1 | //#---------------------------------------------------------------------------
|
---|
2 | //# MBFITSreader.cc: ATNF single-dish RPFITS reader.
|
---|
3 | //#---------------------------------------------------------------------------
|
---|
4 | //# Copyright (C) 2000-2008
|
---|
5 | //# Mark Calabretta, ATNF
|
---|
6 | //#
|
---|
7 | //# This library is free software; you can redistribute it and/or modify it
|
---|
8 | //# under the terms of the GNU Library General Public License as published by
|
---|
9 | //# the Free Software Foundation; either version 2 of the License, or (at your
|
---|
10 | //# option) any later version.
|
---|
11 | //#
|
---|
12 | //# This library is distributed in the hope that it will be useful, but WITHOUT
|
---|
13 | //# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
---|
14 | //# FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public
|
---|
15 | //# License for more details.
|
---|
16 | //#
|
---|
17 | //# You should have received a copy of the GNU Library General Public License
|
---|
18 | //# along with this library; if not, write to the Free Software Foundation,
|
---|
19 | //# Inc., 675 Massachusetts Ave, Cambridge, MA 02139, USA.
|
---|
20 | //#
|
---|
21 | //# Correspondence concerning this software should be addressed as follows:
|
---|
22 | //# Internet email: mcalabre@atnf.csiro.au.
|
---|
23 | //# Postal address: Dr. Mark Calabretta,
|
---|
24 | //# Australia Telescope National Facility,
|
---|
25 | //# P.O. Box 76,
|
---|
26 | //# Epping, NSW, 2121,
|
---|
27 | //# AUSTRALIA
|
---|
28 | //#
|
---|
29 | //# $Id: MBFITSreader.cc,v 19.55 2009-01-20 06:45:33 cal103 Exp $
|
---|
30 | //#---------------------------------------------------------------------------
|
---|
31 | //# The MBFITSreader class reads single dish RPFITS files (such as Parkes
|
---|
32 | //# Multibeam MBFITS files).
|
---|
33 | //#
|
---|
34 | //# Original: 2000/07/28 Mark Calabretta
|
---|
35 | //#---------------------------------------------------------------------------
|
---|
36 |
|
---|
37 | #include <atnf/pks/pks_maths.h>
|
---|
38 | #include <atnf/PKSIO/MBFITSreader.h>
|
---|
39 | #include <atnf/PKSIO/MBrecord.h>
|
---|
40 |
|
---|
41 | #include <casa/math.h>
|
---|
42 | #include <casa/iostream.h>
|
---|
43 | #include <casa/stdio.h>
|
---|
44 | #include <casa/stdlib.h>
|
---|
45 | #include <casa/string.h>
|
---|
46 | #include <unistd.h>
|
---|
47 |
|
---|
48 | #include <RPFITS.h>
|
---|
49 |
|
---|
50 | using namespace std;
|
---|
51 |
|
---|
52 | // Numerical constants.
|
---|
53 | const double PI = 3.141592653589793238462643;
|
---|
54 | const double TWOPI = 2.0 * PI;
|
---|
55 | const double HALFPI = PI / 2.0;
|
---|
56 | const double R2D = 180.0 / PI;
|
---|
57 |
|
---|
58 | //------------------------------------------------- MBFITSreader::MBFITSreader
|
---|
59 |
|
---|
60 | // Default constructor.
|
---|
61 |
|
---|
62 | MBFITSreader::MBFITSreader(
|
---|
63 | const int retry,
|
---|
64 | const int interpolate)
|
---|
65 | {
|
---|
66 | cRetry = retry;
|
---|
67 | if (cRetry > 10) {
|
---|
68 | cRetry = 10;
|
---|
69 | }
|
---|
70 |
|
---|
71 | cInterp = interpolate;
|
---|
72 | if (cInterp < 0 || cInterp > 2) {
|
---|
73 | cInterp = 1;
|
---|
74 | }
|
---|
75 |
|
---|
76 | // Initialize pointers.
|
---|
77 | cBeams = 0x0;
|
---|
78 | cIFs = 0x0;
|
---|
79 | cNChan = 0x0;
|
---|
80 | cNPol = 0x0;
|
---|
81 | cHaveXPol = 0x0;
|
---|
82 | cStartChan = 0x0;
|
---|
83 | cEndChan = 0x0;
|
---|
84 | cRefChan = 0x0;
|
---|
85 |
|
---|
86 | cVis = 0x0;
|
---|
87 | cWgt = 0x0;
|
---|
88 |
|
---|
89 | cBeamSel = 0x0;
|
---|
90 | cIFSel = 0x0;
|
---|
91 | cChanOff = 0x0;
|
---|
92 | cXpolOff = 0x0;
|
---|
93 | cBuffer = 0x0;
|
---|
94 | cPosUTC = 0x0;
|
---|
95 |
|
---|
96 | cMBopen = 0;
|
---|
97 |
|
---|
98 | // Tell RPFITSIN not to report errors directly.
|
---|
99 | iostat_.errlun = -1;
|
---|
100 |
|
---|
101 | // By default, messages are written to stderr.
|
---|
102 | initMsg();
|
---|
103 | }
|
---|
104 |
|
---|
105 | //------------------------------------------------ MBFITSreader::~MBFITSreader
|
---|
106 |
|
---|
107 | // Destructor.
|
---|
108 |
|
---|
109 | MBFITSreader::~MBFITSreader()
|
---|
110 | {
|
---|
111 | close();
|
---|
112 | }
|
---|
113 |
|
---|
114 | //--------------------------------------------------------- MBFITSreader::open
|
---|
115 |
|
---|
116 | // Open the RPFITS file for reading.
|
---|
117 |
|
---|
118 | int MBFITSreader::open(
|
---|
119 | char *rpname,
|
---|
120 | int &nBeam,
|
---|
121 | int* &beams,
|
---|
122 | int &nIF,
|
---|
123 | int* &IFs,
|
---|
124 | int* &nChan,
|
---|
125 | int* &nPol,
|
---|
126 | int* &haveXPol,
|
---|
127 | int &haveBase,
|
---|
128 | int &haveSpectra,
|
---|
129 | int &extraSysCal)
|
---|
130 | {
|
---|
131 | // Clear the message stack.
|
---|
132 | clearMsg();
|
---|
133 |
|
---|
134 | if (cMBopen) {
|
---|
135 | close();
|
---|
136 | }
|
---|
137 |
|
---|
138 | strcpy(names_.file, rpname);
|
---|
139 |
|
---|
140 | // Open the RPFITS file.
|
---|
141 | int jstat = -3;
|
---|
142 | if (rpfitsin(jstat)) {
|
---|
143 | sprintf(cMsg, "ERROR: Failed to open MBFITS file\n %s", rpname);
|
---|
144 | logMsg(cMsg);
|
---|
145 | return 1;
|
---|
146 | }
|
---|
147 |
|
---|
148 | cMBopen = 1;
|
---|
149 |
|
---|
150 | // Tell RPFITSIN that we want the OBSTYPE card.
|
---|
151 | int j;
|
---|
152 | param_.ncard = 1;
|
---|
153 | for (j = 0; j < 80; j++) {
|
---|
154 | names_.card[j] = ' ';
|
---|
155 | }
|
---|
156 | strncpy(names_.card, "OBSTYPE", 7);
|
---|
157 |
|
---|
158 | // Read the first header.
|
---|
159 | jstat = -1;
|
---|
160 | if (rpfitsin(jstat)) {
|
---|
161 | sprintf(cMsg, "ERROR: Failed to read MBFITS header in file\n"
|
---|
162 | " %s", rpname);
|
---|
163 | logMsg(cMsg);
|
---|
164 | close();
|
---|
165 | return 1;
|
---|
166 | }
|
---|
167 |
|
---|
168 | // Mopra data has some peculiarities.
|
---|
169 | cMopra = strncmp(names_.instrument, "ATMOPRA", 7) == 0;
|
---|
170 |
|
---|
171 | // Non-ATNF data may not store the position in (u,v,w).
|
---|
172 | if (strncmp(names_.sta, "tid", 3) == 0) {
|
---|
173 | sprintf(cMsg, "WARNING: Found Tidbinbilla data");
|
---|
174 | cSUpos = 1;
|
---|
175 | } else if (strncmp(names_.sta, "HOB", 3) == 0) {
|
---|
176 | sprintf(cMsg, "WARNING: Found Hobart data");
|
---|
177 | cSUpos = 1;
|
---|
178 | } else if (strncmp(names_.sta, "CED", 3) == 0) {
|
---|
179 | sprintf(cMsg, "WARNING: Found Ceduna data");
|
---|
180 | cSUpos = 1;
|
---|
181 | } else {
|
---|
182 | cSUpos = 0;
|
---|
183 | }
|
---|
184 |
|
---|
185 | if (cSUpos) {
|
---|
186 | strcat(cMsg, ", using telescope position\n from SU table.");
|
---|
187 | logMsg(cMsg);
|
---|
188 | cInterp = 0;
|
---|
189 | }
|
---|
190 |
|
---|
191 | // Mean scan rate (for timestamp repairs).
|
---|
192 | cNRate = 0;
|
---|
193 | cAvRate[0] = 0.0;
|
---|
194 | cAvRate[1] = 0.0;
|
---|
195 | cCode5 = 0;
|
---|
196 |
|
---|
197 |
|
---|
198 | // Find the maximum beam number.
|
---|
199 | cNBeam = 0;
|
---|
200 | for (int iBeam = 0; iBeam < anten_.nant; iBeam++) {
|
---|
201 | if (anten_.ant_num[iBeam] > cNBeam) {
|
---|
202 | cNBeam = anten_.ant_num[iBeam];
|
---|
203 | }
|
---|
204 | }
|
---|
205 |
|
---|
206 | if (cNBeam <= 0) {
|
---|
207 | logMsg("ERROR: Couldn't determine number of beams.");
|
---|
208 | close();
|
---|
209 | return 1;
|
---|
210 | }
|
---|
211 |
|
---|
212 | // Construct the beam mask.
|
---|
213 | cBeams = new int[cNBeam];
|
---|
214 | for (int iBeam = 0; iBeam < cNBeam; iBeam++) {
|
---|
215 | cBeams[iBeam] = 0;
|
---|
216 | }
|
---|
217 |
|
---|
218 | // ...beams present in the data.
|
---|
219 | for (int iBeam = 0; iBeam < anten_.nant; iBeam++) {
|
---|
220 | // Guard against dubious beam numbers, e.g. zeroes in
|
---|
221 | // 1999-09-29_1632_024848p14_071b.hpf and the four scans following.
|
---|
222 | // Note that the actual beam number is decoded from the 'baseline' random
|
---|
223 | // parameter for each spectrum and is only used for beam selection.
|
---|
224 | int beamNo = anten_.ant_num[iBeam];
|
---|
225 | if (beamNo != iBeam+1) {
|
---|
226 | char sta[8];
|
---|
227 | strncpy(sta, names_.sta+(8*iBeam), 8);
|
---|
228 | char *cp = sta + 7;
|
---|
229 | while (*cp == ' ') *(cp--) = '\0';
|
---|
230 |
|
---|
231 | sprintf(cMsg,
|
---|
232 | "WARNING: RPFITSIN returned beam number %2d for AN table\n"
|
---|
233 | " entry %2d with name '%.8s'", beamNo, iBeam+1, sta);
|
---|
234 |
|
---|
235 | char text[8];
|
---|
236 | sprintf(text, "MB%2.2d", iBeam+1);
|
---|
237 | cp = cMsg + strlen(cMsg);
|
---|
238 | if (strncmp(sta, text, 8) == 0) {
|
---|
239 | beamNo = iBeam + 1;
|
---|
240 | sprintf(cp, "; using beam number %2d.", beamNo);
|
---|
241 | } else {
|
---|
242 | sprintf(cp, ".");
|
---|
243 | }
|
---|
244 |
|
---|
245 | logMsg(cMsg);
|
---|
246 | }
|
---|
247 |
|
---|
248 | if (0 < beamNo && beamNo <= cNBeam) {
|
---|
249 | cBeams[beamNo-1] = 1;
|
---|
250 | }
|
---|
251 | }
|
---|
252 |
|
---|
253 | // Passing back the address of the array allows PKSFITSreader::select() to
|
---|
254 | // modify its elements directly.
