source: trunk/external/atnf/PKSIO/SDFITSreader.cc @ 1509

Last change on this file since 1509 was 1509, checked in by Malte Marquarding, 15 years ago

make gcc-4.3 compliant; Mark C. still needs to fix char* cast deprecation warnings

File size: 54.0 KB
Line 
1//#---------------------------------------------------------------------------
2//# SDFITSreader.cc: ATNF CFITSIO interface class for SDFITS input.
3//#---------------------------------------------------------------------------
4//# Copyright (C) 2000-2008
5//# Associated Universities, Inc. Washington DC, USA.
6//#
7//# This library is free software; you can redistribute it and/or modify it
8//# under the terms of the GNU Library General Public License as published by
9//# the Free Software Foundation; either version 2 of the License, or (at your
10//# option) any later version.
11//#
12//# This library is distributed in the hope that it will be useful, but WITHOUT
13//# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14//# FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Library General Public
15//# License for more details.
16//#
17//# You should have received a copy of the GNU Library General Public License
18//# along with this library; if not, write to the Free Software Foundation,
19//# Inc., 675 Massachusetts Ave, Cambridge, MA 02139, USA.
20//#
21//# Correspondence concerning this software should be addressed as follows:
22//#        Internet email: aips2-request@nrao.edu.
23//#        Postal address: AIPS++ Project Office
24//#                        National Radio Astronomy Observatory
25//#                        520 Edgemont Road
26//#                        Charlottesville, VA 22903-2475 USA
27//#
28//# $Id: SDFITSreader.cc,v 19.33 2008-11-17 06:58:34 cal103 Exp $
29//#---------------------------------------------------------------------------
30//# The SDFITSreader class reads single dish FITS files such as those written
31//# by SDFITSwriter containing Parkes Multibeam data.
32//#
33//# Original: 2000/08/09, Mark Calabretta, ATNF
34//#---------------------------------------------------------------------------
35
36#include <atnf/pks/pks_maths.h>
37#include <atnf/PKSIO/PKSmsg.h>
38#include <atnf/PKSIO/MBrecord.h>
39#include <atnf/PKSIO/SDFITSreader.h>
40
41#include <casa/math.h>
42#include <casa/stdio.h>
43#include <cstring>
44
45#include <algorithm>
46#include <strings.h>
47
48class FITSparm
49{
50  public:
51    char *name;         // Keyword or column name.
52    int  type;          // Expected keyvalue or column data type.
53    int  colnum;        // Column number; 0 for keyword; -1 absent.
54    int  coltype;       // Column data type, as found.
55    long nelem;         // Column data repeat count; < 0 for vardim.
56    int  tdimcol;       // TDIM column number; 0 for keyword; -1 absent.
57    char units[32];     // Units from TUNITn keyword.
58};
59
60// Numerical constants.
61const double PI  = 3.141592653589793238462643;
62
63// Factor to convert radians to degrees.
64const double D2R = PI / 180.0;
65
66//------------------------------------------------- SDFITSreader::SDFITSreader
67
68SDFITSreader::SDFITSreader()
69{
70  // Default constructor.
71  cSDptr = 0;
72
73  // Allocate space for data descriptors.
74  cData = new FITSparm[NDATA];
75
76  for (int iData = 0; iData < NDATA; iData++) {
77    cData[iData].colnum = -1;
78  }
79
80  // Initialize pointers.
81  cBeams     = 0x0;
82  cIFs       = 0x0;
83  cStartChan = 0x0;
84  cEndChan   = 0x0;
85  cRefChan   = 0x0;
86
87  // By default, messages are written to stderr.
88  initMsg();
89}
90
91//------------------------------------------------ SDFITSreader::~SDFITSreader
92
93SDFITSreader::~SDFITSreader()
94{
95  close();
96
97  delete [] cData;
98}
99
100//--------------------------------------------------------- SDFITSreader::open
101
102// Open an SDFITS file for reading.
103
104int SDFITSreader::open(
105        char*  sdName,
106        int    &nBeam,
107        int*   &beams,
108        int    &nIF,
109        int*   &IFs,
110        int*   &nChan,
111        int*   &nPol,
112        int*   &haveXPol,
113        int    &haveBase,
114        int    &haveSpectra,
115        int    &extraSysCal)
116{
117  // Clear the message stack.
118  clearMsg();
119
120  if (cSDptr) {
121    close();
122  }
123
124  // Open the SDFITS file.
125  cStatus = 0;
126  if (fits_open_file(&cSDptr, sdName, READONLY, &cStatus)) {
127    sprintf(cMsg, "ERROR: Failed to open SDFITS file\n       %s", sdName);
128    logMsg(cMsg);
129    return 1;
130  }
131
132  // Move to the SDFITS extension.
133  cALFA = cALFA_BD = cALFA_CIMA = 0;
134  if (fits_movnam_hdu(cSDptr, BINARY_TBL, "SINGLE DISH", 0, &cStatus)) {
135    // No SDFITS table, look for BDFITS or CIMAFITS.
136    cStatus = 0;
137    if (fits_movnam_hdu(cSDptr, BINARY_TBL, "BDFITS", 0, &cStatus) == 0) {
138      cALFA_BD = 1;
139
140    } else {
141      cStatus = 0;
142      if (fits_movnam_hdu(cSDptr, BINARY_TBL, "CIMAFITS", 0, &cStatus) == 0) {
143        cALFA_CIMA = 1;
144
145        // Check for later versions of CIMAFITS.
146        float version;
147        readParm("VERSION", TFLOAT, &version);
148        if (version >= 2.0f) cALFA_CIMA = int(version);
149
150      } else {
151        logMsg("ERROR: Failed to locate SDFITS binary table.");
152        close();
153        return 1;
154      }
155    }
156
157    // Arecibo ALFA data of some kind.
158    cALFA = 1;
159    for (int iBeam = 0; iBeam < 8; iBeam++) {
160      for (int iPol = 0; iPol < 2; iPol++) {
161        cALFAcalOn[iBeam][iPol]  = 0.0f;
162        cALFAcalOff[iBeam][iPol] = 0.0f;
163
164        // Nominal factor to calibrate spectra in Jy.
165        cALFAcal[iBeam][iPol] = 3.0f;
166      }
167    }
168  }
169
170  // GBT data.
171  char telescope[32];
172  readParm("TELESCOP", TSTRING, telescope);      // Core.
173  cGBT = strncmp(telescope, "GBT", 3) == 0 ||
174         strncmp(telescope, "NRAO_GBT", 8) == 0;
175
176  cRow = 0;
177
178
179  // Check that the DATA array column is present.
180  findData(DATA, "DATA", TFLOAT);
181  haveSpectra = cHaveSpectra = cData[DATA].colnum > 0;
182
183  if (cHaveSpectra) {
184    // Find the number of data axes (must be the same for each IF).
185    cNAxis = 5;
186    if (readDim(DATA, 1, &cNAxis, cNAxes)) {
187      logMsg();
188      close();
189      return 1;
190    }
191
192    if (cALFA_BD) {
193      // ALFA BDFITS: variable length arrays don't actually vary and there is
194      // no TDIM (or MAXISn) card; use the LAGS_IN value.
195      cNAxis = 5;
196      readParm("LAGS_IN", TLONG, cNAxes);
197      cNAxes[1] = 1;
198      cNAxes[2] = 1;
199      cNAxes[3] = 1;
200      cNAxes[4] = 1;
201      cData[DATA].nelem = cNAxes[0];
202    }
203
204    if (cNAxis < 4) {
205      // Need at least four axes (for now).
206      logMsg("ERROR: DATA array contains fewer than four axes.");
207      close();
208      return 1;
209    } else if (cNAxis > 5) {
210      // We support up to five axes.
211      logMsg("ERROR: DATA array contains more than five axes.");
212      close();
213      return 1;
214    }
215
216    findData(FLAGGED, "FLAGGED", TBYTE);
217
218  } else {
219    // DATA column not present, check for a DATAXED keyword.
220    findData(DATAXED, "DATAXED", TSTRING);
221    if (cData[DATAXED].colnum < 0) {
222      logMsg("ERROR: DATA array column absent from binary table.");
223      close();
224      return 1;
225    }
226
227    // Determine the number of axes and their length.
228    char dataxed[32];
229    readParm("DATAXED", TSTRING, dataxed);
230
231    for (int iaxis = 0; iaxis < 5; iaxis++) cNAxes[iaxis] = 0;
232    sscanf(dataxed, "(%ld,%ld,%ld,%ld,%ld)", cNAxes, cNAxes+1, cNAxes+2,
233      cNAxes+3, cNAxes+4);
234    for (int iaxis = 4; iaxis > -1; iaxis--) {
235      if (cNAxes[iaxis] == 0) cNAxis = iaxis;
236    }
237  }
238
239  char  *CTYPE[5] = {"CTYPE1", "CTYPE2", "CTYPE3", "CTYPE4", "CTYPE5"};
240  char  *CRPIX[5] = {"CRPIX1", "CRPIX2", "CRPIX3", "CRPIX4", "CRPIX5"};
241  char  *CRVAL[5] = {"CRVAL1", "CRVAL2", "CRVAL3", "CRVAL4", "CRVAL5"};
242  char  *CDELT[5] = {"CDELT1", "CDELT2", "CDELT3", "CDELT4", "CDELT5"};
243
244  // Find required DATA array axes.
245  char ctype[5][72];
246  for (int iaxis = 0; iaxis < cNAxis; iaxis++) {
247    strcpy(ctype[iaxis], "");
248    readParm(CTYPE[iaxis], TSTRING, ctype[iaxis]);      // Core.
