit import asapfit | 
|---|
|  | 191 | fit = asapfit() | 
|---|
|  | 192 | fit.setparameters(pars) | 
|---|
|  | 193 | fit.setfixedparameters(fixed) | 
|---|
|  | 194 | fit.setfunctions(self.fitfuncs) | 
|---|
|  | 195 | fit.setcomponents(self.components) | 
|---|
|  | 196 | fit.setframeinfo(self.data._getcoordinfo()) | 
|---|
| [1232] | 197 | if filename is not None: | 
|---|
|  | 198 | import os | 
|---|
|  | 199 | filename = os.path.expandvars(os.path.expanduser(filename)) | 
|---|
|  | 200 | if os.path.exists(filename): | 
|---|
|  | 201 | raise IOError("File '%s' exists." % filename) | 
|---|
|  | 202 | fit.save(filename) | 
|---|
|  | 203 | else: | 
|---|
|  | 204 | self.data._addfit(fit,self._fittedrow) | 
|---|
| [515] | 205 |  | 
|---|
| [1589] | 206 | @print_log_dec | 
|---|
| [1017] | 207 | def set_parameters(self,*args,**kwargs): | 
|---|
| [526] | 208 | """ | 
|---|
|  | 209 | Set the parameters to be fitted. | 
|---|
|  | 210 | Parameters: | 
|---|
|  | 211 | params:    a vector of parameters | 
|---|
|  | 212 | fixed:     a vector of which parameters are to be held fixed | 
|---|
|  | 213 | (default is none) | 
|---|
|  | 214 | component: in case of multiple gaussians, the index of the | 
|---|
|  | 215 | component | 
|---|
| [1017] | 216 | """ | 
|---|
|  | 217 | component = None | 
|---|
|  | 218 | fixed = None | 
|---|
|  | 219 | params = None | 
|---|
| [1031] | 220 |  | 
|---|
| [1017] | 221 | if len(args) and isinstance(args[0],dict): | 
|---|
|  | 222 | kwargs = args[0] | 
|---|
|  | 223 | if kwargs.has_key("fixed"): fixed = kwargs["fixed"] | 
|---|
|  | 224 | if kwargs.has_key("params"): params = kwargs["params"] | 
|---|
|  | 225 | if len(args) == 2 and isinstance(args[1], int): | 
|---|
|  | 226 | component = args[1] | 
|---|
| [515] | 227 | if self.fitfunc is None: | 
|---|
| [723] | 228 | msg = "Please specify a fitting function first." | 
|---|
|  | 229 | if rcParams['verbose']: | 
|---|
|  | 230 | print msg | 
|---|
|  | 231 | return | 
|---|
|  | 232 | else: | 
|---|
|  | 233 | raise RuntimeError(msg) | 
|---|
| [515] | 234 | if self.fitfunc == "gauss" and component is not None: | 
|---|
| [1017] | 235 | if not self.fitted and sum(self.fitter.getparameters()) == 0: | 
|---|
| [1295] | 236 | pars = _n_bools(len(self.components)*3, False) | 
|---|
|  | 237 | fxd = _n_bools(len(pars), False) | 
|---|
| [515] | 238 | else: | 
|---|
| [723] | 239 | pars = list(self.fitter.getparameters()) | 
|---|
| [515] | 240 | fxd = list(self.fitter.getfixedparameters()) | 
|---|
|  | 241 | i = 3*component | 
|---|
|  | 242 | pars[i:i+3] = params | 
|---|
|  | 243 | fxd[i:i+3] = fixed | 
|---|
|  | 244 | params = pars | 
|---|
| [723] | 245 | fixed = fxd | 
|---|
| [113] | 246 | self.fitter.setparameters(params) | 
|---|
|  | 247 | if fixed is not None: | 
|---|