|
---|
255 | nBeam = cNBeam;
|
---|
256 | beams = cBeams;
|
---|
257 |
|
---|
258 |
|
---|
259 | // Number of IFs.
|
---|
260 | cNIF = if_.n_if;
|
---|
261 | cIFs = new int[cNIF];
|
---|
262 | for (int iIF = 0; iIF < cNIF; iIF++) {
|
---|
263 | cIFs[iIF] = 1;
|
---|
264 | }
|
---|
265 |
|
---|
266 | // Passing back the address of the array allows PKSFITSreader::select() to
|
---|
267 | // modify its elements directly.
|
---|
268 | nIF = cNIF;
|
---|
269 | IFs = cIFs;
|
---|
270 |
|
---|
271 |
|
---|
272 | // Number of channels and polarizations.
|
---|
273 | cNChan = new int[cNIF];
|
---|
274 | cNPol = new int[cNIF];
|
---|
275 | cHaveXPol = new int[cNIF];
|
---|
276 | cGetXPol = 0;
|
---|
277 |
|
---|
278 | int maxProd = 0;
|
---|
279 | for (int iIF = 0; iIF < cNIF; iIF++) {
|
---|
280 | cNChan[iIF] = if_.if_nfreq[iIF];
|
---|
281 | cNPol[iIF] = if_.if_nstok[iIF];
|
---|
282 | cNChan[iIF] -= cNChan[iIF]%2;
|
---|
283 |
|
---|
284 | // Do we have cross-polarization data?
|
---|
285 | if ((cHaveXPol[iIF] = cNPol[iIF] > 2)) {
|
---|
286 | // Cross-polarization data is handled separately.
|
---|
287 | cNPol[iIF] = 2;
|
---|
288 |
|
---|
289 | // Default is to get it if we have it.
|
---|
290 | cGetXPol = 1;
|
---|
291 | }
|
---|
292 |
|
---|
293 | // Maximum number of spectral products in any IF.
|
---|
294 | int nProd = if_.if_nfreq[iIF] * if_.if_nstok[iIF];
|
---|
295 | if (maxProd < nProd) maxProd = nProd;
|
---|
296 | }
|
---|
297 |
|
---|
298 | // Allocate memory for RPFITSIN subroutine arguments.
|
---|
299 | if (cVis) delete [] cVis;
|
---|
300 | if (cWgt) delete [] cWgt;
|
---|
301 | cVis = new float[2*maxProd];
|
---|
302 | cWgt = new float[maxProd];
|
---|
303 |
|
---|
304 | nChan = cNChan;
|
---|
305 | nPol = cNPol;
|
---|
306 | haveXPol = cHaveXPol;
|
---|
307 |
|
---|
308 |
|
---|
309 | // Default channel range selection.
|
---|
310 | cStartChan = new int[cNIF];
|
---|
311 | cEndChan = new int[cNIF];
|
---|
312 | cRefChan = new int[cNIF];
|
---|
313 |
|
---|
314 | for (int iIF = 0; iIF < cNIF; iIF++) {
|
---|
315 | cStartChan[iIF] = 1;
|
---|
316 | cEndChan[iIF] = cNChan[iIF];
|
---|
317 | cRefChan[iIF] = cNChan[iIF]/2 + 1;
|
---|
318 | }
|
---|
319 |
|
---|
320 | cGetSpectra = 1;
|
---|
321 |
|
---|
322 |
|
---|
323 | // No baseline parameters in MBFITS.
|
---|
324 | haveBase = 0;
|
---|
325 |
|
---|
326 | // Always have spectra in MBFITS.
|
---|
327 | haveSpectra = cHaveSpectra = 1;
|
---|
328 |
|
---|
329 |
|
---|
330 | // Integration cycle time (s).
|
---|
331 | cIntTime = param_.intime;
|
---|
332 |
|
---|
333 | // Can't deduce binning mode till later.
|
---|
334 | cNBin = 0;
|
---|
335 |
|
---|
336 |
|
---|
337 | // Read the first syscal record.
|
---|
338 | if (rpget(1, cEOS)) {
|
---|
339 | logMsg("ERROR: Failed to read first syscal record.");
|
---|
340 | close();
|
---|
341 | return 1;
|
---|
342 | }
|
---|
343 |
|
---|
344 | // Additional information for Parkes Multibeam data?
|
---|
345 | extraSysCal = (sc_.sc_ant > anten_.nant);
|
---|
346 |
|
---|
347 |
|
---|
348 | cFirst = 1;
|
---|
349 | cEOF = 0;
|
---|
350 | cFlushing = 0;
|
---|
351 |
|
---|
352 | return 0;
|
---|
353 | }
|
---|
354 |
|
---|
355 | //---------------------------------------------------- MBFITSreader::getHeader
|
---|
356 |
|
---|
357 | // Get parameters describing the data.
|
---|
358 |
|
---|
359 | int MBFITSreader::getHeader(
|
---|
360 | char observer[32],
|
---|
361 | char project[32],
|
---|
362 | char telescope[32],
|
---|
363 | double antPos[3],
|
---|
364 | char obsType[32],
|
---|
365 | char bunit[32],
|
---|
366 | float &equinox,
|
---|
367 | char radecsys[32],
|
---|
368 | char dopplerFrame[32],
|
---|
369 | char datobs[32],
|
---|
370 | double &utc,
|
---|
371 | double &refFreq,
|
---|
372 | double &bandwidth)
|
---|
373 | {
|
---|
374 | if (!cMBopen) {
|
---|
375 | logMsg("ERROR: An MBFITS file has not been opened.");
|
---|
376 | return 1;
|
---|
377 | }
|
---|
378 |
|
---|
379 | sprintf(observer, "%-16.16s", names_.rp_observer);
|
---|
380 | sprintf(project, "%-16.16s", names_.object);
|
---|
381 | sprintf(telescope, "%-16.16s", names_.instrument);
|
---|
382 |
|
---|
383 | // Observatory coordinates (ITRF), in m.
|
---|
384 | antPos[0] = doubles_.x[0];
|
---|
385 | antPos[1] = doubles_.y[0];
|
---|
386 | antPos[2] = doubles_.z[0];
|
---|
387 |
|
---|
388 | // This is the only sure way to identify the telescope, maybe.
|
---|
389 | if (strncmp(names_.sta, "MB0", 3) == 0) {
|
---|
390 | // Parkes Multibeam.
|
---|
391 | sprintf(telescope, "%-16.16s", "ATPKSMB");
|
---|
392 | antPos[0] = -4554232.087;
|
---|
393 | antPos[1] = 2816759.046;
|
---|
394 | antPos[2] = -3454035.950;
|
---|
395 |
|
---|
396 | } else if (strncmp(names_.sta, "HOH", 3) == 0) {
|
---|
397 | // Parkes HOH receiver.
|
---|
398 | sprintf(telescope, "%-16.16s", "ATPKSHOH");
|
---|
399 | antPos[0] = -4554232.087;
|
---|
400 | antPos[1] = 2816759.046;
|
---|
401 | antPos[2] = -3454035.950;
|
---|
402 |
|
---|
403 | } else if (strncmp(names_.sta, "CA0", 3) == 0) {
|
---|
404 | // An ATCA antenna, use the array centre position.
|
---|
405 | sprintf(telescope, "%-16.16s", "ATCA");
|
---|
406 | antPos[0] = -4750915.837;
|
---|
407 | antPos[1] = 2792906.182;
|
---|
408 | antPos[2] = -3200483.747;
|
---|
409 |
|
---|
410 | // ATCA-104. Updated position at epoch 2007/06/24 from Chris Phillips.
|
---|
411 | // antPos[0] = -4751640.182; // ± 0.008
|
---|
412 | // antPos[1] = 2791700.322; // ± 0.006
|
---|
413 | // antPos[2] = -3200490.668; // ± 0.007
|
---|
414 | //
|
---|
415 | } else if (strncmp(names_.sta, "MOP", 3) == 0) {
|
---|
416 | // Mopra. Updated position at epoch 2007/06/24 from Chris Phillips.
|
---|
417 | sprintf(telescope, "%-16.16s", "ATMOPRA");
|
---|
418 | antPos[0] = -4682769.444; // ± 0.009
|
---|
419 | antPos[1] = 2802618.963; // ± 0.006
|
---|
420 | antPos[2] = -3291758.864; // ± 0.008
|
---|
421 |
|
---|
422 | } else if (strncmp(names_.sta, "HOB", 3) == 0) {
|
---|
423 | // Hobart.
|
---|
424 | sprintf(telescope, "%-16.16s", "HOBART");
|
---|
425 | antPos[0] = -3950236.735;
|
---|
426 | antPos[1] = 2522347.567;
|
---|
427 | antPos[2] = -4311562.569;
|
---|
428 |
|
---|
429 | } else if (strncmp(names_.sta, "CED", 3) == 0) {
|
---|
430 | // Ceduna. Updated position at epoch 2007/06/24 from Chris Phillips.
|
---|
431 | sprintf(telescope, "%-16.16s", "CEDUNA");
|
---|
432 | antPos[0] = -3753443.168; // ± 0.017
|
---|
433 | antPos[1] = 3912709.794; // ± 0.017
|
---|
434 | antPos[2] = -3348067.060; // ± 0.016
|
---|
435 |
|
---|
436 | } else if (strncmp(names_.sta, "tid", 3) == 0) {
|
---|
437 | // DSS.
|
---|
438 | sprintf(telescope, "%-16.16s", "DSS-43");
|
---|
439 | antPos[0] = -4460894.727;
|
---|
440 | antPos[1] = 2682361.530;
|
---|
441 | antPos[2] = -3674748.424;
|
---|
442 | }
|
---|
443 |
|
---|
444 | // Observation type.
|
---|
445 | int j;
|
---|
446 | for (j = 0; j < 31; j++) {
|
---|
447 | obsType[j] = names_.card[11+j];
|
---|
448 | if (obsType[j] == '\'') break;
|
---|
449 | }
|
---|
450 | obsType[j] = '\0';
|
---|
451 |
|
---|
452 | // Brightness unit.
|
---|
453 | sprintf(bunit, "%-16.16s", names_.bunit);
|
---|
454 | if (strcmp(bunit, "JY") == 0) {
|
---|
455 | bunit[1] = 'y';
|
---|
456 | } else if (strcmp(bunit, "JY/BEAM") == 0) {
|
---|
457 | strcpy(bunit, "Jy/beam");
|
---|
458 | }
|
---|
459 |
|
---|
460 | // Coordinate frames.
|
---|
461 | equinox = 2000.0f;
|
---|
462 | strcpy(radecsys, "FK5");
|
---|
463 | strcpy(dopplerFrame, "TOPOCENT");
|
---|
464 |
|
---|
465 | // Time at start of observation.
|
---|
466 | sprintf(datobs, "%-10.10s", names_.datobs);
|
---|
467 | utc = cUTC;
|
---|
468 |
|
---|
469 | // Spectral parameters.
|
---|
470 | refFreq = doubles_.if_freq[0];
|
---|
471 | bandwidth = doubles_.if_bw[0];
|
---|
472 |
|
---|
473 | return 0;
|
---|
474 | }
|
---|
475 |
|
---|
476 | //-------------------------------------------------- MBFITSreader::getFreqInfo
|
---|
477 |
|
---|
478 | // Get frequency parameters for each IF.
|
---|
479 |
|
---|
480 | int MBFITSreader::getFreqInfo(
|
---|
481 | int &nIF,
|
---|
482 | double* &startFreq,
|
---|
483 | double* &endFreq)
|
---|
484 | {
|
---|
485 | // This is RPFITS - can't do it!
|
---|
486 | return 1;
|
---|
487 | }
|
---|
488 |
|
---|
489 | //---------------------------------------------------- MBFITSreader::findRange
|
---|
490 |
|
---|
491 | // Find the range of the data selected in time and position.
|
---|
492 |
|
---|
493 | int MBFITSreader::findRange(
|
---|
494 | int &nRow,
|
---|
495 | int &nSel,
|
---|
496 | char dateSpan[2][32],
|
---|
497 | double utcSpan[2],
|
---|
498 | double* &positions)
|
---|
499 | {
|
---|
500 | // This is RPFITS - can't do it!