249  }
250
251  if (cStatus) {
252    logMsg();
253    close();
254    return 1;
255  }
256
257  char *fqCRPIX  = 0;
258  char *fqCRVAL  = 0;
259  char *fqCDELT  = 0;
260  char *raCRVAL  = 0;
261  char *decCRVAL = 0;
262  char *timeCRVAL = 0;
263  char *beamCRVAL = 0;
264
265  for (int iaxis = 0; iaxis < cNAxis; iaxis++) {
266    if (strncmp(ctype[iaxis], "FREQ", 4) == 0) {
267      cReqax[0] = iaxis;
268      fqCRPIX  = CRPIX[iaxis];
269      fqCRVAL  = CRVAL[iaxis];
270      fqCDELT  = CDELT[iaxis];
271
272    } else if (strncmp(ctype[iaxis], "STOKES", 6) == 0) {
273      cReqax[1] = iaxis;
274
275    } else if (strncmp(ctype[iaxis], "RA", 2) == 0) {
276      cReqax[2] = iaxis;
277      raCRVAL  = CRVAL[iaxis];
278
279    } else if (strncmp(ctype[iaxis], "DEC", 3) == 0) {
280      cReqax[3] = iaxis;
281      decCRVAL = CRVAL[iaxis];
282
283    } else if (strcmp(ctype[iaxis], "TIME") == 0) {
284      // TIME (UTC seconds since midnight) can be a keyword or axis type.
285      timeCRVAL = CRVAL[iaxis];
286
287    } else if (strcmp(ctype[iaxis], "BEAM") == 0) {
288      // BEAM can be a keyword or axis type.
289      beamCRVAL = CRVAL[iaxis];
290    }
291  }
292
293  if (cALFA_BD) {
294    // Fixed in ALFA CIMAFITS.
295    cReqax[2] = 2;
296    raCRVAL = "CRVAL2A";
297
298    cReqax[3] = 3;
299    decCRVAL = "CRVAL3A";
300  }
301
302  // Check that all are present.
303  for (int iaxis = 0; iaxis < 4; iaxis++) {
304    if (cReqax[iaxis] < 0) {
305      logMsg("ERROR: Could not find required DATA array axes.");
306      close();
307      return 1;
308    }
309  }
310
311  // Set up machinery for data retrieval.
312  findData(SCAN,     "SCAN",     TINT);         // Shared.
313  findData(CYCLE,    "CYCLE",    TINT);         // Additional.
314  findData(DATE_OBS, "DATE-OBS", TSTRING);      // Core.
315  findData(TIME,     "TIME",     TDOUBLE);      // Core.
316  findData(EXPOSURE, "EXPOSURE", TFLOAT);       // Core.
317  findData(OBJECT,   "OBJECT",   TSTRING);      // Core.
318  findData(OBJ_RA,   "OBJ-RA",   TDOUBLE);      // Additional.
319  findData(OBJ_DEC,  "OBJ-DEC",  TDOUBLE);      // Additional.
320  findData(RESTFRQ,  "RESTFRQ",  TDOUBLE);      // Additional.
321  findData(OBSMODE,  "OBSMODE",  TSTRING);      // Shared.
322
323  findData(BEAM,     "BEAM",     TSHORT);       // Additional.
324  findData(IF,       "IF",       TSHORT);       // Additional.
325  findData(FqRefPix,  fqCRPIX,   TFLOAT);       // Frequency reference pixel.
326  findData(FqRefVal,  fqCRVAL,   TDOUBLE);      // Frequency reference value.
327  findData(FqDelt,    fqCDELT,   TDOUBLE);      // Frequency increment.
328  findData(RA,        raCRVAL,   TDOUBLE);      // Right ascension.
329  findData(DEC,      decCRVAL,   TDOUBLE);      // Declination.
330  findData(SCANRATE, "SCANRATE", TFLOAT);       // Additional.
331
332  findData(TSYS,     "TSYS",     TFLOAT);       // Core.
333  findData(CALFCTR,  "CALFCTR",  TFLOAT);       // Additional.
334  findData(XCALFCTR, "XCALFCTR", TFLOAT);       // Additional.
335  findData(BASELIN,  "BASELIN",  TFLOAT);       // Additional.
336  findData(BASESUB,  "BASESUB",  TFLOAT);       // Additional.
337  findData(XPOLDATA, "XPOLDATA", TFLOAT);       // Additional.
338
339  findData(REFBEAM,  "REFBEAM",  TSHORT);       // Additional.
340  findData(TCAL,     "TCAL",     TFLOAT);       // Shared.
341  findData(TCALTIME, "TCALTIME", TSTRING);      // Additional.
342  findData(AZIMUTH,  "AZIMUTH",  TFLOAT);       // Shared.
343  findData(ELEVATIO, "ELEVATIO", TFLOAT);       // Shared.
344  findData(PARANGLE, "PARANGLE", TFLOAT);       // Additional.
345  findData(FOCUSAXI, "FOCUSAXI", TFLOAT);       // Additional.
346  findData(FOCUSTAN, "FOCUSTAN", TFLOAT);       // Additional.
347  findData(FOCUSROT, "FOCUSROT", TFLOAT);       // Additional.
348  findData(TAMBIENT, "TAMBIENT", TFLOAT);       // Shared.
349  findData(PRESSURE, "PRESSURE", TFLOAT);       // Shared.
350  findData(HUMIDITY, "HUMIDITY", TFLOAT);       // Shared.
351  findData(WINDSPEE, "WINDSPEE", TFLOAT);       // Shared.
352  findData(WINDDIRE, "WINDDIRE", TFLOAT);       // Shared.
353
354  if (cStatus) {
355    logMsg();
356    close();
357    return 1;
358  }
359
360
361  // Check for alternative column names.
362  if (cALFA) {
363    // ALFA data.
364    cALFAscan = 0;
365    cScanNo = 0;
366    if (cALFA_CIMA) {
367      findData(SCAN,  "SCAN_ID", TINT);
368      if (cALFA_CIMA > 1) {
369        findData(CYCLE, "RECNUM", TINT);
370      } else {
371        findData(CYCLE, "SUBSCAN", TINT);
372      }
373    } else if (cALFA_BD) {
374      findData(SCAN,  "SCAN_NUMBER", TINT);
375      findData(CYCLE, "PATTERN_NUMBER", TINT);
376    }
377  } else {
378    readData(SCAN, 1, &cFirstScanNo);
379  }
380
381  cCycleNo = 0;
382  cLastUTC = 0.0;
383
384  // Beam number, 1-relative by default.
385  cBeam_1rel = 1;
386  if (cALFA) {
387    // ALFA INPUT_ID, 0-relative (overrides BEAM column if present).
388    findData(BEAM, "INPUT_ID", TSHORT);
389    cBeam_1rel = 0;
390
391  } else if (cData[BEAM].colnum < 0) {
392    if (beamCRVAL) {
393      // There is a BEAM axis.
394      findData(BEAM, beamCRVAL, TDOUBLE);
395    } else {
396      // ms2sdfits output, 0-relative "feed" number.
397      findData(BEAM, "MAIN_FEED1", TSHORT);
398      cBeam_1rel = 0;
399    }
400  }
401
402  // IF number, 1-relative by default.
403  cIF_1rel = 1;
404  if (cALFA && cData[IF].colnum < 0) {
405    // ALFA data, 0-relative.
406    if (cALFA_CIMA > 1) {
407      findData(IF, "IFN", TSHORT);
408    } else {
409      findData(IF, "IFVAL", TSHORT);
410    }
411    cIF_1rel = 0;
412  }
413
414  if (cData[TIME].colnum < 0) {
415    if (timeCRVAL) {
416      // There is a TIME axis.
417      findData(TIME, timeCRVAL, TDOUBLE);
418    }
419  }
420
421  // ms2sdfits writes a scalar "TSYS" column that averages the polarizations.
422  int colnum;
423  findCol("SYSCAL_TSYS", &colnum);
424  if (colnum > 0) {
425    // This contains the vector Tsys.
426    findData(TSYS, "SYSCAL_TSYS", TFLOAT);
427  }
428
429  // XPOLDATA?
430
431  if (cData[SCANRATE].colnum < 0) {
432    findData(SCANRATE, "FIELD_POINTING_DIR_RATE", TFLOAT);
433  }
434
435  if (cData[RESTFRQ].colnum < 0) {
436    findData(RESTFRQ, "RESTFREQ", TDOUBLE);
437    if (cData[RESTFRQ].colnum < 0) {
438      findData(RESTFRQ, "SPECTRAL_WINDOW_REST_FREQUENCY", TDOUBLE);
439    }
440  }
441
442  if (cData[OBJ_RA].colnum < 0) {
443    findData(OBJ_RA, "SOURCE_DIRECTION", TDOUBLE);
444  }
445  if (cData[OBJ_DEC].colnum < 0) {
446    findData(OBJ_DEC, "SOURCE_DIRECTION", TDOUBLE);
447  }
448
449  // REFBEAM?
450
451  if (cData[TCAL].colnum < 0) {
452    findData(TCAL, "SYSCAL_TCAL", TFLOAT);
453  } else if (cALFA_BD) {
454    // ALFA BDFITS has a different TCAL with 64 elements - kill it!
455    findData(TCAL, "NO NO NO", TFLOAT);
456  }
457
458  if (cALFA_BD) {
459    // ALFA BDFITS.
460    findData(AZIMUTH, "CRVAL2B", TFLOAT);
461    findData(ELEVATIO, "CRVAL3B", TFLOAT);
462  }
463
464  if (cALFA) {
465    // ALFA data.