|  | 248 | self.fitter.setfixedparameters(fixed) | 
|---|
|  | 249 | return | 
|---|
| [515] | 250 |  | 
|---|
| [1217] | 251 | def set_gauss_parameters(self, peak, centre, fwhm, | 
|---|
| [1409] | 252 | peakfixed=0, centrefixed=0, | 
|---|
| [1217] | 253 | fwhmfixed=0, | 
|---|
| [515] | 254 | component=0): | 
|---|
| [113] | 255 | """ | 
|---|
| [515] | 256 | Set the Parameters of a 'Gaussian' component, set with set_function. | 
|---|
|  | 257 | Parameters: | 
|---|
| [1232] | 258 | peak, centre, fwhm:  The gaussian parameters | 
|---|
| [515] | 259 | peakfixed, | 
|---|
| [1409] | 260 | centrefixed, | 
|---|
| [1217] | 261 | fwhmfixed:           Optional parameters to indicate if | 
|---|
| [515] | 262 | the paramters should be held fixed during | 
|---|
|  | 263 | the fitting process. The default is to keep | 
|---|
|  | 264 | all parameters flexible. | 
|---|
| [526] | 265 | component:           The number of the component (Default is the | 
|---|
|  | 266 | component 0) | 
|---|
| [515] | 267 | """ | 
|---|
|  | 268 | if self.fitfunc != "gauss": | 
|---|
| [723] | 269 | msg = "Function only operates on Gaussian components." | 
|---|
|  | 270 | if rcParams['verbose']: | 
|---|
|  | 271 | print msg | 
|---|
|  | 272 | return | 
|---|
|  | 273 | else: | 
|---|
|  | 274 | raise ValueError(msg) | 
|---|
| [515] | 275 | if 0 <= component < len(self.components): | 
|---|
| [1217] | 276 | d = {'params':[peak, centre, fwhm], | 
|---|
| [1409] | 277 | 'fixed':[peakfixed, centrefixed, fwhmfixed]} | 
|---|
| [1017] | 278 | self.set_parameters(d, component) | 
|---|
| [515] | 279 | else: | 
|---|
| [723] | 280 | msg = "Please select a valid  component." | 
|---|
|  | 281 | if rcParams['verbose']: | 
|---|
|  | 282 | print msg | 
|---|
|  | 283 | return | 
|---|
|  | 284 | else: | 
|---|
|  | 285 | raise ValueError(msg) | 
|---|
|  | 286 |  | 
|---|
| [975] | 287 | def get_area(self, component=None): | 
|---|
|  | 288 | """ | 
|---|
|  | 289 | Return the area under the fitted gaussian component. | 
|---|
|  | 290 | Parameters: | 
|---|
|  | 291 | component:   the gaussian component selection, | 
|---|
|  | 292 | default (None) is the sum of all components | 
|---|
|  | 293 | Note: | 
|---|
|  | 294 | This will only work for gaussian fits. | 
|---|
|  | 295 | """ | 
|---|
|  | 296 | if not self.fitted: return | 
|---|
|  | 297 | if self.fitfunc == "gauss": | 
|---|
|  | 298 | pars = list(self.fitter.getparameters()) | 
|---|
|  | 299 | from math import log,pi,sqrt | 
|---|
|  | 300 | fac = sqrt(pi/log(16.0)) | 
|---|
|  | 301 | areas = [] | 
|---|
|  | 302 | for i in range(len(self.components)): | 
|---|
|  | 303 | j = i*3 | 
|---|
|  | 304 | cpars = pars[j:j+3] | 
|---|
|  | 305 | areas.append(fac * cpars[0] * cpars[2]) | 
|---|
|  | 306 | else: | 
|---|
|  | 307 | return None | 
|---|
|  | 308 | if component is not None: | 
