[1325] | 1 | //#---------------------------------------------------------------------------
|
---|
| 2 | //# MBFITSreader.cc: ATNF single-dish RPFITS reader.
|
---|
| 3 | //#---------------------------------------------------------------------------
|
---|
[1720] | 4 | //# livedata - processing pipeline for single-dish, multibeam spectral data.
|
---|
| 5 | //# Copyright (C) 2000-2009, Australia Telescope National Facility, CSIRO
|
---|
[1325] | 6 | //#
|
---|
[1720] | 7 | //# This file is part of livedata.
|
---|
[1325] | 8 | //#
|
---|
[1720] | 9 | //# livedata is free software: you can redistribute it and/or modify it under
|
---|
| 10 | //# the terms of the GNU General Public License as published by the Free
|
---|
| 11 | //# Software Foundation, either version 3 of the License, or (at your option)
|
---|
| 12 | //# any later version.
|
---|
| 13 | //#
|
---|
| 14 | //# livedata is distributed in the hope that it will be useful, but WITHOUT
|
---|
[1325] | 15 | //# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
---|
[1720] | 16 | //# FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
---|
| 17 | //# more details.
|
---|
[1325] | 18 | //#
|
---|
[1720] | 19 | //# You should have received a copy of the GNU General Public License along
|
---|
| 20 | //# with livedata. If not, see <http://www.gnu.org/licenses/>.
|
---|
[1325] | 21 | //#
|
---|
[1720] | 22 | //# Correspondence concerning livedata may be directed to:
|
---|
| 23 | //# Internet email: mcalabre@atnf.csiro.au
|
---|
| 24 | //# Postal address: Dr. Mark Calabretta
|
---|
| 25 | //# Australia Telescope National Facility, CSIRO
|
---|
| 26 | //# PO Box 76
|
---|
| 27 | //# Epping NSW 1710
|
---|
[1325] | 28 | //# AUSTRALIA
|
---|
| 29 | //#
|
---|
[1720] | 30 | //# http://www.atnf.csiro.au/computing/software/livedata.html
|
---|
| 31 | //# $Id: MBFITSreader.cc,v 19.57 2009-10-30 06:34:36 cal103 Exp $
|
---|
[1325] | 32 | //#---------------------------------------------------------------------------
|
---|
| 33 | //# The MBFITSreader class reads single dish RPFITS files (such as Parkes
|
---|
| 34 | //# Multibeam MBFITS files).
|
---|
| 35 | //#
|
---|
| 36 | //# Original: 2000/07/28 Mark Calabretta
|
---|
| 37 | //#---------------------------------------------------------------------------
|
---|
| 38 |
|
---|
[1452] | 39 | #include <atnf/pks/pks_maths.h>
|
---|
[1325] | 40 | #include <atnf/PKSIO/MBFITSreader.h>
|
---|
[1452] | 41 | #include <atnf/PKSIO/MBrecord.h>
|
---|
[1325] | 42 |
|
---|
| 43 | #include <casa/math.h>
|
---|
| 44 | #include <casa/iostream.h>
|
---|
| 45 | #include <casa/stdio.h>
|
---|
| 46 | #include <casa/stdlib.h>
|
---|
| 47 | #include <casa/string.h>
|
---|
| 48 | #include <unistd.h>
|
---|
| 49 |
|
---|
[1452] | 50 | #include <RPFITS.h>
|
---|
| 51 |
|
---|
[1325] | 52 | using namespace std;
|
---|
| 53 |
|
---|
| 54 | // Numerical constants.
|
---|
| 55 | const double PI = 3.141592653589793238462643;
|
---|
| 56 | const double TWOPI = 2.0 * PI;
|
---|
[1452] | 57 | const double HALFPI = PI / 2.0;
|
---|
[1427] | 58 | const double R2D = 180.0 / PI;
|
---|
[1325] | 59 |
|
---|
| 60 | //------------------------------------------------- MBFITSreader::MBFITSreader
|
---|
| 61 |
|
---|
| 62 | // Default constructor.
|
---|
| 63 |
|
---|
| 64 | MBFITSreader::MBFITSreader(
|
---|
| 65 | const int retry,
|
---|
| 66 | const int interpolate)
|
---|
| 67 | {
|
---|
| 68 | cRetry = retry;
|
---|
| 69 | if (cRetry > 10) {
|
---|
| 70 | cRetry = 10;
|
---|
| 71 | }
|
---|
| 72 |
|
---|
| 73 | cInterp = interpolate;
|
---|
| 74 | if (cInterp < 0 || cInterp > 2) {
|
---|
| 75 | cInterp = 1;
|
---|
| 76 | }
|
---|
| 77 |
|
---|
| 78 | // Initialize pointers.
|
---|
| 79 | cBeams = 0x0;
|
---|
| 80 | cIFs = 0x0;
|
---|
| 81 | cNChan = 0x0;
|
---|
| 82 | cNPol = 0x0;
|
---|
| 83 | cHaveXPol = 0x0;
|
---|
| 84 | cStartChan = 0x0;
|
---|
| 85 | cEndChan = 0x0;
|
---|
| 86 | cRefChan = 0x0;
|
---|
| 87 |
|
---|
| 88 | cVis = 0x0;
|
---|
| 89 | cWgt = 0x0;
|
---|
| 90 |
|
---|
| 91 | cBeamSel = 0x0;
|
---|
| 92 | cIFSel = 0x0;
|
---|
| 93 | cChanOff = 0x0;
|
---|
| 94 | cXpolOff = 0x0;
|
---|
| 95 | cBuffer = 0x0;
|
---|
| 96 | cPosUTC = 0x0;
|
---|
| 97 |
|
---|
| 98 | cMBopen = 0;
|
---|
[1452] | 99 |
|
---|
| 100 | // Tell RPFITSIN not to report errors directly.
|
---|
| 101 | iostat_.errlun = -1;
|
---|
| 102 |
|
---|
| 103 | // By default, messages are written to stderr.
|
---|
| 104 | initMsg();
|
---|
[1325] | 105 | }
|
---|
| 106 |
|
---|
| 107 | //------------------------------------------------ MBFITSreader::~MBFITSreader
|
---|
| 108 |
|
---|
| 109 | // Destructor.
|
---|
| 110 |
|
---|
| 111 | MBFITSreader::~MBFITSreader()
|
---|
| 112 | {
|
---|
| 113 | close();
|
---|
| 114 | }
|
---|
| 115 |
|
---|
| 116 | //--------------------------------------------------------- MBFITSreader::open
|
---|
| 117 |
|
---|
| 118 | // Open the RPFITS file for reading.
|
---|
| 119 |
|
---|
| 120 | int MBFITSreader::open(
|
---|
| 121 | char *rpname,
|
---|
| 122 | int &nBeam,
|
---|
| 123 | int* &beams,
|
---|
| 124 | int &nIF,
|
---|
| 125 | int* &IFs,
|
---|
| 126 | int* &nChan,
|
---|
| 127 | int* &nPol,
|
---|
| 128 | int* &haveXPol,
|
---|
| 129 | int &haveBase,
|
---|
| 130 | int &haveSpectra,
|
---|
| 131 | int &extraSysCal)
|
---|
| 132 | {
|
---|
[1452] | 133 | // Clear the message stack.
|
---|
| 134 | clearMsg();
|
---|
| 135 |
|
---|
[1325] | 136 | if (cMBopen) {
|
---|
| 137 | close();
|
---|
| 138 | }
|
---|
| 139 |
|
---|
| 140 | strcpy(names_.file, rpname);
|
---|
| 141 |
|
---|
| 142 | // Open the RPFITS file.
|
---|
| 143 | int jstat = -3;
|
---|
[1452] | 144 | if (rpfitsin(jstat)) {
|
---|
[1635] | 145 | sprintf(cMsg, "ERROR: Failed to open MBFITS file\n %s", rpname);
|
---|
[1452] | 146 | logMsg(cMsg);
|
---|
[1325] | 147 | return 1;
|
---|
| 148 | }
|
---|
| 149 |
|
---|
| 150 | cMBopen = 1;
|
---|
| 151 |
|
---|
| 152 | // Tell RPFITSIN that we want the OBSTYPE card.
|
---|
| 153 | int j;
|
---|
| 154 | param_.ncard = 1;
|
---|
| 155 | for (j = 0; j < 80; j++) {
|
---|
| 156 | names_.card[j] = ' ';
|
---|
| 157 | }
|
---|
| 158 | strncpy(names_.card, "OBSTYPE", 7);
|
---|
| 159 |
|
---|
| 160 | // Read the first header.