466    findData(PARANGLE, "PARA_ANG", TFLOAT);
467  }
468
469  if (cData[TAMBIENT].colnum < 0) {
470    findData(TAMBIENT, "WEATHER_TEMPERATURE", TFLOAT);
471  }
472
473  if (cData[PRESSURE].colnum < 0) {
474    findData(PRESSURE, "WEATHER_PRESSURE", TFLOAT);
475  }
476
477  if (cData[HUMIDITY].colnum < 0) {
478    findData(HUMIDITY, "WEATHER_REL_HUMIDITY", TFLOAT);
479  }
480
481  if (cData[WINDSPEE].colnum < 0) {
482    findData(WINDSPEE, "WEATHER_WIND_SPEED", TFLOAT);
483  }
484
485  if (cData[WINDDIRE].colnum < 0) {
486    findData(WINDDIRE, "WEATHER_WIND_DIRECTION", TFLOAT);
487  }
488
489
490  // Find the number of rows.
491  fits_get_num_rows(cSDptr, &cNRow, &cStatus);
492  if (!cNRow) {
493    logMsg("ERROR: Table contains no entries.");
494    close();
495    return 1;
496  }
497
498
499  // Determine which beams are present in the data.
500  if (cData[BEAM].colnum > 0) {
501    short *beamCol = new short[cNRow];
502    short beamNul = 1;
503    int   anynul;
504    if (fits_read_col(cSDptr, TSHORT, cData[BEAM].colnum, 1, 1, cNRow,
505                      &beamNul, beamCol, &anynul, &cStatus)) {
506      delete [] beamCol;
507      logMsg();
508      close();
509      return 1;
510    }
511
512    // Find the maximum beam number.
513    cNBeam = cBeam_1rel - 1;
514    for (int irow = 0; irow < cNRow; irow++) {
515      if (beamCol[irow] > cNBeam) {
516        cNBeam = beamCol[irow];
517      }
518
519      // Check validity.
520      if (beamCol[irow] < cBeam_1rel) {
521        delete [] beamCol;
522        logMsg("ERROR: SDFITS file contains invalid beam number.");
523        close();
524        return 1;
525      }
526    }
527
528    if (!cBeam_1rel) cNBeam++;
529
530    // Find all beams present in the data.
531    cBeams = new int[cNBeam];
532    for (int ibeam = 0; ibeam < cNBeam; ibeam++) {
533      cBeams[ibeam] = 0;
534    }
535
536    for (int irow = 0; irow < cNRow; irow++) {
537      cBeams[beamCol[irow] - cBeam_1rel] = 1;
538    }
539
540    delete [] beamCol;
541
542  } else {
543    // No BEAM column.
544    cNBeam = 1;
545    cBeams = new int[1];
546    cBeams[0] = 1;
547  }
548
549  // Passing back the address of the array allows PKSFITSreader::select() to
550  // modify its elements directly.
551  nBeam = cNBeam;
552  beams = cBeams;
553
554
555  // Determine which IFs are present in the data.
556  if (cData[IF].colnum > 0) {
557    short *IFCol = new short[cNRow];
558    short IFNul = 1;
559    int   anynul;
560    if (fits_read_col(cSDptr, TSHORT, cData[IF].colnum, 1, 1, cNRow,
561                      &IFNul, IFCol, &anynul, &cStatus)) {
562      delete [] IFCol;
563      logMsg();
564      close();
565      return 1;
566    }
567
568    // Find the maximum IF number.
569    cNIF = cIF_1rel - 1;
570    for (int irow = 0; irow < cNRow; irow++) {
571      if (IFCol[irow] > cNIF) {
572        cNIF = IFCol[irow];
573      }
574
575      // Check validity.
576      if (IFCol[irow] < cIF_1rel) {
577        delete [] IFCol;
578        logMsg("ERROR: SDFITS file contains invalid IF number.");
579        close();
580        return 1;
581      }
582    }
583
584    if (!cIF_1rel) cNIF++;
585
586    // Find all IFs present in the data.
587    cIFs      = new int[cNIF];
588    cNChan    = new int[cNIF];
589    cNPol     = new int[cNIF];
590    cHaveXPol = new int[cNIF];
591    cGetXPol  = 0;
592
593    for (int iIF = 0; iIF < cNIF; iIF++) {
594      cIFs[iIF]   = 0;
595      cNChan[iIF] = 0;
596      cNPol[iIF]  = 0;
597      cHaveXPol[iIF] = 0;
598    }
599
600    for (int irow = 0; irow < cNRow; irow++) {
601      int iIF = IFCol[irow] - cIF_1rel;
602      if (cIFs[iIF] == 0) {
603        cIFs[iIF] = 1;
604
605        // Find the axis lengths.
606        if (cHaveSpectra) {
607          if (cData[DATA].nelem < 0) {
608            // Variable dimension array.
609            if (readDim(DATA, irow+1, &cNAxis, cNAxes)) {
610              logMsg();
611              close();
612              return 1;
613            }
614          }
615
616        } else {
617          if (cData[DATAXED].colnum > 0) {
618            char dataxed[32];
619            readParm("DATAXED", TSTRING, dataxed);
620
621            sscanf(dataxed, "(%ld,%ld,%ld,%ld,%ld)", cNAxes, cNAxes+1,
622              cNAxes+2, cNAxes+3, cNAxes+4);
623          }
624        }
625
626        // Number of channels and polarizations.
627        cNChan[iIF]    = cNAxes[cReqax[0]];
628        cNPol[iIF]     = cNAxes[cReqax[1]];
629        cHaveXPol[iIF] = 0;
630
631        // Is cross-polarization data present?
632        if (cData[XPOLDATA].colnum > 0) {
633          // Check that it conforms.
634          int  nAxis;
635          long nAxes[2];
636
637          if (readDim(XPOLDATA, irow+1, &nAxis, nAxes)) {
638            logMsg();
639            close();
640            return 1;
641          }
642
643          // Default is to get it if we have it.
644          if (nAxis    == 2 &&
645              nAxes[0] == 2 &&
646              nAxes[1] == cNChan[iIF]) {
647            cGetXPol = cHaveXPol[iIF] = 1;
648          }
649        }
650      }
651    }
652
653    delete [] IFCol;
654
655  } else {
656    // No IF column.
657    cNIF = 1;
658    cIFs = new int[1];
659    cIFs[0] = 1;
660
661    cNChan    = new int[1];
662    cNPol     = new int[1];
663    cHaveXPol = new int[1];
664    cGetXPol  = 0;
665
666    // Number of channels and polarizations.
667    cNChan[0] = cNAxes[cReqax[0]];
668    cNPol[0]  = cNAxes[cReqax[1]];
669    cHaveXPol[0] = 0;
670  }
671
672  if (cALFA && cALFA_CIMA < 2) {
673    // Older ALFA data labels each polarization as a separate IF.
674    cNPol[0] = cNIF;
675    cNIF = 1;
676  }
677
678  // Passing back the address of the array allows PKSFITSreader::select() to
679  // modify its elements directly.
680  nIF = cNIF;
681  IFs = cIFs;
682
683  nChan    = cNChan;
684  nPol     = cNPol;
685  haveXPol = cHaveXPol;
686
687
688  // Default channel range selection.
689  cStartChan = new int[cNIF];
690  cEndChan   = new int[cNIF];
691  cRefChan   = new int[cNIF];
692
693  for (int iIF = 0; iIF < cNIF; iIF++) {
694    cStartChan[iIF] = 1;
695    cEndChan[iIF] = cNChan[iIF];
696    cRefChan[iIF] = cNChan[iIF]/2 + 1;
697  }
698
699  // Default is to get it if we have it.
700  cGetSpectra = cHaveSpectra;
701
702
703  // Are baseline parameters present?
704  cHaveBase = 0;
705  if (cData[BASELIN].colnum) {
706    // Check that it conforms.
707    int  nAxis, status = 0;
708    long nAxes[2];
709
710    if (fits_read_tdim(cSDptr, cData[BASELIN].colnum, 2, &nAxis, nAxes,
711                       &status) == 0) {
712      cHaveBase = (nAxis == 2);
713    }
714  }
715  haveBase = cHaveBase;
716
717
718  // Is extra system calibration data available?
719  cExtraSysCal = 0;
720  for (int iparm = REFBEAM; iparm < NDATA; iparm++) {
721    if (cData[iparm].colnum >= 0) {
722      cExtraSysCal = 1;
723      break;
724    }
725  }
726
727  extraSysCal = cExtraSysCal;
728
729  return 0;
730}
731
732//---------------------------------------------------- SDFITSreader::getHeader
733
734// Get parameters describing the data.
735
736int SDFITSreader::getHeader(
737        char   observer[32],
738        char   project[32],
739        char   telescope[32],
740        double antPos[3],
741        char   obsMode[32],
742        char   bunit[32],
743        float  &equinox,
744        char   radecsys[32],
745        char   dopplerFrame[32],
746        char   datobs[32],
747        double &utc,
748        double &refFreq,
749        double &bandwidth)
750{
751  // Has the file been opened?
752  if (!cSDptr) {
753    return 1;
754  }
755
756  // Read parameter values.
757  readParm("OBSERVER", TSTRING, observer);              // Shared.
758  readParm("PROJID",   TSTRING, project);               // Shared.
759  readParm("TELESCOP", TSTRING, telescope);             // Core.
760
761  antPos[0] = 0.0;
762  antPos[1] = 0.0;
763  antPos[2] = 0.0;
764  if (readParm("ANTENNA_POSITION", TDOUBLE, antPos)) {
765    readParm("OBSGEO-X",  TDOUBLE, antPos);             // Additional.
766    readParm("OBSGEO-Y",  TDOUBLE, antPos + 1);         // Additional.
767    readParm("OBSGEO-Z",  TDOUBLE, antPos + 2);         // Additional.
768  }
769
770  if (antPos[0] == 0.0) {
771    if (strncmp(telescope, "ATPKS", 5) == 0) {
772      // Parkes coordinates.