|
---|
501 | return 1;
|
---|
502 | }
|
---|
503 |
|
---|
504 | //--------------------------------------------------------- MBFITSreader::read
|
---|
505 |
|
---|
506 | // Read the next data record (if you're feeling lucky).
|
---|
507 |
|
---|
508 | int MBFITSreader::read(
|
---|
509 | MBrecord &MBrec)
|
---|
510 | {
|
---|
511 | int beamNo = -1;
|
---|
512 | int haveData, pCode = 0, status;
|
---|
513 | double raRate = 0.0, decRate = 0.0, paRate = 0.0;
|
---|
514 | MBrecord *iMBuff = 0x0;
|
---|
515 |
|
---|
516 | if (!cMBopen) {
|
---|
517 | logMsg("ERROR: An MBFITS file has not been opened.");
|
---|
518 | return 1;
|
---|
519 | }
|
---|
520 |
|
---|
521 | // Positions recorded in the input records usually do not coincide with the
|
---|
522 | // midpoint of the integration and hence the input must be buffered so that
|
---|
523 | // true positions may be interpolated.
|
---|
524 | //
|
---|
525 | // On the first call nBeamSel buffers of length nBin, are allocated and
|
---|
526 | // filled, where nBin is the number of time bins.
|
---|
527 | //
|
---|
528 | // The input records for binned, single beam data with multiple simultaneous
|
---|
529 | // IFs are ordered by IF within each integration rather than by bin number
|
---|
530 | // and hence are not in time order. No multibeam data exists with
|
---|
531 | // nBin > 1 but the likelihood that the input records would be in beam/IF
|
---|
532 | // order and the requirement that output records be in time order would
|
---|
533 | // force an elaborate double-buffering system and we do not support it.
|
---|
534 | //
|
---|
535 | // Once all buffers are filled, the next record for each beam pertains to
|
---|
536 | // the next integration and should contain new position information allowing
|
---|
537 | // the proper position for each spectrum in the buffer to be interpolated.
|
---|
538 | // The buffers are then flushed in time order. For single beam data there
|
---|
539 | // is only one buffer and reads from the MBFITS file are suspended while the
|
---|
540 | // flush is in progress. For multibeam data each buffer is of unit length
|
---|
541 | // so the flush completes immediately and the new record takes its place.
|
---|
542 |
|
---|
543 | haveData = 0;
|
---|
544 | while (!haveData) {
|
---|
545 | int iBeamSel = -1, iIFSel = -1;
|
---|
546 |
|
---|
547 | if (!cFlushing) {
|
---|
548 | if (cEOF) {
|
---|
549 | return -1;
|
---|
550 | }
|
---|
551 |
|
---|
552 | // Read the next record.
|
---|
553 | pCode = 0;
|
---|
554 | if ((status = rpget(0, cEOS)) == -1) {
|
---|
555 | // EOF.
|
---|
556 | cEOF = 1;
|
---|
557 | cFlushing = 1;
|
---|
558 | cFlushBin = 0;
|
---|
559 | cFlushIF = 0;
|
---|
560 |
|
---|
561 | #ifdef PKSIO_DEBUG
|
---|
562 | fprintf(stderr, "\nEnd-of-file detected, flushing last cycle.\n");
|
---|
563 | #endif
|
---|
564 |
|
---|
565 | } else if (status) {
|
---|
566 | // IO error.
|
---|
567 | return 1;
|
---|
568 |
|
---|
569 | } else {
|
---|
570 | if (cFirst) {
|
---|
571 | // First data; cBeamSel[] stores the buffer index for each beam.
|
---|
572 | cNBeamSel = 0;
|
---|
573 | cBeamSel = new int[cNBeam];
|
---|
574 |
|
---|
575 | for (int iBeam = 0; iBeam < cNBeam; iBeam++) {
|
---|
576 | if (cBeams[iBeam]) {
|
---|
577 | // Buffer offset for this beam.
|
---|
578 | cBeamSel[iBeam] = cNBeamSel++;
|
---|
579 | } else {
|
---|
580 | // Signal that the beam is not selected.
|
---|
581 | cBeamSel[iBeam] = -1;
|
---|
582 | }
|
---|
583 | }
|
---|
584 |
|
---|
585 | // Set up bookkeeping arrays for IFs.
|
---|
586 | cIFSel = new int[cNIF];
|
---|
587 | cChanOff = new int[cNIF];
|
---|
588 | cXpolOff = new int[cNIF];
|
---|
589 |
|
---|
590 | int maxChan = 0;
|
---|
591 | int maxXpol = 0;
|
---|
592 |
|
---|
593 | cSimulIF = 0;
|
---|
594 | for (int iIF = 0; iIF < cNIF; iIF++) {
|
---|
595 | if (cIFs[iIF]) {
|
---|
596 | // Buffer index for each IF within each simultaneous set.
|
---|
597 | cIFSel[iIF] = 0;
|
---|
598 |
|
---|
599 | // Array offsets for each IF within each simultaneous set.
|
---|
600 | cChanOff[iIF] = 0;
|
---|
601 | cXpolOff[iIF] = 0;
|
---|
602 |
|
---|
603 | // Look for earlier IFs in the same simultaneous set.
|
---|
604 | for (int jIF = 0; jIF < iIF; jIF++) {
|
---|
605 | if (!cIFs[jIF]) continue;
|
---|
606 |
|
---|
607 | if (if_.if_simul[jIF] == if_.if_simul[iIF]) {
|
---|
608 | // Got one, increment indices.
|
---|
609 | cIFSel[iIF]++;
|
---|
610 |
|
---|
611 | cChanOff[iIF] += cNChan[jIF] * cNPol[jIF];
|
---|
612 | if (cHaveXPol[jIF]) {
|
---|
613 | cXpolOff[iIF] += 2 * cNChan[jIF];
|
---|
614 | }
|
---|
615 | }
|
---|
616 | }
|
---|
617 |
|
---|
618 | // Maximum number of selected IFs in any simultaneous set.
|
---|
619 | cSimulIF = max(cSimulIF, cIFSel[iIF]+1);
|
---|
620 |
|
---|
621 | // Maximum memory required for any simultaneous set.
|
---|
622 | maxChan = max(maxChan, cChanOff[iIF] + cNChan[iIF]*cNPol[iIF]);
|
---|
623 | if (cHaveXPol[iIF]) {
|
---|
624 | maxXpol = max(maxXpol, cXpolOff[iIF] + 2*cNChan[iIF]);
|
---|
625 | }
|
---|
626 |
|
---|
627 | } else {
|
---|
628 | // Signal that the IF is not selected.
|
---|
629 | cIFSel[iIF] = -1;
|
---|
630 | }
|
---|
631 | }
|
---|
632 |
|
---|
633 | // Check for binning mode observations.
|
---|
634 | if (param_.intbase > 0.0f) {
|
---|
635 | cNBin = int((cIntTime / param_.intbase) + 0.5);
|
---|
636 |
|
---|
637 | // intbase sometimes contains rubbish.
|
---|
638 | if (cNBin == 0) {
|
---|
639 | cNBin = 1;
|
---|
640 | }
|
---|
641 | } else {
|
---|
642 | cNBin = 1;
|
---|
643 | }
|
---|
644 |
|
---|
645 | if (cNBin > 1 && cNBeamSel > 1) {
|
---|
646 | logMsg("ERROR: Cannot handle binning mode for multiple beams.\n"
|
---|
647 | " Select a single beam for input.");
|
---|
648 | close();
|
---|
649 | return 1;
|
---|
650 | }
|
---|
651 |
|
---|
652 | // Allocate buffer data storage; the MBrecord constructor zeroes
|
---|
653 | // class members such as cycleNo that are tested in the first pass
|
---|
654 | // below.
|
---|
655 | int nBuff = cNBeamSel * cNBin;
|
---|
656 | cBuffer = new MBrecord[nBuff];
|
---|
657 |
|
---|
658 | // Allocate memory for spectral arrays.
|
---|
659 | for (int ibuff = 0; ibuff < nBuff; ibuff++) {
|
---|
660 | cBuffer[ibuff].setNIFs(cSimulIF);
|
---|
661 | cBuffer[ibuff].allocate(0, maxChan, maxXpol);
|
---|
662 |
|
---|
663 | // Signal that this IF in this buffer has been flushed.
|
---|
664 | for (int iIF = 0; iIF < cSimulIF; iIF++) {
|
---|
665 | cBuffer[ibuff].IFno[iIF] = 0;
|
---|
666 | }
|
---|
667 | }
|
---|
668 |
|
---|
669 | cPosUTC = new double[cNBeamSel];
|
---|
670 |
|
---|
671 | cFirst = 0;
|
---|
672 | cScanNo = 1;
|
---|
673 | cCycleNo = 0;
|
---|
674 | cPrevUTC = -1.0;
|
---|
675 | }
|
---|
676 |
|
---|
677 | // Check for end-of-scan.
|
---|
678 | if (cEOS) {
|
---|
679 | cScanNo++;
|
---|
680 | cCycleNo = 0;
|
---|
681 | cPrevUTC = -1.0;
|
---|
682 | }
|
---|
683 |
|
---|
684 | // Apply beam and IF selection before the change-of-day test to allow
|
---|
685 | // a single selected beam and IF to be handled in binning-mode.
|
---|
686 | beamNo = int(cBaseline / 256.0);
|
---|
687 | if (beamNo == 1) {
|
---|
688 | // Store the position of beam 1 for grid convergence corrections.
|
---|
689 | cRA0 = cU;
|
---|
690 | cDec0 = cV;
|
---|
691 | }
|
---|
692 | iBeamSel = cBeamSel[beamNo-1];
|
---|
693 | if (iBeamSel < 0) continue;
|
---|
694 |
|
---|
695 | // Sanity check (mainly for MOPS).
|
---|
696 | if (cIFno > cNIF) continue;
|
---|
697 |
|
---|
698 | // Apply IF selection.
|
---|
699 | iIFSel = cIFSel[cIFno - 1];
|
---|
700 | if (iIFSel < 0) continue;
|
---|
701 |
|
---|
702 |
|
---|
703 | if (cNBin > 1) {
|
---|
704 | // Binning mode: correct the time.
|
---|
705 | cUTC += param_.intbase * (cBin - (cNBin + 1)/2.0);
|
---|
706 | }
|
---|
707 |
|
---|
708 | // Check for change-of-day.
|
---|
709 | double cod = 0.0;
|
---|
710 | if ((cUTC + 86400.0) < (cPrevUTC + 600.0)) {
|
---|
711 | // cUTC should continue to increase past 86400 during a single scan.
|
---|
712 | // However, if the RPFITS file contains multiple scans that straddle
|
---|
713 | // midnight then cUTC can jump backwards from the end of one scan to
|
---|
714 | // the start of the next.
|
---|
715 | #ifdef PKSIO_DEBUG
|
---|
716 | fprintf(stderr, "Change-of-day on cUTC: %.1f -> %.1f\n",
|
---|
717 | cPrevUTC, cUTC);
|
---|
718 | #endif
|
---|
719 | // Can't change the recorded value of cUTC directly (without also
|
---|
720 | // changing dateobs) so change-of-day must be recorded separately as
|
---|
721 | // an offset to be applied when comparing integration timestamps.
|
---|
722 | cod = 86400.0;
|
---|
723 |
|
---|
724 | } else if (cUTC < cPrevUTC - 1.0) {
|
---|
725 | sprintf(cMsg,
|
---|
726 | "WARNING: Cycle %d:%03d-%03d, UTC went backwards from\n"
|
---|
727 | " %.1f to %.1f! Incrementing day number,\n"
|
---|
728 | " positions may be unreliable.", cScanNo, cCycleNo,
|
---|
729 | cCycleNo+1, cPrevUTC, cUTC);
|
---|
730 | logMsg(cMsg);
|
---|
731 | cUTC += 86400.0;
|
---|
732 | }
|
---|
733 |
|
---|
734 | // New integration cycle?
|
---|
735 | if ((cUTC+cod) > cPrevUTC) {
|
---|
736 | cCycleNo++;
|
---|
737 | cPrevUTC = cUTC + 0.0001;
|
---|
738 | }
|
---|
739 |
|
---|
740 | sprintf(cDateObs, "%-10.10s", names_.datobs);
|
---|
741 | cDateObs[10] = '\0';
|
---|
742 |
|
---|
743 | // Compute buffer number.