|
---|
| 161 | jstat = -1;
|
---|
[1452] | 162 | if (rpfitsin(jstat)) {
|
---|
[1635] | 163 | sprintf(cMsg, "ERROR: Failed to read MBFITS header in file\n"
|
---|
[1452] | 164 | " %s", rpname);
|
---|
| 165 | logMsg(cMsg);
|
---|
[1325] | 166 | close();
|
---|
| 167 | return 1;
|
---|
| 168 | }
|
---|
| 169 |
|
---|
| 170 | // Mopra data has some peculiarities.
|
---|
| 171 | cMopra = strncmp(names_.instrument, "ATMOPRA", 7) == 0;
|
---|
| 172 |
|
---|
[1372] | 173 | // Non-ATNF data may not store the position in (u,v,w).
|
---|
| 174 | if (strncmp(names_.sta, "tid", 3) == 0) {
|
---|
[1452] | 175 | sprintf(cMsg, "WARNING: Found Tidbinbilla data");
|
---|
[1372] | 176 | cSUpos = 1;
|
---|
| 177 | } else if (strncmp(names_.sta, "HOB", 3) == 0) {
|
---|
[1452] | 178 | sprintf(cMsg, "WARNING: Found Hobart data");
|
---|
[1372] | 179 | cSUpos = 1;
|
---|
| 180 | } else if (strncmp(names_.sta, "CED", 3) == 0) {
|
---|
[1452] | 181 | sprintf(cMsg, "WARNING: Found Ceduna data");
|
---|
[1372] | 182 | cSUpos = 1;
|
---|
| 183 | } else {
|
---|
| 184 | cSUpos = 0;
|
---|
| 185 | }
|
---|
| 186 |
|
---|
| 187 | if (cSUpos) {
|
---|
[1452] | 188 | strcat(cMsg, ", using telescope position\n from SU table.");
|
---|
| 189 | logMsg(cMsg);
|
---|
[1325] | 190 | cInterp = 0;
|
---|
| 191 | }
|
---|
| 192 |
|
---|
[1452] | 193 | // Mean scan rate (for timestamp repairs).
|
---|
| 194 | cNRate = 0;
|
---|
| 195 | cAvRate[0] = 0.0;
|
---|
| 196 | cAvRate[1] = 0.0;
|
---|
| 197 | cCode5 = 0;
|
---|
[1325] | 198 |
|
---|
[1452] | 199 |
|
---|
[1325] | 200 | // Find the maximum beam number.
|
---|
| 201 | cNBeam = 0;
|
---|
| 202 | for (int iBeam = 0; iBeam < anten_.nant; iBeam++) {
|
---|
| 203 | if (anten_.ant_num[iBeam] > cNBeam) {
|
---|
| 204 | cNBeam = anten_.ant_num[iBeam];
|
---|
| 205 | }
|
---|
| 206 | }
|
---|
| 207 |
|
---|
| 208 | if (cNBeam <= 0) {
|
---|
[1635] | 209 | logMsg("ERROR: Couldn't determine number of beams.");
|
---|
[1325] | 210 | close();
|
---|
| 211 | return 1;
|
---|
| 212 | }
|
---|
| 213 |
|
---|
| 214 | // Construct the beam mask.
|
---|
| 215 | cBeams = new int[cNBeam];
|
---|
| 216 | for (int iBeam = 0; iBeam < cNBeam; iBeam++) {
|
---|
| 217 | cBeams[iBeam] = 0;
|
---|
| 218 | }
|
---|
| 219 |
|
---|
| 220 | // ...beams present in the data.
|
---|
| 221 | for (int iBeam = 0; iBeam < anten_.nant; iBeam++) {
|
---|
[1452] | 222 | // Guard against dubious beam numbers, e.g. zeroes in
|
---|
| 223 | // 1999-09-29_1632_024848p14_071b.hpf and the four scans following.
|
---|
| 224 | // Note that the actual beam number is decoded from the 'baseline' random
|
---|
| 225 | // parameter for each spectrum and is only used for beam selection.
|
---|
| 226 | int beamNo = anten_.ant_num[iBeam];
|
---|
| 227 | if (beamNo != iBeam+1) {
|
---|
| 228 | char sta[8];
|
---|
| 229 | strncpy(sta, names_.sta+(8*iBeam), 8);
|
---|
| 230 | char *cp = sta + 7;
|
---|
| 231 | while (*cp == ' ') *(cp--) = '\0';
|
---|
| 232 |
|
---|
| 233 | sprintf(cMsg,
|
---|
| 234 | "WARNING: RPFITSIN returned beam number %2d for AN table\n"
|
---|
| 235 | " entry %2d with name '%.8s'", beamNo, iBeam+1, sta);
|
---|
| 236 |
|
---|
| 237 | char text[8];
|
---|
| 238 | sprintf(text, "MB%2.2d", iBeam+1);
|
---|
| 239 | cp = cMsg + strlen(cMsg);
|
---|
| 240 | if (strncmp(sta, text, 8) == 0) {
|
---|
| 241 | beamNo = iBeam + 1;
|
---|
| 242 | sprintf(cp, "; using beam number %2d.", beamNo);
|
---|
| 243 | } else {
|
---|
| 244 | sprintf(cp, ".");
|
---|
| 245 | }
|
---|
| 246 |
|
---|
| 247 | logMsg(cMsg);
|
---|
| 248 | }
|
---|
| 249 |
|
---|
| 250 | if (0 < beamNo && beamNo <= cNBeam) {
|
---|
| 251 | cBeams[beamNo-1] = 1;
|
---|
| 252 | }
|
---|
[1325] | 253 | }
|
---|
| 254 |
|
---|
| 255 | // Passing back the address of the array allows PKSFITSreader::select() to
|
---|
| 256 | // modify its elements directly.
|
---|
| 257 | nBeam = cNBeam;
|
---|
| 258 | beams = cBeams;
|
---|
| 259 |
|
---|
| 260 |
|
---|
| 261 | // Number of IFs.
|
---|
| 262 | cNIF = if_.n_if;
|
---|
| 263 | cIFs = new int[cNIF];
|
---|
| 264 | for (int iIF = 0; iIF < cNIF; iIF++) {
|
---|
| 265 | cIFs[iIF] = 1;
|
---|
| 266 | }
|
---|
| 267 |
|
---|
| 268 | // Passing back the address of the array allows PKSFITSreader::select() to
|
---|
| 269 | // modify its elements directly.
|
---|
| 270 | nIF = cNIF;
|
---|
| 271 | IFs = cIFs;
|
---|
| 272 |
|
---|
| 273 |
|
---|
| 274 | // Number of channels and polarizations.
|
---|
| 275 | cNChan = new int[cNIF];
|
---|
| 276 | cNPol = new int[cNIF];
|
---|
| 277 | cHaveXPol = new int[cNIF];
|
---|
| 278 | cGetXPol = 0;
|
---|
| 279 |
|
---|
| 280 | int maxProd = 0;
|
---|
| 281 | for (int iIF = 0; iIF < cNIF; iIF++) {
|
---|
| 282 | cNChan[iIF] = if_.if_nfreq[iIF];
|
---|
| 283 | cNPol[iIF] = if_.if_nstok[iIF];
|
---|
| 284 | cNChan[iIF] -= cNChan[iIF]%2;
|
---|
| 285 |
|
---|
| 286 | // Do we have cross-polarization data?
|
---|
| 287 | if ((cHaveXPol[iIF] = cNPol[iIF] > 2)) {
|
---|
| 288 | // Cross-polarization data is handled separately.
|
---|
| 289 | cNPol[iIF] = 2;
|
---|
| 290 |
|
---|
| 291 | // Default is to get it if we have it.
|
---|
| 292 | cGetXPol = 1;
|
---|
| 293 | }
|
---|
| 294 |
|
---|
| 295 | // Maximum number of spectral products in any IF.
|
---|
| 296 | int nProd = if_.if_nfreq[iIF] * if_.if_nstok[iIF];
|
---|
| 297 | if (maxProd < nProd) maxProd = nProd;
|
---|
| 298 | }
|
---|
| 299 |
|
---|
| 300 | // Allocate memory for RPFITSIN subroutine arguments.
|
---|
| 301 | if (cVis) delete [] cVis;
|
---|
| 302 | if (cWgt) delete [] cWgt;
|
---|
| 303 | cVis = new float[2*maxProd];
|
---|
| 304 | cWgt = new float[maxProd];
|
---|
| 305 |
|
---|
| 306 | nChan = cNChan;
|
---|
| 307 | nPol = cNPol;
|
---|
| 308 | haveXPol = cHaveXPol;
|
---|
| 309 |
|
---|
| 310 |
|
---|
| 311 | // Default channel range selection.