|---|
|  | 309 | return areas[component] | 
|---|
|  | 310 | else: | 
|---|
|  | 311 | return sum(areas) | 
|---|
|  | 312 |  | 
|---|
| [1075] | 313 | def get_errors(self, component=None): | 
|---|
| [515] | 314 | """ | 
|---|
| [1075] | 315 | Return the errors in the parameters. | 
|---|
|  | 316 | Parameters: | 
|---|
|  | 317 | component:    get the errors for the specified component | 
|---|
|  | 318 | only, default is all components | 
|---|
|  | 319 | """ | 
|---|
|  | 320 | if not self.fitted: | 
|---|
|  | 321 | msg = "Not yet fitted." | 
|---|
|  | 322 | if rcParams['verbose']: | 
|---|
|  | 323 | print msg | 
|---|
|  | 324 | return | 
|---|
|  | 325 | else: | 
|---|
|  | 326 | raise RuntimeError(msg) | 
|---|
|  | 327 | errs = list(self.fitter.geterrors()) | 
|---|
|  | 328 | cerrs = errs | 
|---|
|  | 329 | if component is not None: | 
|---|
|  | 330 | if self.fitfunc == "gauss": | 
|---|
|  | 331 | i = 3*component | 
|---|
|  | 332 | if i < len(errs): | 
|---|
|  | 333 | cerrs = errs[i:i+3] | 
|---|
|  | 334 | return cerrs | 
|---|
|  | 335 |  | 
|---|
|  | 336 | def get_parameters(self, component=None, errors=False): | 
|---|
|  | 337 | """ | 
|---|
| [113] | 338 | Return the fit paramters. | 
|---|
| [526] | 339 | Parameters: | 
|---|
|  | 340 | component:    get the parameters for the specified component | 
|---|
|  | 341 | only, default is all components | 
|---|
| [113] | 342 | """ | 
|---|
|  | 343 | if not self.fitted: | 
|---|
| [723] | 344 | msg = "Not yet fitted." | 
|---|
|  | 345 | if rcParams['verbose']: | 
|---|
|  | 346 | print msg | 
|---|
|  | 347 | return | 
|---|
|  | 348 | else: | 
|---|
|  | 349 | raise RuntimeError(msg) | 
|---|
| [113] | 350 | pars = list(self.fitter.getparameters()) | 
|---|
|  | 351 | fixed = list(self.fitter.getfixedparameters()) | 
|---|
| [1075] | 352 | errs = list(self.fitter.geterrors()) | 
|---|
| [1039] | 353 | area = [] | 
|---|
| [723] | 354 | if component is not None: | 
|---|
| [515] | 355 | if self.fitfunc == "gauss": | 
|---|
|  | 356 | i = 3*component | 
|---|
|  | 357 | cpars = pars[i:i+3] | 
|---|
|  | 358 | cfixed = fixed[i:i+3] | 
|---|
| [1075] | 359 | cerrs = errs[i:i+3] | 
|---|
| [1039] | 360 | a = self.get_area(component) | 
|---|
|  | 361 | area = [a for i in range(3)] | 
|---|
| [515] | 362 | else: | 
|---|
|  | 363 | cpars = pars | 
|---|
| [723] | 364 | cfixed = fixed | 
|---|
| [1075] | 365 | cerrs = errs | 
|---|
| [515] | 366 | else: | 
|---|
|  | 367 | cpars = pars | 
|---|
|  | 368 | cfixed = fixed | 
|---|
| [1075] | 369 | cerrs = errs | 
|---|
| [1039] | 370 | if self.fitfunc == "gauss": | 
|---|
|  | 371 | for c in range(len(self.components)): | 
|---|
|  | 372 | a = self.get_area(c) | 
|---|
|  | 373 | area += [a for i in range(3)] | 
|---|
| [1088] | 374 | fpars = self._format_pars(cpars, cfixed, errors and cerrs, area) | 