773      antPos[0] = -4554232.087;
774      antPos[1] =  2816759.046;
775      antPos[2] = -3454035.950;
776    } else if (strncmp(telescope, "ATMOPRA", 7) == 0) {
777      // Mopra coordinates.
778      antPos[0] = -4682768.630;
779      antPos[1] =  2802619.060;
780      antPos[2] = -3291759.900;
781    } else if (strncmp(telescope, "ARECIBO", 7) == 0) {
782      // Arecibo coordinates.
783      antPos[0] =  2390486.900;
784      antPos[1] = -5564731.440;
785      antPos[2] =  1994720.450;
786    }
787  }
788
789  readData(OBSMODE, 1, obsMode);                        // Shared.
790
791  // Brightness unit.
792  if (cData[DATAXED].colnum >= 0) {
793    strcpy(bunit, "Jy");
794  } else {
795    strcpy(bunit, cData[DATA].units);
796  }
797
798  if (strcmp(bunit, "JY") == 0) {
799    bunit[1] = 'y';
800  } else if (strcmp(bunit, "JY/BEAM") == 0) {
801    strcpy(bunit, "Jy/beam");
802  }
803
804  readParm("EQUINOX",  TFLOAT,  &equinox);              // Shared.
805  if (cStatus == 405) {
806    // EQUINOX was written as string value in early versions.
807    cStatus = 0;
808    char strtmp[32];
809    readParm("EQUINOX", TSTRING, strtmp);
810    sscanf(strtmp, "%f", &equinox);
811  }
812
813  if (readParm("RADESYS", TSTRING, radecsys)) {         // Additional.
814    if (readParm("RADECSYS", TSTRING, radecsys)) {      // Additional.
815      strcpy(radecsys, "");
816    }
817  }
818
819  if (readParm("SPECSYS", TSTRING, dopplerFrame)) {     // Additional.
820    // Fallback value.
821    strcpy(dopplerFrame, "TOPOCENT");
822
823    // Look for VELFRAME, written by earlier versions of Livedata.
824    if (readParm("VELFRAME", TSTRING, dopplerFrame)) {  // Additional.
825      // No, try digging it out of the CTYPE card (AIPS convention).
826      char keyw[9], ctype[9];
827      sprintf(keyw, "CTYPE%ld", cReqax[0]+1);
828      readParm(keyw, TSTRING, ctype);
829
830      if (strncmp(ctype, "FREQ-", 5) == 0) {
831        strcpy(dopplerFrame, ctype+5);
832        if (strcmp(dopplerFrame, "LSR") == 0) {
833          // LSR unqualified usually means LSR (kinematic).
834          strcpy(dopplerFrame, "LSRK");
835        } else if (strcmp(dopplerFrame, "HEL") == 0) {
836          // Almost certainly barycentric.
837          strcpy(dopplerFrame, "BARYCENT");
838        }
839      } else {
840        strcpy(dopplerFrame, "");
841      }
842    }
843
844    // Translate to FITS standard names.
845    if (strncmp(dopplerFrame, "TOP", 3) == 0) {
846      strcpy(dopplerFrame, "TOPOCENT");
847    } else if (strncmp(dopplerFrame, "GEO", 3) == 0) {
848      strcpy(dopplerFrame, "GEOCENTR");
849    } else if (strncmp(dopplerFrame, "HEL", 3) == 0) {
850      strcpy(dopplerFrame, "HELIOCEN");
851    } else if (strncmp(dopplerFrame, "BARY", 4) == 0) {
852      strcpy(dopplerFrame, "BARYCENT");
853    }
854  }
855
856  if (cStatus) {
857    logMsg();
858    return 1;
859  }
860
861  // Get parameters from first row of table.
862  readData(DATE_OBS, 1, datobs);
863  readData(TIME,     1, &utc);
864  readData(FqRefVal, 1, &refFreq);
865  readParm("BANDWID", TDOUBLE, &bandwidth);             // Core.
866
867  if (cALFA_BD) utc *= 3600.0;
868
869  if (cStatus) {
870    logMsg();
871    return 1;
872  }
873
874  // Check DATE-OBS format.
875  if (datobs[2] == '/') {
876    // Translate an old-format DATE-OBS.
877    datobs[9] = datobs[1];
878    datobs[8] = datobs[0];
879    datobs[2] = datobs[6];
880    datobs[5] = datobs[3];
881    datobs[3] = datobs[7];
882    datobs[6] = datobs[4];
883    datobs[7] = '-';
884    datobs[4] = '-';
885    datobs[1] = '9';
886    datobs[0] = '1';
887    datobs[10] = '\0';
888
889  } else if (datobs[10] == 'T' && cData[TIME].colnum < 0) {
890    // Dig UTC out of a new-format DATE-OBS.
891    int   hh, mm;
892    float ss;
893    sscanf(datobs+11, "%d:%d:%f", &hh, &mm, &ss);
894    utc = (hh*60 + mm)*60 + ss;
895    datobs[10] = '\0';
896  }
897
898  return 0;
899}
900
901//-------------------------------------------------- SDFITSreader::getFreqInfo
902
903// Get frequency parameters for each IF.
904
905int SDFITSreader::getFreqInfo(
906        int     &nIF,
907        double* &startFreq,
908        double* &endFreq)
909{
910  float  fqRefPix;
911  double fqDelt, fqRefVal;
912
913  nIF = cNIF;
914  startFreq = new double[nIF];
915  endFreq   = new double[nIF];
916
917  if (cData[IF].colnum > 0) {
918    short *IFCol = new short[cNRow];
919    short IFNul = 1;
920    int   anynul;
921    if (fits_read_col(cSDptr, TSHORT, cData[IF].colnum, 1, 1, cNRow,
922                      &IFNul, IFCol, &anynul, &cStatus)) {
923      delete [] IFCol;
924      logMsg();
925      close();
926      return 1;
927    }
928
929    for (int iIF = 0; iIF < nIF; iIF++) {
930      if (cIFs[iIF]) {
931        // Find the first occurrence of this IF in the table.
932        int IFno = iIF + cIF_1rel;
933        for (int irow = 0; irow < cNRow;) {
934          if (IFCol[irow++] == IFno) {
935            readData(FqRefPix, irow, &fqRefPix);
936            readData(FqRefVal, irow, &fqRefVal);
937            readData(FqDelt,   irow, &fqDelt);
938
939            if (cALFA_BD) {
940              unsigned char invert;
941              readData("UPPERSB", TBYTE, irow, &invert);
942
943              if (invert) {
944                fqDelt = -fqDelt;
945              }
946            }
947
948            startFreq[iIF] = fqRefVal + (          1 - fqRefPix) * fqDelt;
949            endFreq[iIF]   = fqRefVal + (cNChan[iIF] - fqRefPix) * fqDelt;
950
951            break;
952          }
953        }
954
955      } else {
956        startFreq[iIF] = 0.0;
957        endFreq[iIF]   = 0.0;
958      }
959    }
960
961    delete [] IFCol;
962
963  } else {
964    // No IF column, read the first table entry.
965    readData(FqRefPix, 1, &fqRefPix);
966    readData(FqRefVal, 1, &fqRefVal);
967    readData(FqDelt,   1, &fqDelt);
968
969    startFreq[0] = fqRefVal + (        1 - fqRefPix) * fqDelt;
970    endFreq[0]   = fqRefVal + (cNChan[0] - fqRefPix) * fqDelt;
971  }
972
973  return cStatus;
974}
975
976//---------------------------------------------------- SDFITSreader::findRange
977
978// Find the range of the data in time and position.
979
980int SDFITSreader::findRange(
981        int    &nRow,
982        int    &nSel,
983        char   dateSpan[2][32],
984        double utcSpan[2],
985        double* &positions)
986{
987  // Has the file been opened?
988  if (!cSDptr) {
989    return 1;
990  }
991
992  nRow = cNRow;
993
994  // Find the number of rows selected.
995  short *sel = new short[nRow];
996  for (int irow = 0; irow < nRow; irow++) {
997    sel[irow] = 1;
998  }
999
1000  int anynul;
1001  if (cData[BEAM].colnum > 0) {
1002    short *beamCol = new short[cNRow];
1003    short beamNul = 1;
1004    if (fits_read_col(cSDptr, TSHORT, cData[BEAM].colnum, 1, 1, cNRow,
1005                      &beamNul, beamCol, &anynul, &cStatus)) {
1006      delete [] beamCol;
1007      delete [] sel;
1008      logMsg();
1009      return 1;
1010    }
1011
1012    for (int irow = 0; irow < nRow; irow++) {
1013      if (!cBeams[beamCol[irow]-cBeam_1rel]) {
1014        sel[irow] = 0;
1015      }
1016    }
1017
1018    delete [] beamCol;
1019  }
1020
1021  if (cData[IF].colnum > 0) {
1022    short *IFCol = new short[cNRow];
1023    short IFNul = 1;
1024    if (fits_read_col(cSDptr, TSHORT, cData[IF].colnum, 1, 1, cNRow,
1025                      &IFNul, IFCol, &anynul, &cStatus)) {
1026      delete [] IFCol;
1027      delete [] sel;
1028      logMsg();
1029      return 1;
1030    }
1031
1032    for (int irow = 0; irow < nRow; irow++) {
1033      if (!cIFs[IFCol[irow]-cIF_1rel]) {
1034        sel[irow] = 0;
1035      }
1036    }
1037
1038    delete [] IFCol;
1039  }
1040
1041  nSel = 0;
1042  for (int irow = 0; irow < nRow; irow++) {
1043    nSel += sel[irow];
1044  }
1045
1046
1047  // Find the time range assuming the data is in chronological order.