|
---|
| 312 | cStartChan = new int[cNIF];
|
---|
| 313 | cEndChan = new int[cNIF];
|
---|
| 314 | cRefChan = new int[cNIF];
|
---|
| 315 |
|
---|
| 316 | for (int iIF = 0; iIF < cNIF; iIF++) {
|
---|
| 317 | cStartChan[iIF] = 1;
|
---|
| 318 | cEndChan[iIF] = cNChan[iIF];
|
---|
| 319 | cRefChan[iIF] = cNChan[iIF]/2 + 1;
|
---|
| 320 | }
|
---|
| 321 |
|
---|
| 322 | cGetSpectra = 1;
|
---|
| 323 |
|
---|
| 324 |
|
---|
| 325 | // No baseline parameters in MBFITS.
|
---|
| 326 | haveBase = 0;
|
---|
| 327 |
|
---|
| 328 | // Always have spectra in MBFITS.
|
---|
| 329 | haveSpectra = cHaveSpectra = 1;
|
---|
| 330 |
|
---|
| 331 |
|
---|
| 332 | // Integration cycle time (s).
|
---|
| 333 | cIntTime = param_.intime;
|
---|
| 334 |
|
---|
| 335 | // Can't deduce binning mode till later.
|
---|
| 336 | cNBin = 0;
|
---|
| 337 |
|
---|
| 338 |
|
---|
| 339 | // Read the first syscal record.
|
---|
| 340 | if (rpget(1, cEOS)) {
|
---|
[1635] | 341 | logMsg("ERROR: Failed to read first syscal record.");
|
---|
[1325] | 342 | close();
|
---|
| 343 | return 1;
|
---|
| 344 | }
|
---|
| 345 |
|
---|
| 346 | // Additional information for Parkes Multibeam data?
|
---|
| 347 | extraSysCal = (sc_.sc_ant > anten_.nant);
|
---|
| 348 |
|
---|
| 349 |
|
---|
| 350 | cFirst = 1;
|
---|
| 351 | cEOF = 0;
|
---|
| 352 | cFlushing = 0;
|
---|
| 353 |
|
---|
| 354 | return 0;
|
---|
| 355 | }
|
---|
| 356 |
|
---|
| 357 | //---------------------------------------------------- MBFITSreader::getHeader
|
---|
| 358 |
|
---|
| 359 | // Get parameters describing the data.
|
---|
| 360 |
|
---|
| 361 | int MBFITSreader::getHeader(
|
---|
| 362 | char observer[32],
|
---|
| 363 | char project[32],
|
---|
| 364 | char telescope[32],
|
---|
| 365 | double antPos[3],
|
---|
| 366 | char obsType[32],
|
---|
[1399] | 367 | char bunit[32],
|
---|
[1325] | 368 | float &equinox,
|
---|
| 369 | char radecsys[32],
|
---|
| 370 | char dopplerFrame[32],
|
---|
| 371 | char datobs[32],
|
---|
| 372 | double &utc,
|
---|
| 373 | double &refFreq,
|
---|
| 374 | double &bandwidth)
|
---|
| 375 | {
|
---|
| 376 | if (!cMBopen) {
|
---|
[1635] | 377 | logMsg("ERROR: An MBFITS file has not been opened.");
|
---|
[1325] | 378 | return 1;
|
---|
| 379 | }
|
---|
| 380 |
|
---|
| 381 | sprintf(observer, "%-16.16s", names_.rp_observer);
|
---|
| 382 | sprintf(project, "%-16.16s", names_.object);
|
---|
| 383 | sprintf(telescope, "%-16.16s", names_.instrument);
|
---|
| 384 |
|
---|
| 385 | // Observatory coordinates (ITRF), in m.
|
---|
| 386 | antPos[0] = doubles_.x[0];
|
---|
| 387 | antPos[1] = doubles_.y[0];
|
---|
| 388 | antPos[2] = doubles_.z[0];
|
---|
| 389 |
|
---|
| 390 | // This is the only sure way to identify the telescope, maybe.
|
---|
| 391 | if (strncmp(names_.sta, "MB0", 3) == 0) {
|
---|
| 392 | // Parkes Multibeam.
|
---|
| 393 | sprintf(telescope, "%-16.16s", "ATPKSMB");
|
---|
| 394 | antPos[0] = -4554232.087;
|
---|
| 395 | antPos[1] = 2816759.046;
|
---|
| 396 | antPos[2] = -3454035.950;
|
---|
[1452] | 397 |
|
---|
[1325] | 398 | } else if (strncmp(names_.sta, "HOH", 3) == 0) {
|
---|
| 399 | // Parkes HOH receiver.
|
---|
| 400 | sprintf(telescope, "%-16.16s", "ATPKSHOH");
|
---|
| 401 | antPos[0] = -4554232.087;
|
---|
| 402 | antPos[1] = 2816759.046;
|
---|
| 403 | antPos[2] = -3454035.950;
|
---|
[1452] | 404 |
|
---|
[1325] | 405 | } else if (strncmp(names_.sta, "CA0", 3) == 0) {
|
---|
| 406 | // An ATCA antenna, use the array centre position.
|
---|
| 407 | sprintf(telescope, "%-16.16s", "ATCA");
|
---|
| 408 | antPos[0] = -4750915.837;
|
---|
| 409 | antPos[1] = 2792906.182;
|
---|
| 410 | antPos[2] = -3200483.747;
|
---|
[1452] | 411 |
|
---|
| 412 | // ATCA-104. Updated position at epoch 2007/06/24 from Chris Phillips.
|
---|
| 413 | // antPos[0] = -4751640.182; // ± 0.008
|
---|
| 414 | // antPos[1] = 2791700.322; // ± 0.006
|
---|
| 415 | // antPos[2] = -3200490.668; // ± 0.007
|
---|
| 416 | //
|
---|
[1325] | 417 | } else if (strncmp(names_.sta, "MOP", 3) == 0) {
|
---|
[1452] | 418 | // Mopra. Updated position at epoch 2007/06/24 from Chris Phillips.
|
---|
[1325] | 419 | sprintf(telescope, "%-16.16s", "ATMOPRA");
|
---|
[1452] | 420 | antPos[0] = -4682769.444; // ± 0.009
|
---|
| 421 | antPos[1] = 2802618.963; // ± 0.006
|
---|
| 422 | antPos[2] = -3291758.864; // ± 0.008
|
---|
| 423 |
|
---|
[1325] | 424 | } else if (strncmp(names_.sta, "HOB", 3) == 0) {
|
---|
| 425 | // Hobart.
|
---|
| 426 | sprintf(telescope, "%-16.16s", "HOBART");
|
---|
| 427 | antPos[0] = -3950236.735;
|
---|
| 428 | antPos[1] = 2522347.567;
|
---|
| 429 | antPos[2] = -4311562.569;
|
---|
[1452] | 430 |
|
---|
[1325] | 431 | } else if (strncmp(names_.sta, "CED", 3) == 0) {
|
---|
[1452] | 432 | // Ceduna. Updated position at epoch 2007/06/24 from Chris Phillips.
|
---|
[1325] | 433 | sprintf(telescope, "%-16.16s", "CEDUNA");
|
---|
[1452] | 434 | antPos[0] = -3753443.168; // ± 0.017
|
---|
| 435 | antPos[1] = 3912709.794; // ± 0.017
|
---|
| 436 | antPos[2] = -3348067.060; // ± 0.016
|
---|
| 437 |
|
---|
[1325] | 438 | } else if (strncmp(names_.sta, "tid", 3) == 0) {
|
---|
| 439 | // DSS.
|
---|
| 440 | sprintf(telescope, "%-16.16s", "DSS-43");
|
---|
| 441 | antPos[0] = -4460894.727;
|
---|
| 442 | antPos[1] = 2682361.530;
|
---|
| 443 | antPos[2] = -3674748.424;
|
---|
| 444 | }
|
---|
| 445 |
|
---|
| 446 | // Observation type.
|
---|
| 447 | int j;
|
---|
| 448 | for (j = 0; j < 31; j++) {
|
---|
| 449 | obsType[j] = names_.card[11+j];
|
---|
| 450 | if (obsType[j] == '\'') break;
|
---|
| 451 | }
|
---|
| 452 | obsType[j] = '\0';
|
---|
| 453 |
|
---|
[1399] | 454 | // Brightness unit.