|---|
| [723] | 375 | if rcParams['verbose']: | 
|---|
| [515] | 376 | print fpars | 
|---|
| [1075] | 377 | return {'params':cpars, 'fixed':cfixed, 'formatted': fpars, | 
|---|
|  | 378 | 'errors':cerrs} | 
|---|
| [723] | 379 |  | 
|---|
| [1075] | 380 | def _format_pars(self, pars, fixed, errors, area): | 
|---|
| [113] | 381 | out = '' | 
|---|
|  | 382 | if self.fitfunc == 'poly': | 
|---|
|  | 383 | c = 0 | 
|---|
| [515] | 384 | for i in range(len(pars)): | 
|---|
|  | 385 | fix = "" | 
|---|
| [1232] | 386 | if len(fixed) and fixed[i]: fix = "(fixed)" | 
|---|
| [1088] | 387 | if errors : | 
|---|
|  | 388 | out += '  p%d%s= %3.6f (%1.6f),' % (c,fix,pars[i], errors[i]) | 
|---|
|  | 389 | else: | 
|---|
|  | 390 | out += '  p%d%s= %3.6f,' % (c,fix,pars[i]) | 
|---|
| [113] | 391 | c+=1 | 
|---|
| [515] | 392 | out = out[:-1]  # remove trailing ',' | 
|---|
| [113] | 393 | elif self.fitfunc == 'gauss': | 
|---|
|  | 394 | i = 0 | 
|---|
|  | 395 | c = 0 | 
|---|
| [515] | 396 | aunit = '' | 
|---|
|  | 397 | ounit = '' | 
|---|
| [113] | 398 | if self.data: | 
|---|
| [515] | 399 | aunit = self.data.get_unit() | 
|---|
|  | 400 | ounit = self.data.get_fluxunit() | 
|---|
| [113] | 401 | while i < len(pars): | 
|---|
| [1039] | 402 | if len(area): | 
|---|
|  | 403 | out += '  %2d: peak = %3.3f %s , centre = %3.3f %s, FWHM = %3.3f %s\n      area = %3.3f %s %s\n' % (c,pars[i],ounit,pars[i+1],aunit,pars[i+2],aunit, area[i],ounit,aunit) | 
|---|
| [1017] | 404 | else: | 
|---|
|  | 405 | out += '  %2d: peak = %3.3f %s , centre = %3.3f %s, FWHM = %3.3f %s\n' % (c,pars[i],ounit,pars[i+1],aunit,pars[i+2],aunit,ounit,aunit) | 
|---|
| [113] | 406 | c+=1 | 
|---|
|  | 407 | i+=3 | 
|---|
|  | 408 | return out | 
|---|
| [723] | 409 |  | 
|---|
| [113] | 410 | def get_estimate(self): | 
|---|
|  | 411 | """ | 
|---|
| [515] | 412 | Return the parameter estimates (for non-linear functions). | 
|---|
| [113] | 413 | """ | 
|---|
|  | 414 | pars = self.fitter.getestimate() | 
|---|
| [943] | 415 | fixed = self.fitter.getfixedparameters() | 
|---|
| [723] | 416 | if rcParams['verbose']: | 
|---|
| [1017] | 417 | print self._format_pars(pars,fixed,None) | 
|---|
| [113] | 418 | return pars | 
|---|
|  | 419 |  | 
|---|
|  | 420 | def get_residual(self): | 
|---|
|  | 421 | """ | 
|---|
|  | 422 | Return the residual of the fit. | 
|---|
|  | 423 | """ | 
|---|
|  | 424 | if not self.fitted: | 
|---|
| [723] | 425 | msg = "Not yet fitted." | 
|---|
|  | 426 | if rcParams['verbose']: | 
|---|
|  | 427 | print msg | 
|---|
|  | 428 | return | 
|---|
|  | 429 | else: | 
|---|
|  | 430 | raise RuntimeError(msg) | 
|---|
| [113] | 431 | return self.fitter.getresidual() | 
|---|
|  | 432 |  | 
|---|
|  | 433 | def get_chi2(self): | 
|---|
|  | 434 | """ | 
|---|
|  | 435 | Return chi^2. | 