1048  readData(DATE_OBS, 1,    dateSpan[0]);
1049  readData(DATE_OBS, nRow, dateSpan[1]);
1050  readData(TIME, 1,    utcSpan);
1051  readData(TIME, nRow, utcSpan+1);
1052
1053  if (cALFA_BD) {
1054    utcSpan[0] *= 3600.0;
1055    utcSpan[1] *= 3600.0;
1056  }
1057
1058  // Check DATE-OBS format.
1059  for (int i = 0; i < 2; i++) {
1060    if (dateSpan[0][2] == '/') {
1061      // Translate an old-format DATE-OBS.
1062      dateSpan[i][9] = dateSpan[i][1];
1063      dateSpan[i][8] = dateSpan[i][0];
1064      dateSpan[i][2] = dateSpan[i][6];
1065      dateSpan[i][5] = dateSpan[i][3];
1066      dateSpan[i][3] = dateSpan[i][7];
1067      dateSpan[i][6] = dateSpan[i][4];
1068      dateSpan[i][7] = '-';
1069      dateSpan[i][4] = '-';
1070      dateSpan[i][1] = '9';
1071      dateSpan[i][0] = '1';
1072      dateSpan[i][10] = '\0';
1073    }
1074
1075    if (dateSpan[i][10] == 'T' && cData[TIME].colnum < 0) {
1076      // Dig UTC out of a new-format DATE-OBS.
1077      int   hh, mm;
1078      float ss;
1079      sscanf(dateSpan[i]+11, "%d:%d:%f", &hh, &mm, &ss);
1080      utcSpan[i] = (hh*60 + mm)*60 + ss;
1081    }
1082  }
1083
1084
1085  // Retrieve positions for selected data.
1086  int isel = 0;
1087  positions = new double[2*nSel];
1088
1089  if (cCoordSys == 1) {
1090    // Vertical (Az,El).
1091    if (cData[AZIMUTH].colnum  < 1 ||
1092        cData[ELEVATIO].colnum < 1) {
1093      logMsg("WARNING: Azimuth/elevation information absent.");
1094      cStatus = -1;
1095
1096    } else {
1097      float *az = new float[cNRow];
1098      float *el = new float[cNRow];
1099      fits_read_col(cSDptr, TFLOAT, cData[AZIMUTH].colnum,  1, 1, nRow, 0, az,
1100                    &anynul, &cStatus);
1101      fits_read_col(cSDptr, TFLOAT, cData[ELEVATIO].colnum, 1, 1, nRow, 0, el,
1102                    &anynul, &cStatus);
1103
1104      if (!cStatus) {
1105        for (int irow = 0; irow < nRow; irow++) {
1106          if (sel[irow]) {
1107            positions[isel++] = az[irow] * D2R;
1108            positions[isel++] = el[irow] * D2R;
1109          }
1110        }
1111      }
1112
1113      delete [] az;
1114      delete [] el;
1115    }
1116
1117  } else {
1118    double *ra  = new double[cNRow];
1119    double *dec = new double[cNRow];
1120    fits_read_col(cSDptr, TDOUBLE, cData[RA].colnum,  1, 1, nRow, 0, ra,
1121                  &anynul, &cStatus);
1122    fits_read_col(cSDptr, TDOUBLE, cData[DEC].colnum, 1, 1, nRow, 0, dec,
1123                  &anynul, &cStatus);
1124    if (cStatus) {
1125      delete [] ra;
1126      delete [] dec;
1127      goto cleanup;
1128    }
1129
1130    if (cALFA_BD) {
1131      for (int irow = 0; irow < nRow; irow++) {
1132        // Convert hours to degrees.
1133        ra[irow] *= 15.0;
1134      }
1135    }
1136
1137    if (cCoordSys == 0) {
1138      // Equatorial (RA,Dec).
1139      for (int irow = 0; irow < nRow; irow++) {
1140        if (sel[irow]) {
1141          positions[isel++] =  ra[irow] * D2R;
1142          positions[isel++] = dec[irow] * D2R;
1143        }
1144      }
1145
1146    } else if (cCoordSys == 2) {
1147      // Feed-plane.
1148      if (cData[OBJ_RA].colnum   < 0 ||
1149          cData[OBJ_DEC].colnum  < 0 ||
1150          cData[PARANGLE].colnum < 1 ||
1151          cData[FOCUSROT].colnum < 1) {
1152        logMsg("WARNING: Insufficient information to compute feed-plane\n"
1153               "         coordinates.");
1154        cStatus = -1;
1155
1156      } else {
1157        double *srcRA  = new double[cNRow];
1158        double *srcDec = new double[cNRow];
1159        float  *par = new float[cNRow];
1160        float  *rot = new float[cNRow];
1161
1162        if (cData[OBJ_RA].colnum == 0) {
1163          // Header keyword.
1164          readData(OBJ_RA, 0, srcRA);
1165          for (int irow = 1; irow < nRow; irow++) {
1166            srcRA[irow] = *srcRA;
1167          }
1168        } else {
1169          // Table column.
1170          fits_read_col(cSDptr, TDOUBLE, cData[OBJ_RA].colnum,   1, 1, nRow,
1171                        0, srcRA,  &anynul, &cStatus);
1172        }
1173
1174        if (cData[OBJ_DEC].colnum == 0) {
1175          // Header keyword.
1176          readData(OBJ_DEC, 0, srcDec);
1177          for (int irow = 1; irow < nRow; irow++) {
1178            srcDec[irow] = *srcDec;
1179          }
1180        } else {
1181          // Table column.
1182          fits_read_col(cSDptr, TDOUBLE, cData[OBJ_DEC].colnum,  1, 1, nRow,
1183                        0, srcDec, &anynul, &cStatus);
1184        }
1185
1186        fits_read_col(cSDptr, TFLOAT,  cData[PARANGLE].colnum, 1, 1, nRow, 0,
1187                      par,    &anynul, &cStatus);
1188        fits_read_col(cSDptr, TFLOAT,  cData[FOCUSROT].colnum, 1, 1, nRow, 0,
1189                      rot,    &anynul, &cStatus);
1190
1191        if (!cStatus) {
1192          for (int irow = 0; irow < nRow; irow++) {
1193            if (sel[irow]) {
1194              // Convert to feed-plane coordinates.
1195              Double dist, pa;
1196              distPA(ra[irow]*D2R, dec[irow]*D2R, srcRA[irow]*D2R,
1197                     srcDec[irow]*D2R, dist, pa);
1198
1199              Double spin = (par[irow] + rot[irow])*D2R - pa + PI;
1200              if (spin > 2.0*PI) spin -= 2.0*PI;
1201              Double squint = PI/2.0 - dist;
1202
1203              positions[isel++] = spin;
1204              positions[isel++] = squint;
1205            }
1206          }
1207        }
1208
1209        delete [] srcRA;
1210        delete [] srcDec;
1211        delete [] par;
1212        delete [] rot;
1213      }
1214    }
1215
1216    delete [] ra;
1217    delete [] dec;
1218  }
1219
1220cleanup:
1221  delete [] sel;
1222
1223  if (cStatus) {
1224    nSel = 0;
1225    delete [] positions;
1226    logMsg();
1227    cStatus = 0;
1228    return 1;
1229  }
1230
1231  return 0;
1232}
1233
1234
1235//--------------------------------------------------------- SDFITSreader::read
1236
1237// Read the next data record.
1238
1239int SDFITSreader::read(
1240        MBrecord &mbrec)
1241{
1242  // Has the file been opened?
1243  if (!cSDptr) {
1244    return 1;
1245  }
1246
1247  // Find the next selected beam and IF.
1248  short iBeam = 0, iIF = 0;
1249  while (++cRow <= cNRow) {
1250    if (cData[BEAM].colnum > 0) {
1251      readData(BEAM, cRow, &iBeam);
1252
1253      // Convert to 0-relative.
1254      if (cBeam_1rel) iBeam--;
1255    }
1256
1257
1258    if (cBeams[iBeam]) {
1259      if (cData[IF].colnum > 0) {
1260        readData(IF, cRow, &iIF);
1261
1262        // Convert to 0-relative.
1263        if (cIF_1rel) iIF--;
1264      }
1265
1266      if (cIFs[iIF]) {
1267        if (cALFA) {
1268          // ALFA data, check for calibration data.
1269          char chars[32];
1270          readData(OBSMODE, cRow, chars);
1271          if (strcmp(chars, "CAL") == 0) {
1272            if (cALFA_CIMA > 1) {
1273              for (short iPol = 0; iPol < cNPol[iIF]; iPol++) {
1274                alfaCal(iBeam, iIF, iPol);
1275              }
1276              continue;
1277            } else {
1278              // iIF is really the polarization in older ALFA data.
1279              alfaCal(iBeam, 0, iIF);
1280              continue;
1281            }
1282          }
1283        }
1284
1285        break;
1286      }
1287    }
1288  }
1289
1290  // EOF?
1291  if (cRow > cNRow) {
1292    return -1;
1293  }
1294
1295
1296  if (cALFA) {
1297    int scanNo;
1298    readData(SCAN, cRow, &scanNo);
1299    if (scanNo != cALFAscan) {
1300      cScanNo++;
1301      cALFAscan = scanNo;
1302    }
1303    mbrec.scanNo = cScanNo;
1304
1305  } else {
1306    readData(SCAN, cRow, &mbrec.scanNo);
1307
1308    // Ensure that scan number is 1-relative.
1309    mbrec.scanNo -= (cFirstScanNo - 1);
1310  }
1311
1312  // Times.
1313  char datobs[32];
1314  readData(DATE_OBS, cRow,  datobs);
1315  readData(TIME,     cRow, &mbrec.utc);
1316  if (cALFA_BD) mbrec.utc *= 3600.0;
1317
1318  if (datobs[2] == '/') {
1319    // Translate an old-format DATE-OBS.