|
---|
| 455 | sprintf(bunit, "%-16.16s", names_.bunit);
|
---|
| 456 | if (strcmp(bunit, "JY") == 0) {
|
---|
| 457 | bunit[1] = 'y';
|
---|
| 458 | } else if (strcmp(bunit, "JY/BEAM") == 0) {
|
---|
| 459 | strcpy(bunit, "Jy/beam");
|
---|
| 460 | }
|
---|
| 461 |
|
---|
[1325] | 462 | // Coordinate frames.
|
---|
| 463 | equinox = 2000.0f;
|
---|
| 464 | strcpy(radecsys, "FK5");
|
---|
| 465 | strcpy(dopplerFrame, "TOPOCENT");
|
---|
| 466 |
|
---|
| 467 | // Time at start of observation.
|
---|
| 468 | sprintf(datobs, "%-10.10s", names_.datobs);
|
---|
| 469 | utc = cUTC;
|
---|
| 470 |
|
---|
| 471 | // Spectral parameters.
|
---|
| 472 | refFreq = doubles_.if_freq[0];
|
---|
| 473 | bandwidth = doubles_.if_bw[0];
|
---|
| 474 |
|
---|
| 475 | return 0;
|
---|
| 476 | }
|
---|
| 477 |
|
---|
| 478 | //-------------------------------------------------- MBFITSreader::getFreqInfo
|
---|
| 479 |
|
---|
| 480 | // Get frequency parameters for each IF.
|
---|
| 481 |
|
---|
| 482 | int MBFITSreader::getFreqInfo(
|
---|
| 483 | int &nIF,
|
---|
| 484 | double* &startFreq,
|
---|
| 485 | double* &endFreq)
|
---|
| 486 | {
|
---|
| 487 | // This is RPFITS - can't do it!
|
---|
| 488 | return 1;
|
---|
| 489 | }
|
---|
| 490 |
|
---|
| 491 | //---------------------------------------------------- MBFITSreader::findRange
|
---|
| 492 |
|
---|
| 493 | // Find the range of the data selected in time and position.
|
---|
| 494 |
|
---|
| 495 | int MBFITSreader::findRange(
|
---|
| 496 | int &nRow,
|
---|
| 497 | int &nSel,
|
---|
| 498 | char dateSpan[2][32],
|
---|
| 499 | double utcSpan[2],
|
---|
| 500 | double* &positions)
|
---|
| 501 | {
|
---|
| 502 | // This is RPFITS - can't do it!
|
---|
| 503 | return 1;
|
---|
| 504 | }
|
---|
| 505 |
|
---|
| 506 | //--------------------------------------------------------- MBFITSreader::read
|
---|
| 507 |
|
---|
[1452] | 508 | // Read the next data record (if you're feeling lucky).
|
---|
[1325] | 509 |
|
---|
| 510 | int MBFITSreader::read(
|
---|
[1452] | 511 | MBrecord &MBrec)
|
---|
[1325] | 512 | {
|
---|
| 513 | int beamNo = -1;
|
---|
[1452] | 514 | int haveData, pCode = 0, status;
|
---|
| 515 | double raRate = 0.0, decRate = 0.0, paRate = 0.0;
|
---|
| 516 | MBrecord *iMBuff = 0x0;
|
---|
[1325] | 517 |
|
---|
| 518 | if (!cMBopen) {
|
---|
[1635] | 519 | logMsg("ERROR: An MBFITS file has not been opened.");
|
---|
[1325] | 520 | return 1;
|
---|
| 521 | }
|
---|
| 522 |
|
---|
[1452] | 523 | // Positions recorded in the input records usually do not coincide with the
|
---|
| 524 | // midpoint of the integration and hence the input must be buffered so that
|
---|
| 525 | // true positions may be interpolated.
|
---|
[1325] | 526 | //
|
---|
| 527 | // On the first call nBeamSel buffers of length nBin, are allocated and
|
---|
| 528 | // filled, where nBin is the number of time bins.
|
---|
| 529 | //
|
---|
| 530 | // The input records for binned, single beam data with multiple simultaneous
|
---|
| 531 | // IFs are ordered by IF within each integration rather than by bin number
|
---|
| 532 | // and hence are not in time order. No multibeam data exists with
|
---|
| 533 | // nBin > 1 but the likelihood that the input records would be in beam/IF
|
---|
| 534 | // order and the requirement that output records be in time order would
|
---|
| 535 | // force an elaborate double-buffering system and we do not support it.
|
---|
| 536 | //
|
---|
| 537 | // Once all buffers are filled, the next record for each beam pertains to
|
---|
| 538 | // the next integration and should contain new position information allowing
|
---|
| 539 | // the proper position for each spectrum in the buffer to be interpolated.
|
---|
| 540 | // The buffers are then flushed in time order. For single beam data there
|
---|
| 541 | // is only one buffer and reads from the MBFITS file are suspended while the
|
---|
| 542 | // flush is in progress. For multibeam data each buffer is of unit length
|
---|
| 543 | // so the flush completes immediately and the new record takes its place.
|
---|
| 544 |
|
---|
| 545 | haveData = 0;
|
---|
| 546 | while (!haveData) {
|
---|
| 547 | int iBeamSel = -1, iIFSel = -1;
|
---|
| 548 |
|
---|
| 549 | if (!cFlushing) {
|
---|
| 550 | if (cEOF) {
|
---|
| 551 | return -1;
|
---|
| 552 | }
|
---|
| 553 |
|
---|
| 554 | // Read the next record.
|
---|
[1452] | 555 | pCode = 0;
|
---|
[1325] | 556 | if ((status = rpget(0, cEOS)) == -1) {
|
---|
| 557 | // EOF.
|
---|
| 558 | cEOF = 1;
|
---|
| 559 | cFlushing = 1;
|
---|
| 560 | cFlushBin = 0;
|
---|
| 561 | cFlushIF = 0;
|
---|
| 562 |
|
---|
| 563 | #ifdef PKSIO_DEBUG
|
---|
[1452] | 564 | fprintf(stderr, "\nEnd-of-file detected, flushing last cycle.\n");
|
---|
[1325] | 565 | #endif
|
---|
| 566 |
|
---|
| 567 | } else if (status) {
|
---|
| 568 | // IO error.
|
---|
| 569 | return 1;
|
---|
| 570 |
|
---|
| 571 | } else {
|
---|
| 572 | if (cFirst) {
|
---|
| 573 | // First data; cBeamSel[] stores the buffer index for each beam.
|
---|
| 574 | cNBeamSel = 0;
|
---|
| 575 | cBeamSel = new int[cNBeam];
|
---|
| 576 |
|
---|
| 577 | for (int iBeam = 0; iBeam < cNBeam; iBeam++) {
|
---|
| 578 | if (cBeams[iBeam]) {
|
---|
| 579 | // Buffer offset for this beam.
|
---|
| 580 | cBeamSel[iBeam] = cNBeamSel++;
|
---|
| 581 | } else {
|
---|
| 582 | // Signal that the beam is not selected.
|
---|
| 583 | cBeamSel[iBeam] = -1;
|
---|
| 584 | }
|
---|
| 585 | }
|
---|
| 586 |
|
---|
| 587 | // Set up bookkeeping arrays for IFs.
|
---|
| 588 | cIFSel = new int[cNIF];
|
---|
| 589 | cChanOff = new int[cNIF];
|
---|
| 590 | cXpolOff = new int[cNIF];
|
---|
| 591 |
|
---|
| 592 | int maxChan = 0;
|
---|
| 593 | int maxXpol = 0;
|
---|
| 594 |
|
---|
[1635] | 595 | cSimulIF = 0;
|
---|
[1325] | 596 | for (int iIF = 0; iIF < cNIF; iIF++) {
|
---|
| 597 | if (cIFs[iIF]) {
|
---|
| 598 | // Buffer index for each IF within each simultaneous set.
|
---|
| 599 | cIFSel[iIF] = 0;
|
---|
| 600 |
|
---|
| 601 | // Array offsets for each IF within each simultaneous set.
|
---|
| 602 | cChanOff[iIF] = 0;
|
---|
| 603 | cXpolOff[iIF] = 0;
|
---|
| 604 |
|
---|
| 605 | // Look for earlier IFs in the same simultaneous set.
|
---|
| 606 | for (int jIF = 0; jIF < iIF; jIF++) {
|
---|
| 607 | if (!cIFs[jIF]) continue;
|
---|
| 608 |
|
---|
| 609 | if (if_.if_simul[jIF] == if_.if_simul[iIF]) {
|
---|
| 610 | // Got one, increment indices.