|---|
|  | 436 | """ | 
|---|
|  | 437 | if not self.fitted: | 
|---|
| [723] | 438 | msg = "Not yet fitted." | 
|---|
|  | 439 | if rcParams['verbose']: | 
|---|
|  | 440 | print msg | 
|---|
|  | 441 | return | 
|---|
|  | 442 | else: | 
|---|
|  | 443 | raise RuntimeError(msg) | 
|---|
| [113] | 444 | ch2 = self.fitter.getchi2() | 
|---|
| [723] | 445 | if rcParams['verbose']: | 
|---|
| [113] | 446 | print 'Chi^2 = %3.3f' % (ch2) | 
|---|
| [723] | 447 | return ch2 | 
|---|
| [113] | 448 |  | 
|---|
|  | 449 | def get_fit(self): | 
|---|
|  | 450 | """ | 
|---|
|  | 451 | Return the fitted ordinate values. | 
|---|
|  | 452 | """ | 
|---|
|  | 453 | if not self.fitted: | 
|---|
| [723] | 454 | msg = "Not yet fitted." | 
|---|
|  | 455 | if rcParams['verbose']: | 
|---|
|  | 456 | print msg | 
|---|
|  | 457 | return | 
|---|
|  | 458 | else: | 
|---|
|  | 459 | raise RuntimeError(msg) | 
|---|
| [113] | 460 | return self.fitter.getfit() | 
|---|
|  | 461 |  | 
|---|
| [1589] | 462 | @print_log_dec | 
|---|
| [113] | 463 | def commit(self): | 
|---|
|  | 464 | """ | 
|---|
| [526] | 465 | Return a new scan where the fits have been commited (subtracted) | 
|---|
| [113] | 466 | """ | 
|---|
|  | 467 | if not self.fitted: | 
|---|
| [723] | 468 | msg = "Not yet fitted." | 
|---|
|  | 469 | if rcParams['verbose']: | 
|---|
|  | 470 | print msg | 
|---|
|  | 471 | return | 
|---|
|  | 472 | else: | 
|---|
|  | 473 | raise RuntimeError(msg) | 
|---|
| [975] | 474 | from asap import scantable | 
|---|
|  | 475 | if not isinstance(self.data, scantable): | 
|---|
| [723] | 476 | msg = "Not a scantable" | 
|---|
|  | 477 | if rcParams['verbose']: | 
|---|
|  | 478 | print msg | 
|---|
|  | 479 | return | 
|---|
|  | 480 | else: | 
|---|
|  | 481 | raise TypeError(msg) | 
|---|
| [113] | 482 | scan = self.data.copy() | 
|---|
| [259] | 483 | scan._setspectrum(self.fitter.getresidual()) | 
|---|
| [1092] | 484 | return scan | 
|---|
| [113] | 485 |  | 
|---|
| [1589] | 486 | @print_log_dec | 
|---|
| [1689] | 487 | def plot(self, residual=False, components=None, plotparms=False, | 
|---|
|  | 488 | filename=None): | 
|---|
| [113] | 489 | """ | 
|---|
|  | 490 | Plot the last fit. | 
|---|
|  | 491 | Parameters: | 
|---|
|  | 492 | residual:    an optional parameter indicating if the residual | 
|---|
|  | 493 | should be plotted (default 'False') | 
|---|
| [526] | 494 | components:  a list of components to plot, e.g [0,1], | 
|---|
|  | 495 | -1 plots the total fit. Default is to only | 
|---|
|  | 496 | plot the total fit. | 
|---|
|  | 497 | plotparms:   Inidicates if the parameter values should be present | 
|---|
|  | 498 | on the plot | 
|---|
| [113] | 499 | """ | 
|---|
|  | 500 | if not self.fitted: | 
|---|
|  | 501 | return | 
|---|
| [723] | 502 | if not self._p or self._p.is_dead: | 