|
---|
744 | iMBuff = cBuffer + iBeamSel;
|
---|
745 | if (cNBin > 1) iMBuff += cNBeamSel*(cBin-1);
|
---|
746 |
|
---|
747 | if (cCycleNo < iMBuff->cycleNo) {
|
---|
748 | // Note that if the first beam and IF are not both selected cEOS
|
---|
749 | // will be cleared by rpget() when the next beam/IF is read.
|
---|
750 | cEOS = 1;
|
---|
751 | }
|
---|
752 |
|
---|
753 | // Begin flush cycle?
|
---|
754 | if (cEOS || (iMBuff->nIF && (cUTC+cod) > (iMBuff->utc+0.0001))) {
|
---|
755 | cFlushing = 1;
|
---|
756 | cFlushBin = 0;
|
---|
757 | cFlushIF = 0;
|
---|
758 | }
|
---|
759 |
|
---|
760 | #ifdef PKSIO_DEBUG
|
---|
761 | char rel = '=';
|
---|
762 | double dt = utcDiff(cUTC, cW);
|
---|
763 | if (dt < 0.0) {
|
---|
764 | rel = '<';
|
---|
765 | } else if (dt > 0.0) {
|
---|
766 | rel = '>';
|
---|
767 | }
|
---|
768 |
|
---|
769 | fprintf(stderr, "\n In:%4d%4d%3d%3d %.3f %c %.3f (%+.3fs) - "
|
---|
770 | "%sflushing\n", cScanNo, cCycleNo, beamNo, cIFno, cUTC, rel, cW, dt,
|
---|
771 | cFlushing ? "" : "not ");
|
---|
772 | if (cEOS) {
|
---|
773 | fprintf(stderr, "Start of new scan, flushing previous scan.\n");
|
---|
774 | }
|
---|
775 | #endif
|
---|
776 | }
|
---|
777 | }
|
---|
778 |
|
---|
779 |
|
---|
780 | if (cFlushing) {
|
---|
781 | // Find the oldest integration to flush, noting that the last
|
---|
782 | // integration cycle may be incomplete.
|
---|
783 | beamNo = 0;
|
---|
784 | int cycleNo = 0;
|
---|
785 | for (; cFlushBin < cNBin; cFlushBin++) {
|
---|
786 | for (iBeamSel = 0; iBeamSel < cNBeamSel; iBeamSel++) {
|
---|
787 | iMBuff = cBuffer + iBeamSel + cNBeamSel*cFlushBin;
|
---|
788 |
|
---|
789 | // iMBuff->nIF is decremented (below) and if zero signals that all
|
---|
790 | // IFs in an integration have been flushed.
|
---|
791 | if (iMBuff->nIF) {
|
---|
792 | if (cycleNo == 0 || iMBuff->cycleNo < cycleNo) {
|
---|
793 | beamNo = iMBuff->beamNo;
|
---|
794 | cycleNo = iMBuff->cycleNo;
|
---|
795 | }
|
---|
796 | }
|
---|
797 | }
|
---|
798 |
|
---|
799 | if (beamNo) {
|
---|
800 | // Found an integration to flush.
|
---|
801 | break;
|
---|
802 | }
|
---|
803 | }
|
---|
804 |
|
---|
805 | if (beamNo) {
|
---|
806 | iBeamSel = cBeamSel[beamNo-1];
|
---|
807 | iMBuff = cBuffer + iBeamSel + cNBeamSel*cFlushBin;
|
---|
808 |
|
---|
809 | // Find the IF to flush.
|
---|
810 | for (; cFlushIF < cSimulIF; cFlushIF++) {
|
---|
811 | if (iMBuff->IFno[cFlushIF]) break;
|
---|
812 | }
|
---|
813 |
|
---|
814 | } else {
|
---|
815 | // Flush complete.
|
---|
816 | cFlushing = 0;
|
---|
817 | if (cEOF) {
|
---|
818 | return -1;
|
---|
819 | }
|
---|
820 |
|
---|
821 | // The last record read must have been the first of a new cycle.
|
---|
822 | beamNo = int(cBaseline / 256.0);
|
---|
823 | iBeamSel = cBeamSel[beamNo-1];
|
---|
824 |
|
---|
825 | // Compute buffer number.
|
---|
826 | iMBuff = cBuffer + iBeamSel;
|
---|
827 | if (cNBin > 1) iMBuff += cNBeamSel*(cBin-1);
|
---|
828 | }
|
---|
829 | }
|
---|
830 |
|
---|
831 |
|
---|
832 | if (cInterp && cFlushing == 1) {
|
---|
833 | // Start of flush cycle, interpolate the beam position.
|
---|
834 | //
|
---|
835 | // The position is measured by the control system at a time returned by
|
---|
836 | // RPFITSIN as the 'w' visibility coordinate. The ra and dec, returned
|
---|
837 | // as the 'u' and 'v' visibility coordinates, must be interpolated to
|
---|
838 | // the integration time which RPFITSIN returns as 'cUTC', this usually
|
---|
839 | // being a second or two later. The interpolation method used here is
|
---|
840 | // based on the scan rate.
|
---|
841 | //
|
---|
842 | // "This" RA, Dec, and UTC refers to the position currently stored in
|
---|
843 | // the buffer marked for output (iMBuff). This position is interpolated
|
---|
844 | // to the midpoint of that integration using either
|
---|
845 | // a) the rate currently sitting in iMBuff, which was computed from
|
---|
846 | // the previous integration, otherwise
|
---|
847 | // b) from the position recorded in the "next" integration which is
|
---|
848 | // currently sitting in the RPFITS commons,
|
---|
849 | // so that the position timestamps straddle the midpoint of the
|
---|
850 | // integration and is thereby interpolated rather than extrapolated.
|
---|
851 | //
|
---|
852 | // At the end of a scan, or if the next position has not been updated
|
---|
853 | // or its timestamp does not advance sufficiently, the most recent
|
---|
854 | // determination of the scan rate will be used for extrapolation which
|
---|
855 | // is quantified by the "rate age" measured in seconds beyond the
|
---|
856 | // interval defined by the position timestamps.
|
---|
857 |
|
---|
858 | // At this point, iMBuff contains cU, cV, cW, parAngle and focusRot
|
---|
859 | // stored from the previous call to rpget() for this beam (i.e. "this"),
|
---|
860 | // and also raRate, decRate and paRate computed from that integration
|
---|
861 | // and the previous one.
|
---|
862 | double thisRA = iMBuff->ra;
|
---|
863 | double thisDec = iMBuff->dec;
|
---|
864 | double thisUTC = cPosUTC[iBeamSel];
|
---|
865 | double thisPA = iMBuff->parAngle + iMBuff->focusRot;
|
---|
866 |
|
---|
867 | #ifdef PKSIO_DEBUG
|
---|
868 | fprintf(stderr, "This (%d) ra, dec, UTC: %9.4f %9.4f %10.3f %9.4f\n",
|
---|
869 | iMBuff->cycleNo, thisRA*R2D, thisDec*R2D, thisUTC, thisPA*R2D);
|
---|
870 | #endif
|
---|
871 |
|
---|
872 | if (cEOF || cEOS) {
|
---|
873 | // Use rates from the last cycle.
|
---|
874 | raRate = iMBuff->raRate;
|
---|
875 | decRate = iMBuff->decRate;
|
---|
876 | paRate = iMBuff->paRate;
|
---|
877 |
|
---|
878 | } else {
|
---|
879 | if (cW == thisUTC) {
|
---|
880 | // The control system at Mopra typically does not update the
|
---|
881 | // positions between successive integration cycles at the end of a
|
---|
882 | // scan (nor are they flagged). In this case we use the previously
|
---|
883 | // computed rates, even if from the previous scan since these are
|
---|
884 | // likely to be a better guess than anything else.
|
---|
885 | raRate = iMBuff->raRate;
|
---|
886 | decRate = iMBuff->decRate;
|
---|
887 | paRate = iMBuff->paRate;
|
---|
888 |
|
---|
889 | if (cU == thisRA && cV == thisDec) {
|
---|
890 | // Position and timestamp unchanged.
|
---|
891 | pCode = 1;
|
---|
892 |
|
---|
893 | } else if (fabs(cU-thisRA) < 0.0001 && fabs(cV-thisDec) < 0.0001) {
|
---|
894 | // Allow small rounding errors (seen infrequently).
|
---|
895 | pCode = 1;
|
---|
896 |
|
---|
897 | } else {
|
---|
898 | // (cU,cV) are probably rubbish (not yet seen in practice).
|
---|
899 | pCode = 2;
|
---|
900 | cU = thisRA;
|
---|
901 | cV = thisDec;
|
---|
902 | }
|
---|
903 |
|
---|
904 | #ifdef PKSIO_DEBUG
|
---|
905 | fprintf(stderr, "Next (%d) ra, dec, UTC: %9.4f %9.4f %10.3f "
|
---|
906 | "(0.000s)\n", cCycleNo, cU*R2D, cV*R2D, cW);
|
---|
907 | #endif
|
---|
908 |
|
---|
909 | } else {
|
---|
910 | double nextRA = cU;
|
---|
911 | double nextDec = cV;
|
---|
912 |
|
---|
913 | // Check and, if necessary, repair the position timestamp,
|
---|
914 | // remembering that pCode refers to the NEXT cycle.
|
---|
915 | pCode = fixw(cDateObs, cCycleNo, beamNo, cAvRate, thisRA, thisDec,
|
---|
916 | thisUTC, nextRA, nextDec, cW);
|
---|
917 | if (pCode > 0) pCode += 3;
|
---|
918 | double nextUTC = cW;
|
---|
919 |
|
---|
920 | #ifdef PKSIO_DEBUG
|
---|
921 | fprintf(stderr, "Next (%d) ra, dec, UTC: %9.4f %9.4f %10.3f "
|
---|
922 | "(%+.3fs)\n", cCycleNo, nextRA*R2D, nextDec*R2D, nextUTC,
|
---|
923 | utcDiff(nextUTC, thisUTC));
|
---|
924 | #endif
|
---|
925 |
|
---|
926 | // Compute the scan rate for this beam.
|
---|
927 | double dUTC = utcDiff(nextUTC, thisUTC);
|
---|
928 | if ((0.0 < dUTC) && (dUTC < 600.0)) {
|
---|
929 | scanRate(cRA0, cDec0, thisRA, thisDec, nextRA, nextDec, dUTC,
|
---|
930 | raRate, decRate);
|
---|
931 |
|
---|
932 | // Update the mean scan rate.
|
---|
933 | cAvRate[0] = (cAvRate[0]*cNRate + raRate) / (cNRate + 1);
|
---|
934 | cAvRate[1] = (cAvRate[1]*cNRate + decRate) / (cNRate + 1);
|
---|
935 | cNRate++;
|
---|
936 |
|
---|
937 | // Rate of change of position angle.
|
---|
938 | if (sc_.sc_ant <= anten_.nant) {
|
---|
939 | paRate = 0.0;
|
---|
940 | } else {
|
---|
941 | int iOff = sc_.sc_q * (sc_.sc_ant - 1) - 1;
|
---|
942 | double nextPA = sc_.sc_cal[iOff + 4] + sc_.sc_cal[iOff + 7];
|
---|
943 | double paDiff = nextPA - thisPA;
|
---|
944 | if (paDiff > PI) {
|
---|
945 | paDiff -= TWOPI;
|
---|
946 | } else if (paDiff < -PI) {
|
---|
947 | paDiff += TWOPI;
|
---|
948 | }
|
---|
949 | paRate = paDiff / dUTC;
|
---|
950 | }
|
---|
951 |
|
---|
952 | if (cInterp == 2) {
|
---|
953 | // Use the same interpolation scheme as the original pksmbfits
|
---|
954 | // client. This incorrectly assumed that (nextUTC - thisUTC) is
|
---|
955 | // equal to the integration time and interpolated by computing a
|
---|
956 | // weighted sum of the positions before and after the required
|
---|
957 | // time.