|
---|
| 611 | cIFSel[iIF]++;
|
---|
| 612 |
|
---|
| 613 | cChanOff[iIF] += cNChan[jIF] * cNPol[jIF];
|
---|
| 614 | if (cHaveXPol[jIF]) {
|
---|
| 615 | cXpolOff[iIF] += 2 * cNChan[jIF];
|
---|
| 616 | }
|
---|
| 617 | }
|
---|
| 618 | }
|
---|
| 619 |
|
---|
| 620 | // Maximum number of selected IFs in any simultaneous set.
|
---|
[1635] | 621 | cSimulIF = max(cSimulIF, cIFSel[iIF]+1);
|
---|
[1325] | 622 |
|
---|
| 623 | // Maximum memory required for any simultaneous set.
|
---|
| 624 | maxChan = max(maxChan, cChanOff[iIF] + cNChan[iIF]*cNPol[iIF]);
|
---|
| 625 | if (cHaveXPol[iIF]) {
|
---|
| 626 | maxXpol = max(maxXpol, cXpolOff[iIF] + 2*cNChan[iIF]);
|
---|
| 627 | }
|
---|
| 628 |
|
---|
| 629 | } else {
|
---|
| 630 | // Signal that the IF is not selected.
|
---|
| 631 | cIFSel[iIF] = -1;
|
---|
| 632 | }
|
---|
| 633 | }
|
---|
| 634 |
|
---|
| 635 | // Check for binning mode observations.
|
---|
| 636 | if (param_.intbase > 0.0f) {
|
---|
| 637 | cNBin = int((cIntTime / param_.intbase) + 0.5);
|
---|
| 638 |
|
---|
| 639 | // intbase sometimes contains rubbish.
|
---|
| 640 | if (cNBin == 0) {
|
---|
| 641 | cNBin = 1;
|
---|
| 642 | }
|
---|
| 643 | } else {
|
---|
| 644 | cNBin = 1;
|
---|
| 645 | }
|
---|
| 646 |
|
---|
| 647 | if (cNBin > 1 && cNBeamSel > 1) {
|
---|
[1635] | 648 | logMsg("ERROR: Cannot handle binning mode for multiple beams.\n"
|
---|
| 649 | " Select a single beam for input.");
|
---|
[1325] | 650 | close();
|
---|
| 651 | return 1;
|
---|
| 652 | }
|
---|
| 653 |
|
---|
[1452] | 654 | // Allocate buffer data storage; the MBrecord constructor zeroes
|
---|
[1325] | 655 | // class members such as cycleNo that are tested in the first pass
|
---|
| 656 | // below.
|
---|
| 657 | int nBuff = cNBeamSel * cNBin;
|
---|
[1452] | 658 | cBuffer = new MBrecord[nBuff];
|
---|
[1325] | 659 |
|
---|
| 660 | // Allocate memory for spectral arrays.
|
---|
| 661 | for (int ibuff = 0; ibuff < nBuff; ibuff++) {
|
---|
[1635] | 662 | cBuffer[ibuff].setNIFs(cSimulIF);
|
---|
[1325] | 663 | cBuffer[ibuff].allocate(0, maxChan, maxXpol);
|
---|
[1452] | 664 |
|
---|
| 665 | // Signal that this IF in this buffer has been flushed.
|
---|
[1635] | 666 | for (int iIF = 0; iIF < cSimulIF; iIF++) {
|
---|
[1452] | 667 | cBuffer[ibuff].IFno[iIF] = 0;
|
---|
| 668 | }
|
---|
[1325] | 669 | }
|
---|
| 670 |
|
---|
| 671 | cPosUTC = new double[cNBeamSel];
|
---|
| 672 |
|
---|
| 673 | cFirst = 0;
|
---|
| 674 | cScanNo = 1;
|
---|
| 675 | cCycleNo = 0;
|
---|
[1452] | 676 | cPrevUTC = -1.0;
|
---|
[1325] | 677 | }
|
---|
| 678 |
|
---|
| 679 | // Check for end-of-scan.
|
---|
| 680 | if (cEOS) {
|
---|
| 681 | cScanNo++;
|
---|
| 682 | cCycleNo = 0;
|
---|
[1452] | 683 | cPrevUTC = -1.0;
|
---|
[1325] | 684 | }
|
---|
| 685 |
|
---|
[1635] | 686 | // Apply beam and IF selection before the change-of-day test to allow
|
---|
| 687 | // a single selected beam and IF to be handled in binning-mode.
|
---|
| 688 | beamNo = int(cBaseline / 256.0);
|
---|
| 689 | if (beamNo == 1) {
|
---|
| 690 | // Store the position of beam 1 for grid convergence corrections.
|
---|
| 691 | cRA0 = cU;
|
---|
| 692 | cDec0 = cV;
|
---|
| 693 | }
|
---|
| 694 | iBeamSel = cBeamSel[beamNo-1];
|
---|
| 695 | if (iBeamSel < 0) continue;
|
---|
| 696 |
|
---|
| 697 | // Sanity check (mainly for MOPS).
|
---|
| 698 | if (cIFno > cNIF) continue;
|
---|
| 699 |
|
---|
[1720] | 700 | // Apply IF selection; iIFSel == 0 for the first selected IF, == 1
|
---|
| 701 | // for the second, etc.
|
---|
[1635] | 702 | iIFSel = cIFSel[cIFno - 1];
|
---|
| 703 | if (iIFSel < 0) continue;
|
---|
| 704 |
|
---|
| 705 |
|
---|
| 706 | if (cNBin > 1) {
|
---|
| 707 | // Binning mode: correct the time.
|
---|
| 708 | cUTC += param_.intbase * (cBin - (cNBin + 1)/2.0);
|
---|
| 709 | }
|
---|
| 710 |
|
---|
[1325] | 711 | // Check for change-of-day.
|
---|
[1452] | 712 | double cod = 0.0;
|
---|
| 713 | if ((cUTC + 86400.0) < (cPrevUTC + 600.0)) {
|
---|
| 714 | // cUTC should continue to increase past 86400 during a single scan.
|
---|
| 715 | // However, if the RPFITS file contains multiple scans that straddle
|
---|
| 716 | // midnight then cUTC can jump backwards from the end of one scan to
|
---|
| 717 | // the start of the next.
|
---|
| 718 | #ifdef PKSIO_DEBUG
|
---|
[1635] | 719 | fprintf(stderr, "Change-of-day on cUTC: %.1f -> %.1f\n",
|
---|
[1452] | 720 | cPrevUTC, cUTC);
|
---|
| 721 | #endif
|
---|
| 722 | // Can't change the recorded value of cUTC directly (without also
|
---|
| 723 | // changing dateobs) so change-of-day must be recorded separately as
|
---|
| 724 | // an offset to be applied when comparing integration timestamps.
|
---|
| 725 | cod = 86400.0;
|
---|
[1720] | 726 | }
|
---|
[1452] | 727 |
|
---|
[1720] | 728 | if ((cUTC+cod) < cPrevUTC - 1.0) {
|
---|
| 729 | if (cBin == 1 && iIFSel) {
|
---|
| 730 | // Multiple-IF, binning-mode data is only partially time ordered.
|
---|
| 731 | #ifdef PKSIO_DEBUG
|
---|
| 732 | fprintf(stderr, "New IF in multiple-IF, binning-mode data.\n");
|
---|
| 733 | #endif
|
---|
| 734 | cCycleNo -= cNBin;
|
---|
| 735 | cPrevUTC = -1.0;
|
---|
| 736 |
|
---|
| 737 | } else {
|
---|
| 738 | // All other data should be fully time ordered.
|
---|
| 739 | sprintf(cMsg,
|
---|
| 740 | "WARNING: Cycle %d:%03d-%03d, UTC went backwards from\n"
|
---|
| 741 | " %.1f to %.1f! Incrementing day number,\n"
|
---|
| 742 | " positions may be unreliable.", cScanNo, cCycleNo,
|
---|
| 743 | cCycleNo+1, cPrevUTC, cUTC);
|
---|
| 744 | logMsg(cMsg);
|
---|
| 745 | cUTC += 86400.0;
|
---|
| 746 | }
|
---|
[1325] | 747 | }
|
---|
| 748 |
|
---|
| 749 | // New integration cycle?