1320    datobs[9] = datobs[1];
1321    datobs[8] = datobs[0];
1322    datobs[2] = datobs[6];
1323    datobs[5] = datobs[3];
1324    datobs[3] = datobs[7];
1325    datobs[6] = datobs[4];
1326    datobs[7] = '-';
1327    datobs[4] = '-';
1328    datobs[1] = '9';
1329    datobs[0] = '1';
1330
1331  } else if (datobs[10] == 'T' && cData[TIME].colnum < 0) {
1332    // Dig UTC out of a new-format DATE-OBS.
1333    int   hh, mm;
1334    float ss;
1335    sscanf(datobs+11, "%d:%d:%f", &hh, &mm, &ss);
1336    mbrec.utc = (hh*60 + mm)*60 + ss;
1337  }
1338
1339  datobs[10] = '\0';
1340  strcpy(mbrec.datobs, datobs);
1341
1342  if (cData[CYCLE].colnum > 0) {
1343    readData(CYCLE, cRow, &mbrec.cycleNo);
1344    if (cALFA_BD) mbrec.cycleNo++;
1345  } else {
1346    // Cycle number not recorded, must do our own bookkeeping.
1347    if (mbrec.utc != cLastUTC) {
1348      mbrec.cycleNo = ++cCycleNo;
1349      cLastUTC = mbrec.utc;
1350    }
1351  }
1352
1353  readData(EXPOSURE, cRow, &mbrec.exposure);
1354
1355  // Source identification.
1356  readData(OBJECT, cRow, mbrec.srcName);
1357
1358  readData(OBJ_RA,  cRow, &mbrec.srcRA);
1359  if (strcmp(cData[OBJ_RA].name, "OBJ-RA") == 0) {
1360    mbrec.srcRA  *= D2R;
1361  }
1362
1363  if (strcmp(cData[OBJ_DEC].name, "OBJ-DEC") == 0) {
1364    readData(OBJ_DEC, cRow, &mbrec.srcDec);
1365    mbrec.srcDec *= D2R;
1366  }
1367
1368  // Line rest frequency (Hz).
1369  readData(RESTFRQ, cRow, &mbrec.restFreq);
1370  if (mbrec.restFreq == 0.0 && cALFA_BD) {
1371    mbrec.restFreq = 1420.40575e6;
1372  }
1373
1374  // Observation mode.
1375  readData(OBSMODE, cRow, mbrec.obsType);
1376
1377  // Beam-dependent parameters.
1378  mbrec.beamNo = iBeam + 1;
1379
1380  readData(RA,  cRow, &mbrec.ra);
1381  readData(DEC, cRow, &mbrec.dec);
1382  mbrec.ra  *= D2R;
1383  mbrec.dec *= D2R;
1384
1385  if (cALFA_BD) mbrec.ra *= 15.0;
1386
1387  float scanrate[2];
1388  readData(SCANRATE, cRow, &scanrate);
1389  if (strcmp(cData[SCANRATE].name, "SCANRATE") == 0) {
1390    mbrec.raRate  = scanrate[0] * D2R;
1391    mbrec.decRate = scanrate[1] * D2R;
1392  }
1393  mbrec.paRate = 0.0f;
1394
1395  // IF-dependent parameters.
1396  int startChan = cStartChan[iIF];
1397  int endChan   = cEndChan[iIF];
1398  int refChan   = cRefChan[iIF];
1399
1400  // Allocate data storage.
1401  int nChan = abs(endChan - startChan) + 1;
1402  int nPol = cNPol[iIF];
1403
1404  if (cGetSpectra || cGetXPol) {
1405    int nxpol = cGetXPol ? 2*nChan : 0;
1406    mbrec.allocate(0, nChan*nPol, nxpol);
1407  }
1408
1409  mbrec.nIF = 1;
1410  mbrec.IFno[0]  = iIF + 1;
1411  mbrec.nChan[0] = nChan;
1412  mbrec.nPol[0]  = nPol;
1413
1414  readData(FqRefPix, cRow, mbrec.fqRefPix);
1415  readData(FqRefVal, cRow, mbrec.fqRefVal);
1416  readData(FqDelt,   cRow, mbrec.fqDelt);
1417
1418  if (cALFA_BD) {
1419    unsigned char invert;
1420    int anynul, colnum;
1421    findCol("UPPERSB", &colnum);
1422    fits_read_col(cSDptr, TBYTE, colnum, cRow, 1, 1, 0, &invert, &anynul,
1423                  &cStatus);
1424
1425    if (invert) {
1426      mbrec.fqDelt[0] = -mbrec.fqDelt[0];
1427    }
1428  }
1429
1430  if (cStatus) {
1431    logMsg();
1432    return 1;
1433  }
1434
1435  // Adjust for channel selection.
1436  if (mbrec.fqRefPix[0] != refChan) {
1437    mbrec.fqRefVal[0] += (refChan - mbrec.fqRefPix[0]) * mbrec.fqDelt[0];
1438    mbrec.fqRefPix[0]  =  refChan;
1439  }
1440
1441  if (endChan < startChan) {
1442    mbrec.fqDelt[0] = -mbrec.fqDelt[0];
1443  }
1444
1445  // The data may only have a scalar Tsys value.
1446  mbrec.tsys[0][0] = 0.0f;
1447  mbrec.tsys[0][1] = 0.0f;
1448  if (cData[TSYS].nelem >= nPol) {
1449    readData(TSYS, cRow, mbrec.tsys[0]);
1450  }
1451
1452  for (int j = 0; j < 2; j++) {
1453    mbrec.calfctr[0][j] = 0.0f;
1454  }
1455  if (cData[CALFCTR].colnum > 0) {
1456    readData(CALFCTR, cRow, mbrec.calfctr);
1457  }
1458
1459  if (cHaveBase) {
1460    mbrec.haveBase = 1;
1461    readData(BASELIN, cRow, mbrec.baseLin);
1462    readData(BASESUB, cRow, mbrec.baseSub);
1463  } else {
1464    mbrec.haveBase = 0;
1465  }
1466
1467  if (cStatus) {
1468    logMsg();
1469    return 1;
1470  }
1471
1472  // Read data, sectioning and transposing it in the process.
1473  long *blc = new long[cNAxis+1];
1474  long *trc = new long[cNAxis+1];
1475  long *inc = new long[cNAxis+1];
1476  for (int iaxis = 0; iaxis <= cNAxis; iaxis++) {
1477    blc[iaxis] = 1;
1478    trc[iaxis] = 1;
1479    inc[iaxis] = 1;
1480  }
1481
1482  blc[cReqax[0]] = std::min(startChan, endChan);
1483  trc[cReqax[0]] = std::max(startChan, endChan);
1484  blc[cNAxis] = cRow;
1485  trc[cNAxis] = cRow;
1486
1487  mbrec.haveSpectra = cGetSpectra;
1488  if (cGetSpectra) {
1489    int  anynul;
1490
1491    for (int ipol = 0; ipol < nPol; ipol++) {
1492      blc[cReqax[1]] = ipol+1;
1493      trc[cReqax[1]] = ipol+1;
1494
1495      if (cALFA && cALFA_CIMA < 2) {
1496        // ALFA data: polarizations are stored in successive rows.
1497        blc[cReqax[1]] = 1;
1498        trc[cReqax[1]] = 1;
1499
1500        if (ipol) {
1501          if (++cRow > cNRow) {
1502            return -1;
1503          }
1504
1505          blc[cNAxis] = cRow;
1506          trc[cNAxis] = cRow;
1507        }
1508
1509      } else if (cData[DATA].nelem < 0) {
1510        // Variable dimension array; get axis lengths.
1511        int  naxis = 5, status;
1512
1513        if ((status = readDim(DATA, cRow, &naxis, cNAxes))) {
1514          logMsg();
1515
1516        } else if ((status = (naxis != cNAxis))) {
1517          logMsg("ERROR: DATA array dimensions changed.");
1518        }
1519
1520        if (status) {
1521          delete [] blc;
1522          delete [] trc;
1523          delete [] inc;
1524          return 1;
1525        }
1526      }
1527
1528      if (fits_read_subset_flt(cSDptr, cData[DATA].colnum, cNAxis, cNAxes,
1529          blc, trc, inc, 0, mbrec.spectra[0] + ipol*nChan, &anynul,
1530          &cStatus)) {
1531        logMsg();
1532        delete [] blc;
1533        delete [] trc;
1534        delete [] inc;
1535        return 1;
1536      }
1537
1538      if (endChan < startChan) {
1539        // Reverse the spectrum.
1540        float *iptr = mbrec.spectra[0] + ipol*nChan;
1541        float *jptr = iptr + nChan - 1;
1542        float *mid  = iptr + nChan/2;
1543        while (iptr < mid) {
1544          float tmp = *iptr;
1545          *(iptr++) = *jptr;
1546          *(jptr--) = tmp;
1547        }
1548      }
1549
1550      if (cALFA) {
1551        // ALFA data, rescale the spectrum.
1552        float *chan  = mbrec.spectra[0] + ipol*nChan;
1553        float *chanN = chan + nChan;
1554        while (chan < chanN) {
1555          // Approximate conversion to Jy.
1556          *(chan++) *= cALFAcal[iBeam][iIF];
1557        }
1558      }
1559
1560      if (mbrec.tsys[0][ipol] == 0.0) {
1561        // Compute Tsys as the average across the spectrum.
1562        float *chan  = mbrec.spectra[0] + ipol*nChan;
1563        float *chanN = chan + nChan;
1564        float *tsys = mbrec.tsys[0] + ipol;
1565        while (chan < chanN) {
1566          *tsys += *(chan++);
1567        }
1568
1569        *tsys /= nChan;
1570      }
1571
1572      // Read data flags.