|
---|
958 |
|
---|
959 | double utc = iMBuff->utc;
|
---|
960 | double tw1 = 1.0 - utcDiff(utc, thisUTC) / iMBuff->exposure;
|
---|
961 | double tw2 = 1.0 - utcDiff(nextUTC, utc) / iMBuff->exposure;
|
---|
962 | double gamma = (tw2 / (tw1 + tw2)) * dUTC / (utc - thisUTC);
|
---|
963 |
|
---|
964 | // Guard against RA cycling through 24h in either direction.
|
---|
965 | if (fabs(nextRA - thisRA) > PI) {
|
---|
966 | if (nextRA < thisRA) {
|
---|
967 | nextRA += TWOPI;
|
---|
968 | } else {
|
---|
969 | nextRA -= TWOPI;
|
---|
970 | }
|
---|
971 | }
|
---|
972 |
|
---|
973 | raRate = gamma * (nextRA - thisRA) / dUTC;
|
---|
974 | decRate = gamma * (nextDec - thisDec) / dUTC;
|
---|
975 | }
|
---|
976 |
|
---|
977 | } else {
|
---|
978 | if (cCycleNo == 2 && fabs(utcDiff(cUTC,cW)) < 600.0) {
|
---|
979 | // thisUTC (i.e. cW for the first cycle) is rubbish, and
|
---|
980 | // probably the position as well (extremely rare in practice,
|
---|
981 | // e.g. 97-12-19_1029_235708-18_586e.hpf which actually has the
|
---|
982 | // t/1000 scaling bug in the first cycle).
|
---|
983 | iMBuff->pCode = 3;
|
---|
984 | thisRA = cU;
|
---|
985 | thisDec = cV;
|
---|
986 | thisUTC = cW;
|
---|
987 | raRate = 0.0;
|
---|
988 | decRate = 0.0;
|
---|
989 | paRate = 0.0;
|
---|
990 |
|
---|
991 | } else {
|
---|
992 | // cW is rubbish and probably (cU,cV), and possibly the
|
---|
993 | // parallactic angle and everything else as well (rarely seen
|
---|
994 | // in practice, e.g. 97-12-09_0743_235707-58_327c.hpf and
|
---|
995 | // 97-09-01_0034_123717-42_242b.hpf, the latter with bad
|
---|
996 | // parallactic angle).
|
---|
997 | pCode = 3;
|
---|
998 | cU = thisRA;
|
---|
999 | cV = thisDec;
|
---|
1000 | cW = thisUTC;
|
---|
1001 | raRate = iMBuff->raRate;
|
---|
1002 | decRate = iMBuff->decRate;
|
---|
1003 | paRate = iMBuff->paRate;
|
---|
1004 | }
|
---|
1005 | }
|
---|
1006 | }
|
---|
1007 | }
|
---|
1008 |
|
---|
1009 |
|
---|
1010 | // Choose the closest rate determination.
|
---|
1011 | if (cCycleNo == 1) {
|
---|
1012 | // Scan containing a single integration.
|
---|
1013 | iMBuff->raRate = 0.0;
|
---|
1014 | iMBuff->decRate = 0.0;
|
---|
1015 | iMBuff->paRate = 0.0;
|
---|
1016 |
|
---|
1017 | } else {
|
---|
1018 | double dUTC = iMBuff->utc - cPosUTC[iBeamSel];
|
---|
1019 |
|
---|
1020 | if (dUTC >= 0.0) {
|
---|
1021 | // In HIPASS/ZOA, the position timestamp, which should always occur
|
---|
1022 | // on the whole second, normally precedes an integration midpoint
|
---|
1023 | // falling on the half-second. Consequently, positive ages are
|
---|
1024 | // always half-integral.
|
---|
1025 | dUTC = utcDiff(iMBuff->utc, cW);
|
---|
1026 | if (dUTC > 0.0) {
|
---|
1027 | iMBuff->rateAge = dUTC;
|
---|
1028 | } else {
|
---|
1029 | iMBuff->rateAge = 0.0f;
|
---|
1030 | }
|
---|
1031 |
|
---|
1032 | iMBuff->raRate = raRate;
|
---|
1033 | iMBuff->decRate = decRate;
|
---|
1034 | iMBuff->paRate = paRate;
|
---|
1035 |
|
---|
1036 | } else {
|
---|
1037 | // In HIPASS/ZOA, negative ages occur when the integration midpoint,
|
---|
1038 | // occurring on the whole second, precedes the position timestamp.
|
---|
1039 | // Thus negative ages are always an integral number of seconds.
|
---|
1040 | // They have only been seen to occur sporadically in the period
|
---|
1041 | // 1999/05/31 to 1999/11/01, e.g. 1999-07-26_1821_005410-74_007c.hpf
|
---|
1042 | //
|
---|
1043 | // In recent (2008/10/07) Mopra data, small negative ages (~10ms,
|
---|
1044 | // occasionally up to ~300ms) seem to be the norm, with both the
|
---|
1045 | // position timestamp and integration midpoint falling close to but
|
---|
1046 | // not on the integral second.
|
---|
1047 | if (cCycleNo == 2) {
|
---|
1048 | // We have to start with something!
|
---|
1049 | iMBuff->rateAge = dUTC;
|
---|
1050 |
|
---|
1051 | } else {
|
---|
1052 | // Although we did not record the relevant position timestamp
|
---|
1053 | // explicitly, it can easily be deduced.
|
---|
1054 | double w = iMBuff->utc - utcDiff(cUTC, iMBuff->utc) -
|
---|
1055 | iMBuff->rateAge;
|
---|
1056 | dUTC = utcDiff(iMBuff->utc, w);
|
---|
1057 |
|
---|
1058 | if (dUTC > 0.0) {
|
---|
1059 | iMBuff->rateAge = 0.0f;
|
---|
1060 | } else {
|
---|
1061 | iMBuff->rateAge = dUTC;
|
---|
1062 | }
|
---|
1063 | }
|
---|
1064 |
|
---|
1065 | iMBuff->raRate = raRate;
|
---|
1066 | iMBuff->decRate = decRate;
|
---|
1067 | iMBuff->paRate = paRate;
|
---|
1068 | }
|
---|
1069 | }
|
---|
1070 |
|
---|
1071 | #ifdef PKSIO_DEBUG
|
---|
1072 | double avRate = sqrt(cAvRate[0]*cAvRate[0] + cAvRate[1]*cAvRate[1]);
|
---|
1073 | fprintf(stderr, "RA, Dec, Av & PA rates: %8.4f %8.4f %8.4f %8.4f "
|
---|
1074 | "pCode %d\n", raRate*R2D, decRate*R2D, avRate*R2D, paRate*R2D, pCode);
|
---|
1075 | #endif
|
---|
1076 |
|
---|
1077 |
|
---|
1078 | // Compute the position of this beam for all bins.
|
---|
1079 | for (int idx = 0; idx < cNBin; idx++) {
|
---|
1080 | int jbuff = iBeamSel + cNBeamSel*idx;
|
---|
1081 |
|
---|
1082 | cBuffer[jbuff].raRate = iMBuff->raRate;
|
---|
1083 | cBuffer[jbuff].decRate = iMBuff->decRate;
|
---|
1084 | cBuffer[jbuff].paRate = iMBuff->paRate;
|
---|
1085 |
|
---|
1086 | double dUTC = utcDiff(cBuffer[jbuff].utc, thisUTC);
|
---|
1087 | if (dUTC > 100.0) {
|
---|
1088 | // Must have cycled through midnight.
|
---|
1089 | dUTC -= 86400.0;
|
---|
1090 | }
|
---|
1091 |
|
---|
1092 | applyRate(cRA0, cDec0, thisRA, thisDec,
|
---|
1093 | cBuffer[jbuff].raRate, cBuffer[jbuff].decRate, dUTC,
|
---|
1094 | cBuffer[jbuff].ra, cBuffer[jbuff].dec);
|
---|
1095 |
|
---|
1096 | #ifdef PKSIO_DEBUG
|
---|
1097 | fprintf(stderr, "Intp (%d) ra, dec, UTC: %9.4f %9.4f %10.3f (pCode, "
|
---|
1098 | "age: %d %.1fs)\n", iMBuff->cycleNo, cBuffer[jbuff].ra*R2D,
|
---|
1099 | cBuffer[jbuff].dec*R2D, cBuffer[jbuff].utc, iMBuff->pCode,
|
---|
1100 | iMBuff->rateAge);
|
---|
1101 | #endif
|
---|
1102 | }
|
---|
1103 |
|
---|
1104 | cFlushing = 2;
|
---|
1105 | }
|
---|
1106 |
|
---|
1107 |
|
---|
1108 | if (cFlushing) {
|
---|
1109 | // Copy buffer location out one IF at a time.
|
---|
1110 | MBrec.extract(*iMBuff, cFlushIF);
|
---|
1111 | haveData = 1;
|
---|
1112 |
|
---|
1113 | #ifdef PKSIO_DEBUG
|
---|
1114 | fprintf(stderr, "Out:%4d%4d%3d%3d\n", MBrec.scanNo, MBrec.cycleNo,
|
---|
1115 | MBrec.beamNo, MBrec.IFno[0]);
|
---|
1116 | #endif
|
---|
1117 |
|
---|
1118 | // Signal that this IF in this buffer location has been flushed.
|
---|
1119 | iMBuff->IFno[cFlushIF] = 0;
|
---|
1120 |
|
---|
1121 | iMBuff->nIF--;
|
---|
1122 | if (iMBuff->nIF == 0) {
|
---|
1123 | // All IFs in this buffer location have been flushed. Stop cEOS
|
---|
1124 | // being set when the next integration is read.
|
---|
1125 | iMBuff->cycleNo = 0;
|
---|
1126 |
|
---|
1127 | } else {
|
---|
1128 | // Carry on flushing the other IFs.
|
---|
1129 | continue;
|
---|
1130 | }
|
---|
1131 |
|
---|
1132 | // Has the whole buffer been flushed?
|
---|
1133 | if (cFlushBin == cNBin - 1) {
|
---|
1134 | if (cEOS || cEOF) {
|
---|
1135 | // Carry on flushing other buffers.
|
---|
1136 | cFlushIF = 0;
|
---|
1137 | continue;
|
---|
1138 | }
|
---|
1139 |
|
---|
1140 | cFlushing = 0;
|
---|
1141 |
|
---|
1142 | beamNo = int(cBaseline / 256.0);
|
---|
1143 | iBeamSel = cBeamSel[beamNo-1];
|
---|
1144 |
|
---|
1145 | // Compute buffer number.
|
---|
1146 | iMBuff = cBuffer + iBeamSel;
|
---|
1147 | if (cNBin > 1) iMBuff += cNBeamSel*(cBin-1);
|
---|
1148 | }
|
---|
1149 | }
|
---|
1150 |
|
---|
1151 | if (!cFlushing) {
|
---|
1152 | // Buffer this MBrec.
|
---|
1153 | if ((cScanNo > iMBuff->scanNo) && iMBuff->IFno[0]) {
|
---|
1154 | // Sanity check on the number of IFs in the new scan.
|
---|
1155 | if (if_.n_if != cNIF) {
|
---|
1156 | sprintf(cMsg, "WARNING: Scan %d has %d IFs instead of %d, "
|
---|
1157 | "continuing.", cScanNo, if_.n_if, cNIF);
|
---|
1158 | logMsg(cMsg);
|
---|
1159 | }
|
---|
1160 | }
|
---|
1161 |
|
---|
1162 | // Sanity check on incomplete integrations within a scan.
|
---|
1163 | if (iMBuff->nIF && (iMBuff->cycleNo != cCycleNo)) {
|
---|
1164 | // Force the incomplete integration to be flushed before proceeding.
|
---|
1165 | cFlushing = 1;
|
---|
1166 | continue;
|
---|
1167 | }
|
---|
1168 |
|
---|
1169 | #ifdef PKSIO_DEBUG
|
---|
1170 | fprintf(stderr, "Buf:%4d%4d%3d%3d\n", cScanNo, cCycleNo, beamNo, cIFno);
|
---|
1171 | #endif
|
---|
1172 |
|
---|
1173 | // Store IF-independent parameters only for the first IF of a new cycle,
|
---|
1174 | // particularly because this is the only one for which the scan rates
|
---|
1175 | // are computed above.