|
---|
[1452] | 750 | if ((cUTC+cod) > cPrevUTC) {
|
---|
[1325] | 751 | cCycleNo++;
|
---|
| 752 | cPrevUTC = cUTC + 0.0001;
|
---|
| 753 | }
|
---|
| 754 |
|
---|
[1399] | 755 | sprintf(cDateObs, "%-10.10s", names_.datobs);
|
---|
[1452] | 756 | cDateObs[10] = '\0';
|
---|
[1399] | 757 |
|
---|
[1325] | 758 | // Compute buffer number.
|
---|
| 759 | iMBuff = cBuffer + iBeamSel;
|
---|
| 760 | if (cNBin > 1) iMBuff += cNBeamSel*(cBin-1);
|
---|
| 761 |
|
---|
| 762 | if (cCycleNo < iMBuff->cycleNo) {
|
---|
| 763 | // Note that if the first beam and IF are not both selected cEOS
|
---|
| 764 | // will be cleared by rpget() when the next beam/IF is read.
|
---|
| 765 | cEOS = 1;
|
---|
| 766 | }
|
---|
| 767 |
|
---|
| 768 | // Begin flush cycle?
|
---|
[1452] | 769 | if (cEOS || (iMBuff->nIF && (cUTC+cod) > (iMBuff->utc+0.0001))) {
|
---|
[1325] | 770 | cFlushing = 1;
|
---|
| 771 | cFlushBin = 0;
|
---|
| 772 | cFlushIF = 0;
|
---|
| 773 | }
|
---|
| 774 |
|
---|
| 775 | #ifdef PKSIO_DEBUG
|
---|
[1452] | 776 | char rel = '=';
|
---|
| 777 | double dt = utcDiff(cUTC, cW);
|
---|
| 778 | if (dt < 0.0) {
|
---|
| 779 | rel = '<';
|
---|
| 780 | } else if (dt > 0.0) {
|
---|
| 781 | rel = '>';
|
---|
| 782 | }
|
---|
| 783 |
|
---|
| 784 | fprintf(stderr, "\n In:%4d%4d%3d%3d %.3f %c %.3f (%+.3fs) - "
|
---|
| 785 | "%sflushing\n", cScanNo, cCycleNo, beamNo, cIFno, cUTC, rel, cW, dt,
|
---|
| 786 | cFlushing ? "" : "not ");
|
---|
| 787 | if (cEOS) {
|
---|
| 788 | fprintf(stderr, "Start of new scan, flushing previous scan.\n");
|
---|
| 789 | }
|
---|
[1325] | 790 | #endif
|
---|
| 791 | }
|
---|
| 792 | }
|
---|
| 793 |
|
---|
| 794 |
|
---|
| 795 | if (cFlushing) {
|
---|
| 796 | // Find the oldest integration to flush, noting that the last
|
---|
| 797 | // integration cycle may be incomplete.
|
---|
| 798 | beamNo = 0;
|
---|
| 799 | int cycleNo = 0;
|
---|
| 800 | for (; cFlushBin < cNBin; cFlushBin++) {
|
---|
| 801 | for (iBeamSel = 0; iBeamSel < cNBeamSel; iBeamSel++) {
|
---|
| 802 | iMBuff = cBuffer + iBeamSel + cNBeamSel*cFlushBin;
|
---|
| 803 |
|
---|
[1635] | 804 | // iMBuff->nIF is decremented (below) and if zero signals that all
|
---|
| 805 | // IFs in an integration have been flushed.
|
---|
[1325] | 806 | if (iMBuff->nIF) {
|
---|
| 807 | if (cycleNo == 0 || iMBuff->cycleNo < cycleNo) {
|
---|
| 808 | beamNo = iMBuff->beamNo;
|
---|
| 809 | cycleNo = iMBuff->cycleNo;
|
---|
| 810 | }
|
---|
| 811 | }
|
---|
| 812 | }
|
---|
| 813 |
|
---|
| 814 | if (beamNo) {
|
---|
| 815 | // Found an integration to flush.
|
---|
| 816 | break;
|
---|
| 817 | }
|
---|
[1720] | 818 |
|
---|
| 819 | // Start with the first IF in the next bin.
|
---|
| 820 | cFlushIF = 0;
|
---|
[1325] | 821 | }
|
---|
| 822 |
|
---|
| 823 | if (beamNo) {
|
---|
| 824 | iBeamSel = cBeamSel[beamNo-1];
|
---|
| 825 | iMBuff = cBuffer + iBeamSel + cNBeamSel*cFlushBin;
|
---|
| 826 |
|
---|
| 827 | // Find the IF to flush.
|
---|
[1635] | 828 | for (; cFlushIF < cSimulIF; cFlushIF++) {
|
---|
[1325] | 829 | if (iMBuff->IFno[cFlushIF]) break;
|
---|
| 830 | }
|
---|
| 831 |
|
---|
| 832 | } else {
|
---|
| 833 | // Flush complete.
|
---|
| 834 | cFlushing = 0;
|
---|
| 835 | if (cEOF) {
|
---|
| 836 | return -1;
|
---|
| 837 | }
|
---|
| 838 |
|
---|
| 839 | // The last record read must have been the first of a new cycle.
|
---|
| 840 | beamNo = int(cBaseline / 256.0);
|
---|
| 841 | iBeamSel = cBeamSel[beamNo-1];
|
---|
| 842 |
|
---|
| 843 | // Compute buffer number.
|
---|
| 844 | iMBuff = cBuffer + iBeamSel;
|
---|
| 845 | if (cNBin > 1) iMBuff += cNBeamSel*(cBin-1);
|
---|
| 846 | }
|
---|
| 847 | }
|
---|
| 848 |
|
---|
| 849 |
|
---|
[1635] | 850 | if (cInterp && cFlushing == 1) {
|
---|
[1427] | 851 | // Start of flush cycle, interpolate the beam position.
|
---|
| 852 | //
|
---|
| 853 | // The position is measured by the control system at a time returned by
|
---|
| 854 | // RPFITSIN as the 'w' visibility coordinate. The ra and dec, returned
|
---|
| 855 | // as the 'u' and 'v' visibility coordinates, must be interpolated to
|
---|
| 856 | // the integration time which RPFITSIN returns as 'cUTC', this usually
|
---|
[1452] | 857 | // being a second or two later. The interpolation method used here is
|
---|
| 858 | // based on the scan rate.
|
---|
[1427] | 859 | //
|
---|
| 860 | // "This" RA, Dec, and UTC refers to the position currently stored in
|
---|
[1452] | 861 | // the buffer marked for output (iMBuff). This position is interpolated
|
---|
| 862 | // to the midpoint of that integration using either
|
---|
| 863 | // a) the rate currently sitting in iMBuff, which was computed from
|
---|
| 864 | // the previous integration, otherwise
|
---|
| 865 | // b) from the position recorded in the "next" integration which is
|
---|
| 866 | // currently sitting in the RPFITS commons,
|
---|
| 867 | // so that the position timestamps straddle the midpoint of the
|
---|
| 868 | // integration and is thereby interpolated rather than extrapolated.
|
---|
[1427] | 869 | //
|
---|
[1452] | 870 | // At the end of a scan, or if the next position has not been updated
|
---|
| 871 | // or its timestamp does not advance sufficiently, the most recent
|
---|
| 872 | // determination of the scan rate will be used for extrapolation which
|
---|
| 873 | // is quantified by the "rate age" measured in seconds beyond the
|
---|
| 874 | // interval defined by the position timestamps.
|
---|
[1325] | 875 |
|
---|
[1452] | 876 | // At this point, iMBuff contains cU, cV, cW, parAngle and focusRot
|
---|
| 877 | // stored from the previous call to rpget() for this beam (i.e. "this"),
|
---|
| 878 | // and also raRate, decRate and paRate computed from that integration
|
---|
| 879 | // and the previous one.
|
---|
[1427] | 880 | double thisRA = iMBuff->ra;
|
---|
| 881 | double thisDec = iMBuff->dec;
|
---|
| 882 | double thisUTC = cPosUTC[iBeamSel];
|
---|
[1452] | 883 | double thisPA = iMBuff->parAngle + iMBuff->focusRot;
|
---|
[1325] | 884 |
|
---|
[1452] | 885 | #ifdef PKSIO_DEBUG
|
---|
| 886 | fprintf(stderr, "This (%d) ra, dec, UTC: %9.4f %9.4f %10.3f %9.4f\n",
|
---|
| 887 | iMBuff->cycleNo, thisRA*R2D, thisDec*R2D, thisUTC, thisPA*R2D);
|
---|
| 888 | #endif
|
---|
| 889 |
|
---|
[1427] | 890 | if (cEOF || cEOS) {
|
---|
[1452] | 891 | // Use rates from the last cycle.