1573      if (cData[FLAGGED].colnum > 0) {
1574        if (fits_read_subset_byt(cSDptr, cData[FLAGGED].colnum, cNAxis,
1575            cNAxes, blc, trc, inc, 0, mbrec.flagged[0] + ipol*nChan, &anynul,
1576            &cStatus)) {
1577          logMsg();
1578          delete [] blc;
1579          delete [] trc;
1580          delete [] inc;
1581          return 1;
1582        }
1583
1584        if (endChan < startChan) {
1585          // Reverse the flag vector.
1586          unsigned char *iptr = mbrec.flagged[0] + ipol*nChan;
1587          unsigned char *jptr = iptr + nChan - 1;
1588          for (int ichan = 0; ichan < nChan/2; ichan++) {
1589            unsigned char tmp = *iptr;
1590            *(iptr++) = *jptr;
1591            *(jptr--) = tmp;
1592          }
1593        }
1594
1595      } else {
1596        // All channels are unflagged by default.
1597        unsigned char *iptr = mbrec.flagged[0] + ipol*nChan;
1598        for (int ichan = 0; ichan < nChan; ichan++) {
1599          *(iptr++) = 0;
1600        }
1601      }
1602    }
1603  }
1604
1605
1606  // Read cross-polarization data.
1607  if (cGetXPol) {
1608    int anynul;
1609    for (int j = 0; j < 2; j++) {
1610      mbrec.xcalfctr[0][j] = 0.0f;
1611    }
1612    if (cData[XCALFCTR].colnum > 0) {
1613      readData(XCALFCTR, cRow, mbrec.xcalfctr);
1614    }
1615
1616    blc[0] = 1;
1617    trc[0] = 2;
1618    blc[1] = std::min(startChan, endChan);
1619    trc[1] = std::max(startChan, endChan);
1620    blc[2] = cRow;
1621    trc[2] = cRow;
1622
1623    int  nAxis = 2;
1624    long nAxes[] = {2, nChan};
1625
1626    if (fits_read_subset_flt(cSDptr, cData[XPOLDATA].colnum, nAxis, nAxes,
1627        blc, trc, inc, 0, mbrec.xpol[0], &anynul, &cStatus)) {
1628      logMsg();
1629      delete [] blc;
1630      delete [] trc;
1631      delete [] inc;
1632      return 1;
1633    }
1634
1635    if (endChan < startChan) {
1636      // Invert the cross-polarization spectrum.
1637      float *iptr = mbrec.xpol[0];
1638      float *jptr = iptr + nChan - 2;
1639      for (int ichan = 0; ichan < nChan/2; ichan++) {
1640        float tmp = *iptr;
1641        *iptr = *jptr;
1642        *jptr = tmp;
1643
1644        tmp = *(iptr+1);
1645        *(iptr+1) = *(jptr+1);
1646        *(jptr+1) = tmp;
1647
1648        iptr += 2;
1649        jptr -= 2;
1650      }
1651    }
1652  }
1653
1654  delete [] blc;
1655  delete [] trc;
1656  delete [] inc;
1657
1658  if (cStatus) {
1659    logMsg();
1660    return 1;
1661  }
1662
1663  mbrec.extraSysCal = cExtraSysCal;
1664  readData(REFBEAM,  cRow, &mbrec.refBeam);
1665  readData(TCAL,     cRow, &mbrec.tcal[0]);
1666  readData(TCALTIME, cRow,  mbrec.tcalTime);
1667
1668  readData(AZIMUTH,  cRow, &mbrec.azimuth);
1669  readData(ELEVATIO, cRow, &mbrec.elevation);
1670  readData(PARANGLE, cRow, &mbrec.parAngle);
1671
1672  readData(FOCUSAXI, cRow, &mbrec.focusAxi);
1673  readData(FOCUSTAN, cRow, &mbrec.focusTan);
1674  readData(FOCUSROT, cRow, &mbrec.focusRot);
1675
1676  readData(TAMBIENT, cRow, &mbrec.temp);
1677  readData(PRESSURE, cRow, &mbrec.pressure);
1678  readData(HUMIDITY, cRow, &mbrec.humidity);
1679  readData(WINDSPEE, cRow, &mbrec.windSpeed);
1680  readData(WINDDIRE, cRow, &mbrec.windAz);
1681
1682  if (cALFA_BD) {
1683    // ALFA BDFITS stores zenith angle rather than elevation.
1684    mbrec.elevation = 90.0 - mbrec.elevation;
1685  }
1686
1687  mbrec.azimuth   *= D2R;
1688  mbrec.elevation *= D2R;
1689  mbrec.parAngle  *= D2R;
1690  mbrec.focusRot  *= D2R;
1691  mbrec.windAz    *= D2R;
1692
1693  if (cStatus) {
1694    logMsg();
1695    return 1;
1696  }
1697
1698  return 0;
1699}
1700
1701//-------------------------------------------------------- SDFITSreader::close
1702
1703// Close the SDFITS file.
1704
1705void SDFITSreader::close()
1706{
1707  if (cSDptr) {
1708    int status = 0;
1709    fits_close_file(cSDptr, &status);
1710    cSDptr = 0;
1711
1712    if (cBeams)     delete [] cBeams;
1713    if (cIFs)       delete [] cIFs;
1714    if (cStartChan) delete [] cStartChan;
1715    if (cEndChan)   delete [] cEndChan;
1716    if (cRefChan)   delete [] cRefChan;
1717  }
1718}
1719
1720//------------------------------------------------------- SDFITSreader::logMsg
1721
1722// Log a message.  If the current CFITSIO status value is non-zero, also log
1723// the corresponding error message and the CFITSIO message stack.
1724
1725void SDFITSreader::logMsg(const char *msg)
1726{
1727  FITSreader::logMsg(msg);
1728
1729  if (cStatus > 0) {
1730    fits_get_errstatus(cStatus, cMsg);
1731    FITSreader::logMsg(cMsg);
1732
1733    while (fits_read_errmsg(cMsg)) {
1734      FITSreader::logMsg(cMsg);
1735    }
1736  }
1737}
1738
1739//----------------------------------------------------- SDFITSreader::findData
1740
1741// Locate a data item in the SDFITS file.
1742
1743void SDFITSreader::findData(
1744        int  iData,
1745        char *name,
1746        int  type)
1747{
1748  cData[iData].name = name;
1749  cData[iData].type = type;
1750
1751  int colnum;
1752  findCol(name, &colnum);
1753  cData[iData].colnum = colnum;
1754
1755  // Determine the number of data elements.
1756  if (colnum > 0) {
1757    int  coltype;
1758    long nelem, width;
1759    fits_get_coltype(cSDptr, colnum, &coltype, &nelem, &width, &cStatus);
1760    fits_get_bcolparms(cSDptr, colnum, 0x0, cData[iData].units, 0x0, 0x0, 0x0,
1761      0x0, 0x0, 0x0, &cStatus);
1762
1763    // Look for a TDIMnnn keyword or column.
1764    char tdim[8];
1765    sprintf(tdim, "TDIM%d", colnum);
1766    findCol(tdim, &cData[iData].tdimcol);
1767
1768    if (coltype < 0) {
1769      // CFITSIO returns coltype < 0 for variable length arrays.
1770      cData[iData].coltype = -coltype;
1771      cData[iData].nelem   = -nelem;
1772
1773    } else {
1774      cData[iData].coltype = coltype;
1775
1776      // Is there a TDIMnnn column?
1777      if (cData[iData].tdimcol > 0) {
1778        // Yes, dimensions of the fixed-length array could still vary.
1779        cData[iData].nelem = -nelem;
1780      } else {
1781        cData[iData].nelem =  nelem;
1782      }
1783    }
1784
1785  } else if (colnum == 0) {
1786    // Keyword.
1787    cData[iData].coltype =  0;
1788    cData[iData].nelem   =  1;
1789    cData[iData].tdimcol = -1;
1790  }
1791}
1792
1793//------------------------------------------------------ SDFITSreader::readDim
1794
1795// Determine the dimensions of an array in the SDFITS file.
1796
1797int SDFITSreader::readDim(
1798        int  iData,
1799        long iRow,
1800        int *naxis,
1801        long naxes[])
1802{
1803  int colnum = cData[iData].colnum;
1804  if (colnum <= 0) {
1805    return 1;
1806  }
1807
1808  int maxdim = *naxis;
1809  if (cData[iData].tdimcol < 0) {
1810    // No TDIMnnn column for this array.
1811    if (cData[iData].nelem < 0) {
1812      // Variable length array; read the array descriptor.
1813      *naxis = 1;
1814      long dummy;
1815      if (fits_read_descript(cSDptr, colnum, iRow, naxes, &dummy, &cStatus)) {
1816        return 1;
1817      }
1818
1819    } else {
1820      // Read the repeat count from TFORMnnn.
1821      if (fits_read_tdim(cSDptr, colnum, maxdim, naxis, naxes, &cStatus)) {
1822        return 1;
1823      }
1824    }
1825
1826  } else {
1827    // Read the TDIMnnn value from the header or table.
1828    char tdim[8], tdimval[64];
1829    sprintf(tdim, "TDIM%d", colnum);
1830    readData(tdim, TSTRING, iRow, tdimval);
1831
1832    // fits_decode_tdim() checks that the TDIMnnn value is within the length
1833    // of the array in the specified column number but unfortunately doesn't
1834    // recognize variable-length arrays.  Hence we must decode it here.