|
---|
1176 | int firstIF = (iMBuff->nIF == 0);
|
---|
1177 | if (firstIF) {
|
---|
1178 | iMBuff->scanNo = cScanNo;
|
---|
1179 | iMBuff->cycleNo = cCycleNo;
|
---|
1180 |
|
---|
1181 | // Times.
|
---|
1182 | strcpy(iMBuff->datobs, cDateObs);
|
---|
1183 | iMBuff->utc = cUTC;
|
---|
1184 | iMBuff->exposure = param_.intbase;
|
---|
1185 |
|
---|
1186 | // Source identification.
|
---|
1187 | sprintf(iMBuff->srcName, "%-16.16s",
|
---|
1188 | names_.su_name + (cSrcNo-1)*16);
|
---|
1189 | iMBuff->srcName[16] = '\0';
|
---|
1190 | iMBuff->srcRA = doubles_.su_ra[cSrcNo-1];
|
---|
1191 | iMBuff->srcDec = doubles_.su_dec[cSrcNo-1];
|
---|
1192 |
|
---|
1193 | // Rest frequency of the line of interest.
|
---|
1194 | iMBuff->restFreq = doubles_.rfreq;
|
---|
1195 | if (strncmp(names_.instrument, "ATPKSMB", 7) == 0) {
|
---|
1196 | // Fix the HI rest frequency recorded for Parkes multibeam data.
|
---|
1197 | double reffreq = doubles_.freq;
|
---|
1198 | double restfreq = doubles_.rfreq;
|
---|
1199 | if ((restfreq == 0.0 || fabs(restfreq - reffreq) == 0.0) &&
|
---|
1200 | fabs(reffreq - 1420.405752e6) < 100.0) {
|
---|
1201 | iMBuff->restFreq = 1420.405752e6;
|
---|
1202 | }
|
---|
1203 | }
|
---|
1204 |
|
---|
1205 | // Observation type.
|
---|
1206 | int j;
|
---|
1207 | for (j = 0; j < 15; j++) {
|
---|
1208 | iMBuff->obsType[j] = names_.card[11+j];
|
---|
1209 | if (iMBuff->obsType[j] == '\'') break;
|
---|
1210 | }
|
---|
1211 | iMBuff->obsType[j] = '\0';
|
---|
1212 |
|
---|
1213 | // Beam-dependent parameters.
|
---|
1214 | iMBuff->beamNo = beamNo;
|
---|
1215 |
|
---|
1216 | // Beam position at the specified time.
|
---|
1217 | if (cSUpos) {
|
---|
1218 | // Non-ATNF data that does not store the position in (u,v,w).
|
---|
1219 | iMBuff->ra = doubles_.su_ra[cSrcNo-1];
|
---|
1220 | iMBuff->dec = doubles_.su_dec[cSrcNo-1];
|
---|
1221 | } else {
|
---|
1222 | iMBuff->ra = cU;
|
---|
1223 | iMBuff->dec = cV;
|
---|
1224 | }
|
---|
1225 | cPosUTC[iBeamSel] = cW;
|
---|
1226 | iMBuff->pCode = pCode;
|
---|
1227 |
|
---|
1228 | // Store rates for next time.
|
---|
1229 | iMBuff->raRate = raRate;
|
---|
1230 | iMBuff->decRate = decRate;
|
---|
1231 | iMBuff->paRate = paRate;
|
---|
1232 | }
|
---|
1233 |
|
---|
1234 | // IF-dependent parameters.
|
---|
1235 | int iIF = cIFno - 1;
|
---|
1236 | int startChan = cStartChan[iIF];
|
---|
1237 | int endChan = cEndChan[iIF];
|
---|
1238 | int refChan = cRefChan[iIF];
|
---|
1239 |
|
---|
1240 | int nChan = abs(endChan - startChan) + 1;
|
---|
1241 |
|
---|
1242 | iIFSel = cIFSel[iIF];
|
---|
1243 | if (iMBuff->IFno[iIFSel] == 0) {
|
---|
1244 | iMBuff->nIF++;
|
---|
1245 | iMBuff->IFno[iIFSel] = cIFno;
|
---|
1246 | } else {
|
---|
1247 | // Integration cycle written to the output file twice (the only known
|
---|
1248 | // example is 1999-05-22_1914_000-031805_03v.hpf).
|
---|
1249 | sprintf(cMsg, "WARNING: Integration cycle %d:%d, beam %2d, \n"
|
---|
1250 | " IF %d was duplicated.", cScanNo, cCycleNo-1,
|
---|
1251 | beamNo, cIFno);
|
---|
1252 | logMsg(cMsg);
|
---|
1253 | }
|
---|
1254 | iMBuff->nChan[iIFSel] = nChan;
|
---|
1255 | iMBuff->nPol[iIFSel] = cNPol[iIF];
|
---|
1256 |
|
---|
1257 | iMBuff->fqRefPix[iIFSel] = doubles_.if_ref[iIF];
|
---|
1258 | iMBuff->fqRefVal[iIFSel] = doubles_.if_freq[iIF];
|
---|
1259 | iMBuff->fqDelt[iIFSel] =
|
---|
1260 | if_.if_invert[iIF] * fabs(doubles_.if_bw[iIF] /
|
---|
1261 | (if_.if_nfreq[iIF] - 1));
|
---|
1262 |
|
---|
1263 | // Adjust for channel selection.
|
---|
1264 | if (iMBuff->fqRefPix[iIFSel] != refChan) {
|
---|
1265 | iMBuff->fqRefVal[iIFSel] +=
|
---|
1266 | (refChan - iMBuff->fqRefPix[iIFSel]) *
|
---|
1267 | iMBuff->fqDelt[iIFSel];
|
---|
1268 | iMBuff->fqRefPix[iIFSel] = refChan;
|
---|
1269 | }
|
---|
1270 |
|
---|
1271 | if (endChan < startChan) {
|
---|
1272 | iMBuff->fqDelt[iIFSel] = -iMBuff->fqDelt[iIFSel];
|
---|
1273 | }
|
---|
1274 |
|
---|
1275 |
|
---|
1276 | // System temperature.
|
---|
1277 | int iBeam = beamNo - 1;
|
---|
1278 | int scq = sc_.sc_q;
|
---|
1279 | float TsysPol1 = sc_.sc_cal[scq*iBeam + 3];
|
---|
1280 | float TsysPol2 = sc_.sc_cal[scq*iBeam + 4];
|
---|
1281 | iMBuff->tsys[iIFSel][0] = TsysPol1*TsysPol1;
|
---|
1282 | iMBuff->tsys[iIFSel][1] = TsysPol2*TsysPol2;
|
---|
1283 |
|
---|
1284 | // Calibration factor; may be changed later if the data is recalibrated.
|
---|
1285 | if (scq > 14) {
|
---|
1286 | // Will only be present for Parkes Multibeam or LBA data.
|
---|
1287 | iMBuff->calfctr[iIFSel][0] = sc_.sc_cal[scq*iBeam + 14];
|
---|
1288 | iMBuff->calfctr[iIFSel][1] = sc_.sc_cal[scq*iBeam + 15];
|
---|
1289 | } else {
|
---|
1290 | iMBuff->calfctr[iIFSel][0] = 0.0f;
|
---|
1291 | iMBuff->calfctr[iIFSel][1] = 0.0f;
|
---|
1292 | }
|
---|
1293 |
|
---|
1294 | // Cross-polarization calibration factor (unknown to MBFITS).
|
---|
1295 | for (int j = 0; j < 2; j++) {
|
---|
1296 | iMBuff->xcalfctr[iIFSel][j] = 0.0f;
|
---|
1297 | }
|
---|
1298 |
|
---|
1299 | // Baseline parameters (unknown to MBFITS).
|
---|
1300 | iMBuff->haveBase = 0;
|
---|
1301 |
|
---|
1302 | // Data (always present in MBFITS).
|
---|
1303 | iMBuff->haveSpectra = 1;
|
---|
1304 |
|
---|
1305 | // Flag: bit 0 set if off source.
|
---|
1306 | // bit 1 set if loss of sync in A polarization.
|
---|
1307 | // bit 2 set if loss of sync in B polarization.
|
---|
1308 | unsigned char rpflag =
|
---|
1309 | (unsigned char)(sc_.sc_cal[scq*iBeam + 12] + 0.5f);
|
---|
1310 |
|
---|
1311 | // The baseline flag may be set independently.
|
---|
1312 | if (rpflag == 0) rpflag = cFlag;
|
---|
1313 |
|
---|
1314 | // Copy and scale data.
|
---|
1315 | int inc = 2 * if_.if_nstok[iIF];
|
---|
1316 | if (endChan < startChan) inc = -inc;
|
---|
1317 |
|
---|
1318 | float TsysF;
|
---|
1319 | iMBuff->spectra[iIFSel] = iMBuff->spectra[0] + cChanOff[iIF];
|
---|
1320 | iMBuff->flagged[iIFSel] = iMBuff->flagged[0] + cChanOff[iIF];
|
---|
1321 |
|
---|
1322 | float *spectra = iMBuff->spectra[iIFSel];
|
---|
1323 | unsigned char *flagged = iMBuff->flagged[iIFSel];
|
---|
1324 | for (int ipol = 0; ipol < cNPol[iIF]; ipol++) {
|
---|
1325 | if (sc_.sc_cal[scq*iBeam + 3 + ipol] > 0.0f) {
|
---|
1326 | // The correlator has already applied the calibration.
|
---|
1327 | TsysF = 1.0f;
|
---|
1328 | } else {
|
---|
1329 | // The correlator has normalized cVis[k] to a Tsys of 500K.
|
---|
1330 | TsysF = iMBuff->tsys[iIFSel][ipol] / 500.0f;
|
---|
1331 | }
|
---|
1332 |
|
---|
1333 | int k = 2 * (if_.if_nstok[iIF]*(startChan - 1) + ipol);
|
---|
1334 | for (int ichan = 0; ichan < nChan; ichan++) {
|
---|
1335 | *(spectra++) = TsysF * cVis[k];
|
---|
1336 | *(flagged++) = rpflag;
|
---|
1337 | k += inc;
|
---|
1338 | }
|
---|
1339 | }
|
---|
1340 |
|
---|
1341 | if (cHaveXPol[iIF]) {
|
---|
1342 | int k = 2 * (3*(startChan - 1) + 2);
|
---|
1343 | iMBuff->xpol[iIFSel] = iMBuff->xpol[0] + cXpolOff[iIF];
|
---|
1344 | float *xpol = iMBuff->xpol[iIFSel];
|
---|
1345 | for (int ichan = 0; ichan < nChan; ichan++) {
|
---|
1346 | *(xpol++) = cVis[k];
|
---|
1347 | *(xpol++) = cVis[k+1];
|
---|
1348 | k += inc;
|
---|
1349 | }
|
---|
1350 | }
|
---|
1351 |
|
---|
1352 |
|
---|
1353 | // Calibration factor applied to the data by the correlator.
|
---|
1354 | if (scq > 14) {
|
---|
1355 | // Will only be present for Parkes Multibeam or LBA data.
|
---|
1356 | iMBuff->tcal[iIFSel][0] = sc_.sc_cal[scq*iBeam + 14];
|
---|
1357 | iMBuff->tcal[iIFSel][1] = sc_.sc_cal[scq*iBeam + 15];
|
---|
1358 | } else {
|
---|
1359 | iMBuff->tcal[iIFSel][0] = 0.0f;
|
---|
1360 | iMBuff->tcal[iIFSel][1] = 0.0f;
|
---|
1361 | }
|
---|
1362 |
|
---|
1363 | if (firstIF) {
|
---|
1364 | if (sc_.sc_ant <= anten_.nant) {
|
---|
1365 | // No extra syscal information present.
|
---|
1366 | iMBuff->extraSysCal = 0;
|
---|
1367 | iMBuff->azimuth = 0.0f;
|
---|
1368 | iMBuff->elevation = 0.0f;
|
---|
1369 | iMBuff->parAngle = 0.0f;
|
---|
1370 | iMBuff->focusAxi = 0.0f;
|
---|
1371 | iMBuff->focusTan = 0.0f;
|
---|
1372 | iMBuff->focusRot = 0.0f;
|
---|
1373 | iMBuff->temp = 0.0f;
|
---|
1374 | iMBuff->pressure = 0.0f;
|
---|
1375 | iMBuff->humidity = 0.0f;
|
---|
1376 | iMBuff->windSpeed = 0.0f;
|
---|
1377 | iMBuff->windAz = 0.0f;
|
---|
1378 | strcpy(iMBuff->tcalTime, " ");
|
---|
1379 | iMBuff->refBeam = 0;
|
---|
1380 |
|
---|
1381 | } else {
|
---|
1382 | // Additional information for Parkes Multibeam data.