|---|
|  | 503 | if rcParams['plotter.gui']: | 
|---|
|  | 504 | from asap.asaplotgui import asaplotgui as asaplot | 
|---|
|  | 505 | else: | 
|---|
|  | 506 | from asap.asaplot import asaplot | 
|---|
|  | 507 | self._p = asaplot() | 
|---|
|  | 508 | self._p.hold() | 
|---|
| [113] | 509 | self._p.clear() | 
|---|
| [515] | 510 | self._p.set_panels() | 
|---|
| [652] | 511 | self._p.palette(0) | 
|---|
| [113] | 512 | tlab = 'Spectrum' | 
|---|
| [723] | 513 | xlab = 'Abcissa' | 
|---|
| [1017] | 514 | ylab = 'Ordinate' | 
|---|
| [1739] | 515 | from numpy import ma,logical_not,logical_and,array | 
|---|
| [1273] | 516 | m = self.mask | 
|---|
| [113] | 517 | if self.data: | 
|---|
| [515] | 518 | tlab = self.data._getsourcename(self._fittedrow) | 
|---|
|  | 519 | xlab = self.data._getabcissalabel(self._fittedrow) | 
|---|
| [1273] | 520 | m =  logical_and(self.mask, | 
|---|
| [1306] | 521 | array(self.data._getmask(self._fittedrow), | 
|---|
|  | 522 | copy=False)) | 
|---|
| [1589] | 523 |  | 
|---|
| [626] | 524 | ylab = self.data._get_ordinate_label() | 
|---|
| [515] | 525 |  | 
|---|
| [1075] | 526 | colours = ["#777777","#dddddd","red","orange","purple","green","magenta", "cyan"] | 
|---|
| [652] | 527 | self._p.palette(0,colours) | 
|---|
| [515] | 528 | self._p.set_line(label='Spectrum') | 
|---|
| [1273] | 529 | y = ma.masked_array(self.y,mask=logical_not(m)) | 
|---|
| [1088] | 530 | self._p.plot(self.x, y) | 
|---|
| [113] | 531 | if residual: | 
|---|
| [652] | 532 | self._p.palette(1) | 
|---|
| [515] | 533 | self._p.set_line(label='Residual') | 
|---|
| [1116] | 534 | y = ma.masked_array(self.get_residual(), | 
|---|
| [1273] | 535 | mask=logical_not(m)) | 
|---|
| [1088] | 536 | self._p.plot(self.x, y) | 
|---|
| [652] | 537 | self._p.palette(2) | 
|---|
| [515] | 538 | if components is not None: | 
|---|
|  | 539 | cs = components | 
|---|
|  | 540 | if isinstance(components,int): cs = [components] | 
|---|
| [526] | 541 | if plotparms: | 
|---|
| [1031] | 542 | self._p.text(0.15,0.15,str(self.get_parameters()['formatted']),size=8) | 
|---|
| [515] | 543 | n = len(self.components) | 
|---|
| [652] | 544 | self._p.palette(3) | 
|---|
| [515] | 545 | for c in cs: | 
|---|
|  | 546 | if 0 <= c < n: | 
|---|
|  | 547 | lab = self.fitfuncs[c]+str(c) | 
|---|
|  | 548 | self._p.set_line(label=lab) | 
|---|
| [1116] | 549 | y = ma.masked_array(self.fitter.evaluate(c), | 
|---|
| [1273] | 550 | mask=logical_not(m)) | 
|---|
| [1088] | 551 |  | 
|---|
|  | 552 | self._p.plot(self.x, y) | 
|---|
| [515] | 553 | elif c == -1: | 
|---|
| [652] | 554 | self._p.palette(2) | 
|---|
| [515] | 555 | self._p.set_line(label="Total Fit") | 
|---|
| [1116] | 556 | y = ma.masked_array(self.fitter.getfit(), | 
|---|
| [1273] | 557 | mask=logical_not(m)) | 
|---|