1835    char *tp = tdimval;
1836    if (*tp != '(') return 1;
1837
1838    tp++;
1839    *naxis = 0;
1840    for (size_t j = 1; j < strlen(tdimval); j++) {
1841      if (tdimval[j] == ',' || tdimval[j] == ')') {
1842        sscanf(tp, "%ld", naxes + (*naxis)++);
1843        if (tdimval[j] == ')') break;
1844        tp = tdimval + j + 1;
1845      }
1846    }
1847  }
1848
1849  return 0;
1850}
1851
1852//----------------------------------------------------- SDFITSreader::readParm
1853
1854// Read a parameter value from the SDFITS file.
1855
1856int SDFITSreader::readParm(
1857        char *name,
1858        int  type,
1859        void *value)
1860{
1861  return readData(name, type, 1, value);
1862}
1863
1864//----------------------------------------------------- SDFITSreader::readData
1865
1866// Read a data value from the SDFITS file.
1867
1868int SDFITSreader::readData(
1869        char *name,
1870        int  type,
1871        long iRow,
1872        void *value)
1873{
1874  int colnum;
1875  findCol(name, &colnum);
1876
1877  if (colnum > 0) {
1878    // Read the first value from the specified row of the table.
1879    int  coltype;
1880    long nelem, width;
1881    fits_get_coltype(cSDptr, colnum, &coltype, &nelem, &width, &cStatus);
1882
1883    int anynul;
1884    if (type == TSTRING) {
1885      if (nelem) {
1886        fits_read_col(cSDptr, type, colnum, iRow, 1, 1, 0, &value, &anynul,
1887                      &cStatus);
1888      } else {
1889        strcpy((char *)value, "");
1890      }
1891
1892    } else {
1893      if (nelem) {
1894        fits_read_col(cSDptr, type, colnum, iRow, 1, 1, 0, value, &anynul,
1895                      &cStatus);
1896      } else {
1897        if (type == TSHORT) {
1898          *((short *)value) = 0;
1899        } else if (type == TINT) {
1900          *((int *)value) = 0;
1901        } else if (type == TFLOAT) {
1902          *((float *)value) = 0.0f;
1903        } else if (type == TDOUBLE) {
1904          *((double *)value) = 0.0;
1905        }
1906      }
1907    }
1908
1909  } else if (colnum == 0) {
1910    // Read keyword value.
1911    fits_read_key(cSDptr, type, name, value, 0, &cStatus);
1912
1913  } else {
1914    // Not present.
1915    if (type == TSTRING) {
1916      strcpy((char *)value, "");
1917    } else if (type == TSHORT) {
1918      *((short *)value) = 0;
1919    } else if (type == TINT) {
1920      *((int *)value) = 0;
1921    } else if (type == TFLOAT) {
1922      *((float *)value) = 0.0f;
1923    } else if (type == TDOUBLE) {
1924      *((double *)value) = 0.0;
1925    }
1926  }
1927
1928  return colnum < 0;
1929}
1930
1931//----------------------------------------------------- SDFITSreader::readData
1932
1933// Read data from the SDFITS file.
1934
1935int SDFITSreader::readData(
1936        int  iData,
1937        long iRow,
1938        void *value)
1939{
1940  char *name  = cData[iData].name;
1941  int  type   = cData[iData].type;
1942  int  colnum = cData[iData].colnum;
1943  long nelem  = cData[iData].nelem;
1944
1945  if (colnum > 0) {
1946    // Read the required number of values from the specified row of the table.
1947    int anynul;
1948    if (type == TSTRING) {
1949      if (nelem) {
1950        fits_read_col(cSDptr, type, colnum, iRow, 1, 1, 0, &value, &anynul,
1951                      &cStatus);
1952      } else {
1953        strcpy((char *)value, "");
1954      }
1955
1956    } else {
1957      if (nelem) {
1958        fits_read_col(cSDptr, type, colnum, iRow, 1, abs(nelem), 0, value,
1959                      &anynul, &cStatus);
1960      } else {
1961        if (type == TSHORT) {
1962          *((short *)value) = 0;
1963        } else if (type == TINT) {
1964          *((int *)value) = 0;
1965        } else if (type == TFLOAT) {
1966          *((float *)value) = 0.0f;
1967        } else if (type == TDOUBLE) {
1968          *((double *)value) = 0.0;
1969        }
1970      }
1971    }
1972
1973  } else if (colnum == 0) {
1974    // Read keyword value.
1975    fits_read_key(cSDptr, type, name, value, 0, &cStatus);
1976
1977  } else {
1978    // Not present.
1979    if (type == TSTRING) {
1980      strcpy((char *)value, "");
1981    } else if (type == TSHORT) {
1982      *((short *)value) = 0;
1983    } else if (type == TINT) {
1984      *((int *)value) = 0;
1985    } else if (type == TFLOAT) {
1986      *((float *)value) = 0.0f;
1987    } else if (type == TDOUBLE) {
1988      *((double *)value) = 0.0;
1989    }
1990  }
1991
1992  return colnum < 0;
1993}
1994
1995//------------------------------------------------------ SDFITSreader::findCol
1996
1997// Locate a parameter in the SDFITS file.
1998
1999void SDFITSreader::findCol(
2000        char *name,
2001        int *colnum)
2002{
2003  *colnum = 0;
2004  int status = 0;
2005  fits_get_colnum(cSDptr, CASESEN, name, colnum, &status);
2006
2007  if (status) {
2008    // Not a real column - maybe it's virtual.
2009    char card[81];
2010
2011    status = 0;
2012    fits_read_card(cSDptr, name, card, &status);
2013    if (status) {
2014      // Not virtual either.
2015      *colnum = -1;
2016    }
2017
2018    // Clear error messages.
2019    fits_clear_errmsg();
2020  }
2021}
2022
2023//------------------------------------------------------ SDFITSreader::alfaCal
2024
2025// Process ALFA calibration data.
2026
2027int SDFITSreader::alfaCal(
2028        short iBeam,
2029        short iIF,
2030        short iPol)
2031{
2032  int  calOn;
2033  char chars[32];
2034  if (cALFA_BD) {
2035    readData("OBS_NAME", TSTRING, cRow, chars);
2036  } else {
2037    readData("SCANTYPE", TSTRING, cRow, chars);
2038  }
2039
2040  if (strcmp(chars, "ON") == 0) {
2041    calOn = 1;
2042  } else if (strcmp(chars, "OFF") == 0) {
2043    calOn = 0;
2044  } else {
2045    return 1;
2046  }
2047
2048  // Read cal data.
2049  long *blc = new long[cNAxis+1];
2050  long *trc = new long[cNAxis+1];
2051  long *inc = new long[cNAxis+1];
2052  for (int iaxis = 0; iaxis <= cNAxis; iaxis++) {
2053    blc[iaxis] = 1;
2054    trc[iaxis] = 1;
2055    inc[iaxis] = 1;
2056  }
2057
2058  // User channel selection.
2059  int startChan = cStartChan[iIF];
2060  int endChan   = cEndChan[iIF];
2061
2062  blc[cNAxis] = cRow;
2063  trc[cNAxis] = cRow;
2064  blc[cReqax[0]] = std::min(startChan, endChan);
2065  trc[cReqax[0]] = std::max(startChan, endChan);
2066  if (cALFA_CIMA > 1) {
2067    // CIMAFITS 2.x has a legitimate STOKES axis...
2068    blc[cReqax[1]] = iPol+1;
2069    trc[cReqax[1]] = iPol+1;
2070  } else {
2071    // ...older ALFA data does not.
2072    blc[cReqax[1]] = 1;
2073    trc[cReqax[1]] = 1;
2074  }
2075
2076  float spectrum[endChan];
2077  int anynul;
2078  if (fits_read_subset_flt(cSDptr, cData[DATA].colnum, cNAxis, cNAxes,
2079      blc, trc, inc, 0, spectrum, &anynul, &cStatus)) {
2080    logMsg();
2081    delete [] blc;
2082    delete [] trc;
2083    delete [] inc;
2084    return 1;
2085  }
2086
2087  // Average the spectrum.
2088  float mean = 1e9f;
2089  for (int k = 0; k < 2; k++) {
2090    float discrim = 2.0f * mean;
2091
2092    int nChan = 0;
2093    float sum = 0.0f;
2094
2095    float *chanN = spectrum + abs(endChan - startChan) + 1;
2096    for (float *chan = spectrum; chan < chanN; chan++) {
2097      // Simple discriminant that eliminates strong radar interference.
2098      if (*chan < discrim) {
2099        nChan++;
2100        sum += *chan;
2101      }
2102    }
2103
2104    mean = sum / nChan;
2105  }
2106
2107  if (calOn) {
2108    cALFAcalOn[iBeam][iPol]  += mean;
2109  } else {
2110    cALFAcalOff[iBeam][iPol] += mean;
2111  }
2112
2113  if (cALFAcalOn[iBeam][iPol] != 0.0f &&
2114      cALFAcalOff[iBeam][iPol] != 0.0f) {
2115    // Tcal should come from the TCAL table, it varies weakly with beam,
2116    // polarization, and frequency.  However, TCAL is not written properly.
2117    float Tcal = 12.0f;
2118    cALFAcal[iBeam][iPol] = Tcal / (cALFAcalOn[iBeam][iPol] -
2119                                    cALFAcalOff[iBeam][iPol]);
2120
2121    // Scale from K to Jy; the gain also varies weakly with beam,
2122    // polarization, frequency, and zenith angle.
2123    float fluxCal = 10.0f;
2124    cALFAcal[iBeam][iPol] /= fluxCal;
2125
2126    cALFAcalOn[iBeam][iPol]  = 0.0f;
2127    cALFAcalOff[iBeam][iPol] = 0.0f;
2128  }
2129
2130  return 0;
2131}
Note: See TracBrowser for help on using the repository browser.