|
---|
| 892 | raRate = iMBuff->raRate;
|
---|
| 893 | decRate = iMBuff->decRate;
|
---|
| 894 | paRate = iMBuff->paRate;
|
---|
| 895 |
|
---|
[1427] | 896 | } else {
|
---|
[1452] | 897 | if (cW == thisUTC) {
|
---|
| 898 | // The control system at Mopra typically does not update the
|
---|
| 899 | // positions between successive integration cycles at the end of a
|
---|
| 900 | // scan (nor are they flagged). In this case we use the previously
|
---|
| 901 | // computed rates, even if from the previous scan since these are
|
---|
| 902 | // likely to be a better guess than anything else.
|
---|
| 903 | raRate = iMBuff->raRate;
|
---|
| 904 | decRate = iMBuff->decRate;
|
---|
| 905 | paRate = iMBuff->paRate;
|
---|
[1325] | 906 |
|
---|
[1452] | 907 | if (cU == thisRA && cV == thisDec) {
|
---|
| 908 | // Position and timestamp unchanged.
|
---|
| 909 | pCode = 1;
|
---|
[1325] | 910 |
|
---|
[1452] | 911 | } else if (fabs(cU-thisRA) < 0.0001 && fabs(cV-thisDec) < 0.0001) {
|
---|
| 912 | // Allow small rounding errors (seen infrequently).
|
---|
| 913 | pCode = 1;
|
---|
[1325] | 914 |
|
---|
| 915 | } else {
|
---|
[1452] | 916 | // (cU,cV) are probably rubbish (not yet seen in practice).
|
---|
| 917 | pCode = 2;
|
---|
| 918 | cU = thisRA;
|
---|
| 919 | cV = thisDec;
|
---|
[1325] | 920 | }
|
---|
| 921 |
|
---|
[1427] | 922 | #ifdef PKSIO_DEBUG
|
---|
[1452] | 923 | fprintf(stderr, "Next (%d) ra, dec, UTC: %9.4f %9.4f %10.3f "
|
---|
| 924 | "(0.000s)\n", cCycleNo, cU*R2D, cV*R2D, cW);
|
---|
[1427] | 925 | #endif
|
---|
| 926 |
|
---|
[1452] | 927 | } else {
|
---|
| 928 | double nextRA = cU;
|
---|
| 929 | double nextDec = cV;
|
---|
[1325] | 930 |
|
---|
[1452] | 931 | // Check and, if necessary, repair the position timestamp,
|
---|
| 932 | // remembering that pCode refers to the NEXT cycle.
|
---|
| 933 | pCode = fixw(cDateObs, cCycleNo, beamNo, cAvRate, thisRA, thisDec,
|
---|
| 934 | thisUTC, nextRA, nextDec, cW);
|
---|
| 935 | if (pCode > 0) pCode += 3;
|
---|
| 936 | double nextUTC = cW;
|
---|
[1325] | 937 |
|
---|
[1452] | 938 | #ifdef PKSIO_DEBUG
|
---|
| 939 | fprintf(stderr, "Next (%d) ra, dec, UTC: %9.4f %9.4f %10.3f "
|
---|
| 940 | "(%+.3fs)\n", cCycleNo, nextRA*R2D, nextDec*R2D, nextUTC,
|
---|
| 941 | utcDiff(nextUTC, thisUTC));
|
---|
| 942 | #endif
|
---|
[1325] | 943 |
|
---|
[1452] | 944 | // Compute the scan rate for this beam.
|
---|
| 945 | double dUTC = utcDiff(nextUTC, thisUTC);
|
---|
| 946 | if ((0.0 < dUTC) && (dUTC < 600.0)) {
|
---|
| 947 | scanRate(cRA0, cDec0, thisRA, thisDec, nextRA, nextDec, dUTC,
|
---|
| 948 | raRate, decRate);
|
---|
[1325] | 949 |
|
---|
[1452] | 950 | // Update the mean scan rate.
|
---|
| 951 | cAvRate[0] = (cAvRate[0]*cNRate + raRate) / (cNRate + 1);
|
---|
| 952 | cAvRate[1] = (cAvRate[1]*cNRate + decRate) / (cNRate + 1);
|
---|
| 953 | cNRate++;
|
---|
| 954 |
|
---|
| 955 | // Rate of change of position angle.
|
---|
| 956 | if (sc_.sc_ant <= anten_.nant) {
|
---|
| 957 | paRate = 0.0;
|
---|
| 958 | } else {
|
---|
| 959 | int iOff = sc_.sc_q * (sc_.sc_ant - 1) - 1;
|
---|
| 960 | double nextPA = sc_.sc_cal[iOff + 4] + sc_.sc_cal[iOff + 7];
|
---|
| 961 | double paDiff = nextPA - thisPA;
|
---|
| 962 | if (paDiff > PI) {
|
---|
| 963 | paDiff -= TWOPI;
|
---|
| 964 | } else if (paDiff < -PI) {
|
---|
| 965 | paDiff += TWOPI;
|
---|
| 966 | }
|
---|
| 967 | paRate = paDiff / dUTC;
|
---|
[1325] | 968 | }
|
---|
| 969 |
|
---|
[1452] | 970 | if (cInterp == 2) {
|
---|
| 971 | // Use the same interpolation scheme as the original pksmbfits
|
---|
| 972 | // client. This incorrectly assumed that (nextUTC - thisUTC) is
|
---|
| 973 | // equal to the integration time and interpolated by computing a
|
---|
| 974 | // weighted sum of the positions before and after the required
|
---|
| 975 | // time.
|
---|
[1325] | 976 |
|
---|
[1452] | 977 | double utc = iMBuff->utc;
|
---|
| 978 | double tw1 = 1.0 - utcDiff(utc, thisUTC) / iMBuff->exposure;
|
---|
| 979 | double tw2 = 1.0 - utcDiff(nextUTC, utc) / iMBuff->exposure;
|
---|
| 980 | double gamma = (tw2 / (tw1 + tw2)) * dUTC / (utc - thisUTC);
|
---|
| 981 |
|
---|
| 982 | // Guard against RA cycling through 24h in either direction.
|
---|
| 983 | if (fabs(nextRA - thisRA) > PI) {
|
---|
| 984 | if (nextRA < thisRA) {
|
---|
| 985 | nextRA += TWOPI;
|
---|
| 986 | } else {
|
---|
| 987 | nextRA -= TWOPI;
|
---|
| 988 | }
|
---|
| 989 | }
|
---|
| 990 |
|
---|
| 991 | raRate = gamma * (nextRA - thisRA) / dUTC;
|
---|
| 992 | decRate = gamma * (nextDec - thisDec) / dUTC;
|
---|
| 993 | }
|
---|
| 994 |
|
---|
| 995 | } else {
|
---|
| 996 | if (cCycleNo == 2 && fabs(utcDiff(cUTC,cW)) < 600.0) {
|
---|
| 997 | // thisUTC (i.e. cW for the first cycle) is rubbish, and
|
---|
| 998 | // probably the position as well (extremely rare in practice,
|
---|
| 999 | // e.g. 97-12-19_1029_235708-18_586e.hpf which actually has the
|
---|
| 1000 | // t/1000 scaling bug in the first cycle).
|
---|
| 1001 | iMBuff->pCode = 3;
|
---|
| 1002 | thisRA = cU;
|
---|
| 1003 | thisDec = cV;
|
---|
| 1004 | thisUTC = cW;
|
---|
| 1005 | raRate = 0.0;
|
---|
| 1006 | decRate = 0.0;
|
---|
| 1007 | paRate = 0.0;
|
---|
| 1008 |
|
---|
| 1009 | } else {
|
---|
| 1010 | // cW is rubbish and probably (cU,cV), and possibly the
|
---|
| 1011 | // parallactic angle and everything else as well (rarely seen
|
---|
| 1012 | // in practice, e.g. 97-12-09_0743_235707-58_327c.hpf and
|
---|
| 1013 | // 97-09-01_0034_123717-42_242b.hpf, the latter with bad
|
---|
| 1014 | // parallactic angle).
|
---|
| 1015 | pCode = 3;
|
---|
| 1016 | cU = thisRA;
|
---|
| 1017 | cV = thisDec;
|
---|
| 1018 | cW = thisUTC;
|
---|
| 1019 | raRate = iMBuff->raRate;
|
---|
| 1020 | decRate = iMBuff->decRate;
|
---|
| 1021 | paRate = iMBuff->paRate;
|
---|
| 1022 | }
|
---|
[1325] | 1023 | }
|
---|
[1452] | 1024 | }
|
---|
| 1025 | }
|
---|
[1325] | 1026 |
|
---|
[1452] | 1027 |
|
---|
| 1028 | // Choose the closest rate determination.