| [1088] | 558 | self._p.plot(self.x, y) | 
|---|
| [515] | 559 | else: | 
|---|
| [652] | 560 | self._p.palette(2) | 
|---|
| [515] | 561 | self._p.set_line(label='Fit') | 
|---|
| [1116] | 562 | y = ma.masked_array(self.fitter.getfit(), | 
|---|
| [1273] | 563 | mask=logical_not(m)) | 
|---|
| [1088] | 564 | self._p.plot(self.x, y) | 
|---|
| [723] | 565 | xlim=[min(self.x),max(self.x)] | 
|---|
|  | 566 | self._p.axes.set_xlim(xlim) | 
|---|
| [113] | 567 | self._p.set_axes('xlabel',xlab) | 
|---|
|  | 568 | self._p.set_axes('ylabel',ylab) | 
|---|
|  | 569 | self._p.set_axes('title',tlab) | 
|---|
|  | 570 | self._p.release() | 
|---|
| [723] | 571 | if (not rcParams['plotter.gui']): | 
|---|
|  | 572 | self._p.save(filename) | 
|---|
| [113] | 573 |  | 
|---|
| [1589] | 574 | @print_log_dec | 
|---|
| [1061] | 575 | def auto_fit(self, insitu=None, plot=False): | 
|---|
| [113] | 576 | """ | 
|---|
| [515] | 577 | Return a scan where the function is applied to all rows for | 
|---|
|  | 578 | all Beams/IFs/Pols. | 
|---|
| [723] | 579 |  | 
|---|
| [113] | 580 | """ | 
|---|
|  | 581 | from asap import scantable | 
|---|
| [515] | 582 | if not isinstance(self.data, scantable) : | 
|---|
| [723] | 583 | msg = "Data is not a scantable" | 
|---|
|  | 584 | if rcParams['verbose']: | 
|---|
|  | 585 | print msg | 
|---|
|  | 586 | return | 
|---|
|  | 587 | else: | 
|---|
|  | 588 | raise TypeError(msg) | 
|---|
| [259] | 589 | if insitu is None: insitu = rcParams['insitu'] | 
|---|
|  | 590 | if not insitu: | 
|---|
|  | 591 | scan = self.data.copy() | 
|---|
|  | 592 | else: | 
|---|
|  | 593 | scan = self.data | 
|---|
| [880] | 594 | rows = xrange(scan.nrow()) | 
|---|
| [723] | 595 | from asap import asaplog | 
|---|
| [876] | 596 | asaplog.push("Fitting:") | 
|---|
|  | 597 | for r in rows: | 
|---|
| [1536] | 598 | out = " Scan[%d] Beam[%d] IF[%d] Pol[%d] Cycle[%d]" % (scan.getscan(r), | 
|---|
|  | 599 | scan.getbeam(r), | 
|---|
|  | 600 | scan.getif(r), | 
|---|
| [1589] | 601 | scan.getpol(r), | 
|---|
| [1536] | 602 | scan.getcycle(r)) | 
|---|
| [880] | 603 | asaplog.push(out, False) | 
|---|
| [876] | 604 | self.x = scan._getabcissa(r) | 
|---|
|  | 605 | self.y = scan._getspectrum(r) | 
|---|
| [1536] | 606 | self.mask = mask_and(self.mask, scan._getmask(r)) | 
|---|
| [876] | 607 | self.data = None | 
|---|
|  | 608 | self.fit() | 
|---|
|  | 609 | x = self.get_parameters() | 
|---|
| [1061] | 610 | if plot: | 
|---|
|  | 611 | self.plot(residual=True) | 
|---|
|  | 612 | x = raw_input("Accept fit ([y]/n): ") | 
|---|
|  | 613 | if x.upper() == 'N': | 
|---|
|  | 614 | continue | 
|---|
| [880] | 615 | scan._setspectrum(self.fitter.getresidual(), r) | 
|---|
| [1061] | 616 | if plot: | 
|---|
|  | 617 | self._p.unmap() | 
|---|
|  | 618 | self._p = None | 
|---|
| [876] | 619 | return scan | 
|---|