|
---|
1383 | int iOff = scq*(sc_.sc_ant - 1) - 1;
|
---|
1384 | iMBuff->extraSysCal = 1;
|
---|
1385 |
|
---|
1386 | iMBuff->azimuth = sc_.sc_cal[iOff + 2];
|
---|
1387 | iMBuff->elevation = sc_.sc_cal[iOff + 3];
|
---|
1388 | iMBuff->parAngle = sc_.sc_cal[iOff + 4];
|
---|
1389 |
|
---|
1390 | iMBuff->focusAxi = sc_.sc_cal[iOff + 5] * 1e-3;
|
---|
1391 | iMBuff->focusTan = sc_.sc_cal[iOff + 6] * 1e-3;
|
---|
1392 | iMBuff->focusRot = sc_.sc_cal[iOff + 7];
|
---|
1393 |
|
---|
1394 | iMBuff->temp = sc_.sc_cal[iOff + 8];
|
---|
1395 | iMBuff->pressure = sc_.sc_cal[iOff + 9];
|
---|
1396 | iMBuff->humidity = sc_.sc_cal[iOff + 10];
|
---|
1397 | iMBuff->windSpeed = sc_.sc_cal[iOff + 11];
|
---|
1398 | iMBuff->windAz = sc_.sc_cal[iOff + 12];
|
---|
1399 |
|
---|
1400 | char *tcalTime = iMBuff->tcalTime;
|
---|
1401 | sprintf(tcalTime, "%-16.16s", (char *)(&sc_.sc_cal[iOff+13]));
|
---|
1402 | tcalTime[16] = '\0';
|
---|
1403 |
|
---|
1404 | #ifndef AIPS_LITTLE_ENDIAN
|
---|
1405 | // Do byte swapping on the ASCII date string.
|
---|
1406 | for (int j = 0; j < 16; j += 4) {
|
---|
1407 | char ctmp;
|
---|
1408 | ctmp = tcalTime[j];
|
---|
1409 | tcalTime[j] = tcalTime[j+3];
|
---|
1410 | tcalTime[j+3] = ctmp;
|
---|
1411 | ctmp = tcalTime[j+1];
|
---|
1412 | tcalTime[j+1] = tcalTime[j+2];
|
---|
1413 | tcalTime[j+2] = ctmp;
|
---|
1414 | }
|
---|
1415 | #endif
|
---|
1416 |
|
---|
1417 | // Reference beam number.
|
---|
1418 | float refbeam = sc_.sc_cal[iOff + 17];
|
---|
1419 | if (refbeam > 0.0f || refbeam < 100.0f) {
|
---|
1420 | iMBuff->refBeam = int(refbeam);
|
---|
1421 | } else {
|
---|
1422 | iMBuff->refBeam = 0;
|
---|
1423 | }
|
---|
1424 | }
|
---|
1425 | }
|
---|
1426 | }
|
---|
1427 | }
|
---|
1428 |
|
---|
1429 | return 0;
|
---|
1430 | }
|
---|
1431 |
|
---|
1432 | //-------------------------------------------------------- MBFITSreader::rpget
|
---|
1433 |
|
---|
1434 | // Read the next data record from the RPFITS file.
|
---|
1435 |
|
---|
1436 | int MBFITSreader::rpget(int syscalonly, int &EOS)
|
---|
1437 | {
|
---|
1438 | EOS = 0;
|
---|
1439 |
|
---|
1440 | int retries = 0;
|
---|
1441 |
|
---|
1442 | // Allow 10 read errors.
|
---|
1443 | int numErr = 0;
|
---|
1444 |
|
---|
1445 | int jstat = 0;
|
---|
1446 | while (numErr < 10) {
|
---|
1447 | int lastjstat = jstat;
|
---|
1448 |
|
---|
1449 | switch(rpfitsin(jstat)) {
|
---|
1450 | case -1:
|
---|
1451 | // Read failed; retry.
|
---|
1452 | numErr++;
|
---|
1453 | logMsg("WARNING: RPFITS read failed - retrying.");
|
---|
1454 | jstat = 0;
|
---|
1455 | break;
|
---|
1456 |
|
---|
1457 | case 0:
|
---|
1458 | // Successful read.
|
---|
1459 | if (lastjstat == 0) {
|
---|
1460 | if (cBaseline == -1) {
|
---|
1461 | // Syscal data.
|
---|
1462 | if (syscalonly) {
|
---|
1463 | return 0;
|
---|
1464 | }
|
---|
1465 |
|
---|
1466 | } else {
|
---|
1467 | if (!syscalonly) {
|
---|
1468 | return 0;
|
---|
1469 | }
|
---|
1470 | }
|
---|
1471 | }
|
---|
1472 |
|
---|
1473 | // Last operation was to read header or FG table; now read data.
|
---|
1474 | break;
|
---|
1475 |
|
---|
1476 | case 1:
|
---|
1477 | // Encountered header while trying to read data; read it.
|
---|
1478 | EOS = 1;
|
---|
1479 | jstat = -1;
|
---|
1480 | break;
|
---|
1481 |
|
---|
1482 | case 2:
|
---|
1483 | // End of scan; read past it.
|
---|
1484 | jstat = 0;
|
---|
1485 | break;
|
---|
1486 |
|
---|
1487 | case 3:
|
---|
1488 | // End-of-file; retry applies to real-time mode.
|
---|
1489 | if (retries++ >= cRetry) {
|
---|
1490 | return -1;
|
---|
1491 | }
|
---|
1492 |
|
---|
1493 | sleep(10);
|
---|
1494 | jstat = 0;
|
---|
1495 | break;
|
---|
1496 |
|
---|
1497 | case 4:
|
---|
1498 | // Encountered FG table while trying to read data; read it.
|
---|
1499 | jstat = -1;
|
---|
1500 | break;
|
---|
1501 |
|
---|
1502 | case 5:
|
---|
1503 | // Illegal data at end of block after close/reopen operation; retry.
|
---|
1504 | jstat = 0;
|
---|
1505 | break;
|
---|
1506 |
|
---|
1507 | default:
|
---|
1508 | // Shouldn't reach here.
|
---|
1509 | sprintf(cMsg, "WARNING: Unrecognized RPFITSIN return code: %d "
|
---|
1510 | "(retrying).", jstat);
|
---|
1511 | logMsg(cMsg);
|
---|
1512 | jstat = 0;
|
---|
1513 | break;
|
---|
1514 | }
|
---|
1515 | }
|
---|
1516 |
|
---|
1517 | logMsg("ERROR: RPFITS read failed too many times.");
|
---|
1518 | return 2;
|
---|
1519 | }
|
---|
1520 |
|
---|
1521 | //----------------------------------------------------- MBFITSreader::rpfitsin
|
---|
1522 |
|
---|
1523 | // Wrapper around RPFITSIN that reports errors. Returned RPFITSIN subroutine
|
---|
1524 | // arguments are captured as MBFITSreader member variables.
|
---|
1525 |
|
---|
1526 | int MBFITSreader::rpfitsin(int &jstat)
|
---|
1527 |
|
---|
1528 | {
|
---|
1529 | rpfitsin_(&jstat, cVis, cWgt, &cBaseline, &cUTC, &cU, &cV, &cW, &cFlag,
|
---|
1530 | &cBin, &cIFno, &cSrcNo);
|
---|
1531 |
|
---|
1532 | // Handle messages from RPFITSIN.
|
---|
1533 | if (names_.errmsg[0] != ' ') {
|
---|
1534 | int i;
|
---|
1535 | for (i = 80; i > 0; i--) {
|
---|
1536 | if (names_.errmsg[i-1] != ' ') break;
|
---|
1537 | }
|
---|
1538 |
|
---|
1539 | sprintf(cMsg, "WARNING: Cycle %d:%03d, RPFITSIN reported -\n"
|
---|
1540 | " %.*s", cScanNo, cCycleNo, i, names_.errmsg);
|
---|
1541 | logMsg(cMsg);
|
---|
1542 | }
|
---|
1543 |
|
---|
1544 | return jstat;
|
---|
1545 | }
|
---|
1546 |
|
---|
1547 | //------------------------------------------------------- MBFITSreader::fixPos
|
---|
1548 |
|
---|
1549 | // Check and, if necessary, repair a position timestamp.
|
---|
1550 | //
|
---|
1551 | // Problems with the position timestamp manifest themselves via the scan rate:
|
---|
1552 | //
|
---|
1553 | // 1) Zero scan rate pairs, 1997/02/28 to 1998/01/07
|
---|
1554 | //
|
---|
1555 | // These occur because the position timestamp for the first integration
|
---|
1556 | // of the pair is erroneous; the value recorded is t/1000, where t is the
|
---|
1557 | // true value.
|
---|
1558 | // Earliest known: 97-02-28_1725_132653-42_258a.hpf
|
---|
1559 | // Latest known: 98-01-02_1923_095644-50_165c.hpf
|
---|
1560 | // (time range chosen to encompass observing runs).
|
---|
1561 | //
|
---|
1562 | // 2) Slow-fast scan rate pairs (0.013 - 0.020 deg/s),
|
---|
1563 | // 1997/03/28 to 1998/01/07.
|
---|
1564 | //
|
---|
1565 | // The UTC position timestamp is 1.0s later than it should be (never
|
---|
1566 | // earlier), almost certainly arising from an error in the telescope
|
---|
1567 | // control system.
|
---|
1568 | // Earliest known: 97-03-28_0150_010420-74_008d.hpf
|
---|
1569 | // Latest known: 98-01-04_1502_065150-02_177c.hpf
|
---|
1570 | // (time range chosen to encompass observing runs).
|
---|
1571 | //
|
---|
1572 | // 3) Slow-fast scan rate pairs (0.015 - 0.018 deg/s),
|
---|
1573 | // 1999/05/20 to 2001/07/12 (HIPASS and ZOA),
|
---|
1574 | // 2001/09/02 to 2001/12/04 (HIPASS and ZOA),
|
---|
1575 | // 2002/03/28 to 2002/05/13 (ZOA only),
|
---|
1576 | // 2003/04/26 to 2003/06/09 (ZOA only).
|
---|
1577 | // Earliest known: 1999-05-20_1818_175720-50_297e.hpf
|
---|
1578 | // Latest known: 2001-12-04_1814_065531p14_173e.hpf (HIPASS)
|
---|
1579 | // 2003-06-09_1924_352-085940_-6c.hpf (ZOA)
|
---|
1580 | //
|
---|
1581 | // Caused by the Linux signalling NaN problem. IEEE "signalling" NaNs
|
---|
1582 | // are silently transformed to "quiet" NaNs during assignment by setting
|
---|
1583 | // bit 22. This affected RPFITS because of its use of VAX-format
|
---|
1584 | // floating-point numbers which, with their permuted bytes, may sometimes
|
---|
1585 | // appear as signalling NaNs.
|
---|
1586 | //
|
---|
1587 | // The problem arose when the linux correlator came online and was
|
---|
1588 | // fixed with a workaround to the RPFITS library (repeated episodes
|
---|
1589 | // are probably due to use of an older version of the library). It
|
---|
1590 | // should not have affected the data significantly because of the
|
---|
1591 | // low relative error, which ranges from 0.0000038 to 0.0000076, but
|
---|
1592 | // it is important for the computation of scan rates which requires
|
---|
1593 | // taking the difference of two large UTC timestamps, one or other
|
---|
1594 | // of which will have 0.5s added to it.
|
---|
1595 | //
|
---|
1596 | // The return value identifies which, if any, of these problems was repaired.
|
---|
1597 |
|
---|
1598 | int MBFITSreader::fixw(
|
---|
1599 | const char *datobs,
|
---|
1600 | int cycleNo,
|
---|
1601 | int beamNo,
|
---|
1602 | double avRate[2],
|
---|
1603 | double thisRA,
|
---|
1604 | double thisDec,
|
---|
1605 | double thisUTC,
|
---|
1606 | double nextRA,
|
---|
1607 | double nextDec,
|
---|
1608 | float &nextUTC)
|
---|
1609 | {
|
---|
1610 | if (strcmp(datobs, "2003-06-09") > 0) {
|
---|
1611 | return 0;
|
---|
1612 |
|
---|
1613 | } else if (strcmp(datobs, "1998-01-07") <= 0) {
|
---|
1614 | if (nextUTC < thisUTC && (nextUTC + 86400.0) > (thisUTC + 600.0)) {
|
---|
1615 | // Possible scaling problem.
|
---|
1616 | double diff = nextUTC*1000.0 - thisUTC;
|
---|
1617 | if (0.0 < diff && diff < 600.0) {
|
---|
1618 | nextUTC *= 1000.0;
|
---|
1619 | return 1;
|
---|
1620 | } else {
|
---|
1621 | // Irreparable.
|
---|
1622 | return -1;
|
---|
1623 | }
|
---|
1624 | }
|
---|
1625 |
|
---|
1626 | if (cycleNo > 2) {
|
---|
1627 | if (beamNo == 1) {
|
---|
1628 | // This test is only reliable for beam 1.
|
---|
1629 | double dUTC = nextUTC - thisUTC;
|
---|
1630 | if (dUTC < 0.0) dUTC += 86400.0;
|
---|
1631 |
|
---|
1632 | // Guard against RA cycling through 24h in either direction.
|
---|
1633 | if (fabs(nextRA - thisRA) > PI) {
|
---|
1634 | if (nextRA < thisRA) {
|
---|
1635 | nextRA += TWOPI;
|
---|
1636 | } else {
|
---|
1637 | nextRA -= TWOPI;
|
---|
1638 | }
|
---|
1639 | }
|
---|
1640 |
|
---|
1641 | double dRA = (nextRA - thisRA) * cos(nextDec);
|
---|
1642 | double dDec = nextDec - thisDec;
|
---|
1643 | double arc = sqrt(dRA*dRA + dDec*dDec);
|
---|
1644 |
|
---|
1645 | double averate = sqrt(avRate[0]*avRate[0] + avRate[1]*avRate[1]);
|
---|
1646 | double diff1 = fabs(averate - arc/(dUTC-1.0));
|
---|
1647 | double diff2 = fabs(averate - arc/dUTC);
|
---|
1648 | if ((diff1 < diff2) && (diff1 < 0.05*averate)) {
|
---|
1649 | nextUTC -= 1.0;
|
---|
1650 | cCode5 = cycleNo;
|
---|
1651 | return 2;
|
---|
1652 | } else {
|
---|
1653 | cCode5 = 0;
|
---|
1654 | }
|
---|
1655 |
|
---|
1656 | } else {
|
---|
1657 | if (cycleNo == cCode5) {
|
---|
1658 | nextUTC -= 1.0;
|
---|
1659 | return 2;
|
---|
1660 | }
|
---|
1661 | }
|
---|
1662 | }
|
---|
1663 |
|
---|
1664 | } else if ((strcmp(datobs, "1999-05-20") >= 0 &&
|
---|
1665 | strcmp(datobs, "2001-07-12") <= 0) ||
|
---|
1666 | (strcmp(datobs, "2001-09-02") >= 0 &&
|
---|
1667 | strcmp(datobs, "2001-12-04") <= 0) ||
|
---|
1668 | (strcmp(datobs, "2002-03-28") >= 0 &&
|
---|
1669 | strcmp(datobs, "2002-05-13") <= 0) ||
|
---|
1670 | (strcmp(datobs, "2003-04-26") >= 0 &&
|
---|
1671 | strcmp(datobs, "2003-06-09") <= 0)) {
|
---|
1672 | // Signalling NaN problem, e.g. 1999-07-26_1839_011106-74_009c.hpf.
|
---|
1673 | // Position timestamps should always be an integral number of seconds.
|
---|
1674 | double resid = nextUTC - int(nextUTC);
|
---|
1675 | if (resid == 0.5) {
|
---|
1676 | nextUTC -= 0.5;
|
---|
1677 | return 3;
|
---|
1678 | }
|
---|
1679 | }
|
---|
1680 |
|
---|
1681 | return 0;
|
---|
1682 | }
|
---|
1683 |
|
---|
1684 | //-------------------------------------------------------- MBFITSreader::close
|
---|
1685 |
|
---|
1686 | // Close the input file.
|
---|
1687 |
|
---|
1688 | void MBFITSreader::close(void)
|
---|
1689 | {
|
---|
1690 | if (cMBopen) {
|
---|
1691 | int jstat = 1;
|
---|
1692 | rpfitsin_(&jstat, cVis, cWgt, &cBaseline, &cUTC, &cU, &cV, &cW, &cFlag,
|
---|
1693 | &cBin, &cIFno, &cSrcNo);
|
---|
1694 |
|
---|
1695 | if (cBeams) delete [] cBeams;
|
---|
1696 | if (cIFs) delete [] cIFs;
|
---|
1697 | if (cNChan) delete [] cNChan;
|
---|
1698 | if (cNPol) delete [] cNPol;
|
---|
1699 | if (cHaveXPol) delete [] cHaveXPol;
|
---|
1700 | if (cStartChan) delete [] cStartChan;
|
---|
1701 | if (cEndChan) delete [] cEndChan;
|
---|
1702 | if (cRefChan) delete [] cRefChan;
|
---|
1703 |
|
---|
1704 | if (cVis) delete [] cVis;
|
---|
1705 | if (cWgt) delete [] cWgt;
|
---|
1706 |
|
---|
1707 | if (cBeamSel) delete [] cBeamSel;
|
---|
1708 | if (cIFSel) delete [] cIFSel;
|
---|
1709 | if (cChanOff) delete [] cChanOff;
|
---|
1710 | if (cXpolOff) delete [] cXpolOff;
|
---|
1711 | if (cBuffer) delete [] cBuffer;
|
---|
1712 | if (cPosUTC) delete [] cPosUTC;
|
---|
1713 |
|
---|
1714 | cMBopen = 0;
|
---|
1715 | }
|
---|
1716 | }
|
---|
1717 |
|
---|
1718 | //-------------------------------------------------------------------- utcDiff
|
---|
1719 |
|
---|
1720 | // Subtract two UTCs (s) allowing for any plausible number of cycles through
|
---|
1721 | // 86400s, returning a result in the range [-43200, +43200]s.
|
---|
1722 |
|
---|
1723 | double MBFITSreader::utcDiff(double utc1, double utc2)
|
---|
1724 | {
|
---|
1725 | double diff = utc1 - utc2;
|
---|
1726 |
|
---|
1727 | if (diff > 43200.0) {
|
---|
1728 | diff -= 86400.0;
|
---|
1729 | while (diff > 43200.0) diff -= 86400.0;
|
---|
1730 | } else if (diff < -43200.0) {
|
---|
1731 | diff += 86400.0;
|
---|
1732 | while (diff < -43200.0) diff += 86400.0;
|
---|
1733 | }
|
---|
1734 |
|
---|
1735 | return diff;
|
---|
1736 | }
|
---|
1737 |
|
---|
1738 | //------------------------------------------------------- scanRate & applyRate
|
---|
1739 |
|
---|
1740 | // Compute and apply the scan rate corrected for grid convergence. (ra0,dec0)
|
---|
1741 | // are the coordinates of the central beam, assumed to be the tracking centre.
|
---|
1742 | // The rate computed in RA will be a rate of change of angular distance in the
|
---|
1743 | // direction of increasing RA at the position of the central beam. Similarly
|
---|
1744 | // for declination. Angles in radian, time in s.
|
---|
1745 |
|
---|
1746 | void MBFITSreader::scanRate(
|
---|
1747 | double ra0,
|
---|
1748 | double dec0,
|
---|
1749 | double ra1,
|
---|
1750 | double dec1,
|
---|
1751 | double ra2,
|
---|
1752 | double dec2,
|
---|
1753 | double dt,
|
---|
1754 | double &raRate,
|
---|
1755 | double &decRate)
|
---|
1756 | {
|
---|
1757 | // Transform to a system where the central beam lies on the equator at 12h.
|
---|
1758 | eulerx(ra1, dec1, ra0+HALFPI, -dec0, -HALFPI, ra1, dec1);
|
---|
1759 | eulerx(ra2, dec2, ra0+HALFPI, -dec0, -HALFPI, ra2, dec2);
|
---|
1760 |
|
---|
1761 | raRate = (ra2 - ra1) / dt;
|
---|
1762 | decRate = (dec2 - dec1) / dt;
|
---|
1763 | }
|
---|
1764 |
|
---|
1765 |
|
---|
1766 | void MBFITSreader::applyRate(
|
---|
1767 | double ra0,
|
---|
1768 | double dec0,
|
---|
1769 | double ra1,
|
---|
1770 | double dec1,
|
---|
1771 | double raRate,
|
---|
1772 | double decRate,
|
---|
1773 | double dt,
|
---|
1774 | double &ra2,
|
---|
1775 | double &dec2)
|
---|
1776 | {
|
---|
1777 | // Transform to a system where the central beam lies on the equator at 12h.
|
---|
1778 | eulerx(ra1, dec1, ra0+HALFPI, -dec0, -HALFPI, ra1, dec1);
|
---|
1779 |
|
---|
1780 | ra2 = ra1 + (raRate * dt);
|
---|
1781 | dec2 = dec1 + (decRate * dt);
|
---|
1782 |
|
---|
1783 | // Transform back.
|
---|
1784 | eulerx(ra2, dec2, -HALFPI, dec0, ra0+HALFPI, ra2, dec2);
|
---|
1785 | }
|
---|
1786 |
|
---|
1787 | //--------------------------------------------------------------------- eulerx
|
---|
1788 |
|
---|
1789 | void MBFITSreader::eulerx(
|
---|
1790 | double lng0,
|
---|
1791 | double lat0,
|
---|
1792 | double phi0,
|
---|
1793 | double theta,
|
---|
1794 | double phi,
|
---|
1795 | double &lng1,
|
---|
1796 | double &lat1)
|
---|
1797 |
|
---|
1798 | // Applies the Euler angle based transformation of spherical coordinates.
|
---|
1799 | //
|
---|
1800 | // phi0 Longitude of the ascending node in the old system, radians. The
|
---|
1801 | // ascending node is the point of intersection of the equators of
|
---|
1802 | // the two systems such that the equator of the new system crosses
|
---|
1803 | // from south to north as viewed in the old system.
|
---|
1804 | //
|
---|
1805 | // theta Angle between the poles of the two systems, radians. THETA is
|
---|
1806 | // positive for a positive rotation about the ascending node.
|
---|
1807 | //
|
---|
1808 | // phi Longitude of the ascending node in the new system, radians.
|
---|
1809 |
|
---|
1810 | {
|
---|
1811 | // Compute intermediaries.
|
---|
1812 | double lng0p = lng0 - phi0;
|
---|
1813 | double slng0p = sin(lng0p);
|
---|
1814 | double clng0p = cos(lng0p);
|
---|
1815 | double slat0 = sin(lat0);
|
---|
1816 | double clat0 = cos(lat0);
|
---|
1817 | double ctheta = cos(theta);
|
---|
1818 | double stheta = sin(theta);
|
---|
1819 |
|
---|
1820 | double x = clat0*clng0p;
|
---|
1821 | double y = clat0*slng0p*ctheta + slat0*stheta;
|
---|
1822 |
|
---|
1823 | // Longitude in the new system.
|
---|
1824 | if (x != 0.0 || y != 0.0) {
|
---|
1825 | lng1 = phi + atan2(y, x);
|
---|
1826 | } else {
|
---|
1827 | // Longitude at the poles in the new system is consistent with that
|
---|
1828 | // specified in the old system.
|
---|
1829 | lng1 = phi + lng0p;
|
---|
1830 | }
|
---|
1831 | lng1 = fmod(lng1, TWOPI);
|
---|
1832 | if (lng1 < 0.0) lng1 += TWOPI;
|
---|
1833 |
|
---|
1834 | lat1 = asin(slat0*ctheta - clat0*stheta*slng0p);
|
---|
1835 | }
|
---|