|
---|
| 1029 | if (cCycleNo == 1) {
|
---|
| 1030 | // Scan containing a single integration.
|
---|
| 1031 | iMBuff->raRate = 0.0;
|
---|
| 1032 | iMBuff->decRate = 0.0;
|
---|
| 1033 | iMBuff->paRate = 0.0;
|
---|
| 1034 |
|
---|
| 1035 | } else {
|
---|
| 1036 | double dUTC = iMBuff->utc - cPosUTC[iBeamSel];
|
---|
| 1037 |
|
---|
| 1038 | if (dUTC >= 0.0) {
|
---|
| 1039 | // In HIPASS/ZOA, the position timestamp, which should always occur
|
---|
| 1040 | // on the whole second, normally precedes an integration midpoint
|
---|
| 1041 | // falling on the half-second. Consequently, positive ages are
|
---|
| 1042 | // always half-integral.
|
---|
| 1043 | dUTC = utcDiff(iMBuff->utc, cW);
|
---|
| 1044 | if (dUTC > 0.0) {
|
---|
| 1045 | iMBuff->rateAge = dUTC;
|
---|
| 1046 | } else {
|
---|
| 1047 | iMBuff->rateAge = 0.0f;
|
---|
| 1048 | }
|
---|
| 1049 |
|
---|
| 1050 | iMBuff->raRate = raRate;
|
---|
| 1051 | iMBuff->decRate = decRate;
|
---|
| 1052 | iMBuff->paRate = paRate;
|
---|
| 1053 |
|
---|
[1325] | 1054 | } else {
|
---|
[1452] | 1055 | // In HIPASS/ZOA, negative ages occur when the integration midpoint,
|
---|
| 1056 | // occurring on the whole second, precedes the position timestamp.
|
---|
| 1057 | // Thus negative ages are always an integral number of seconds.
|
---|
| 1058 | // They have only been seen to occur sporadically in the period
|
---|
| 1059 | // 1999/05/31 to 1999/11/01, e.g. 1999-07-26_1821_005410-74_007c.hpf
|
---|
| 1060 | //
|
---|
| 1061 | // In recent (2008/10/07) Mopra data, small negative ages (~10ms,
|
---|
| 1062 | // occasionally up to ~300ms) seem to be the norm, with both the
|
---|
| 1063 | // position timestamp and integration midpoint falling close to but
|
---|
| 1064 | // not on the integral second.
|
---|
| 1065 | if (cCycleNo == 2) {
|
---|
| 1066 | // We have to start with something!
|
---|
| 1067 | iMBuff->rateAge = dUTC;
|
---|
[1325] | 1068 |
|
---|
| 1069 | } else {
|
---|
[1452] | 1070 | // Although we did not record the relevant position timestamp
|
---|
| 1071 | // explicitly, it can easily be deduced.
|
---|
| 1072 | double w = iMBuff->utc - utcDiff(cUTC, iMBuff->utc) -
|
---|
| 1073 | iMBuff->rateAge;
|
---|
| 1074 | dUTC = utcDiff(iMBuff->utc, w);
|
---|
| 1075 |
|
---|
| 1076 | if (dUTC > 0.0) {
|
---|
| 1077 | iMBuff->rateAge = 0.0f;
|
---|
[1325] | 1078 | } else {
|
---|
[1452] | 1079 | iMBuff->rateAge = dUTC;
|
---|
[1325] | 1080 | }
|
---|
| 1081 | }
|
---|
[1452] | 1082 |
|
---|
| 1083 | iMBuff->raRate = raRate;
|
---|
| 1084 | iMBuff->decRate = decRate;
|
---|
| 1085 | iMBuff->paRate = paRate;
|
---|
[1325] | 1086 | }
|
---|
| 1087 | }
|
---|
| 1088 |
|
---|
[1427] | 1089 | #ifdef PKSIO_DEBUG
|
---|
[1452] | 1090 | double avRate = sqrt(cAvRate[0]*cAvRate[0] + cAvRate[1]*cAvRate[1]);
|
---|
| 1091 | fprintf(stderr, "RA, Dec, Av & PA rates: %8.4f %8.4f %8.4f %8.4f "
|
---|
| 1092 | "pCode %d\n", raRate*R2D, decRate*R2D, avRate*R2D, paRate*R2D, pCode);
|
---|
[1427] | 1093 | #endif
|
---|
| 1094 |
|
---|
[1452] | 1095 |
|
---|
[1325] | 1096 | // Compute the position of this beam for all bins.
|
---|
| 1097 | for (int idx = 0; idx < cNBin; idx++) {
|
---|
| 1098 | int jbuff = iBeamSel + cNBeamSel*idx;
|
---|
| 1099 |
|
---|
| 1100 | cBuffer[jbuff].raRate = iMBuff->raRate;
|
---|
| 1101 | cBuffer[jbuff].decRate = iMBuff->decRate;
|
---|
[1452] | 1102 | cBuffer[jbuff].paRate = iMBuff->paRate;
|
---|
[1325] | 1103 |
|
---|
[1452] | 1104 | double dUTC = utcDiff(cBuffer[jbuff].utc, thisUTC);
|
---|
| 1105 | if (dUTC > 100.0) {
|
---|
[1325] | 1106 | // Must have cycled through midnight.
|
---|
[1452] | 1107 | dUTC -= 86400.0;
|
---|
[1325] | 1108 | }
|
---|
| 1109 |
|
---|
[1452] | 1110 | applyRate(cRA0, cDec0, thisRA, thisDec,
|
---|
| 1111 | cBuffer[jbuff].raRate, cBuffer[jbuff].decRate, dUTC,
|
---|
| 1112 | cBuffer[jbuff].ra, cBuffer[jbuff].dec);
|
---|
| 1113 |
|
---|
| 1114 | #ifdef PKSIO_DEBUG
|
---|
| 1115 | fprintf(stderr, "Intp (%d) ra, dec, UTC: %9.4f %9.4f %10.3f (pCode, "
|
---|
| 1116 | "age: %d %.1fs)\n", iMBuff->cycleNo, cBuffer[jbuff].ra*R2D,
|
---|
| 1117 | cBuffer[jbuff].dec*R2D, cBuffer[jbuff].utc, iMBuff->pCode,
|
---|
| 1118 | iMBuff->rateAge);
|
---|
| 1119 | #endif
|
---|
[1325] | 1120 | }
|
---|
[1635] | 1121 |
|
---|
| 1122 | cFlushing = 2;
|
---|
[1325] | 1123 | }
|
---|
| 1124 |
|
---|
| 1125 |
|
---|
| 1126 | if (cFlushing) {
|
---|
| 1127 | // Copy buffer location out one IF at a time.
|
---|
| 1128 | MBrec.extract(*iMBuff, cFlushIF);
|
---|
| 1129 | haveData = 1;
|
---|
| 1130 |
|
---|
| 1131 | #ifdef PKSIO_DEBUG
|
---|
[1452] | 1132 | fprintf(stderr, "Out:%4d%4d%3d%3d\n", MBrec.scanNo, MBrec.cycleNo,
|
---|
| 1133 | MBrec.beamNo, MBrec.IFno[0]);
|
---|
[1325] | 1134 | #endif
|
---|
| 1135 |
|
---|
| 1136 | // Signal that this IF in this buffer location has been flushed.
|
---|
| 1137 | iMBuff->IFno[cFlushIF] = 0;
|
---|
| 1138 |
|
---|
[1635] | 1139 | iMBuff->nIF--;
|
---|
| 1140 | if (iMBuff->nIF == 0) {
|
---|
| 1141 | // All IFs in this buffer location have been flushed. Stop cEOS
|
---|
| 1142 | // being set when the next integration is read.
|
---|
[1325] | 1143 | iMBuff->cycleNo = 0;
|
---|
| 1144 |
|
---|
| 1145 | } else {
|
---|
| 1146 | // Carry on flushing the other IFs.
|
---|
| 1147 | continue;
|
---|
| 1148 | }
|
---|
| 1149 |
|
---|
| 1150 | // Has the whole buffer been flushed?
|
---|
| 1151 | if (cFlushBin == cNBin - 1) {
|
---|
| 1152 | if (cEOS || cEOF) {
|
---|
| 1153 | // Carry on flushing other buffers.
|
---|
| 1154 | cFlushIF = 0;
|
---|
| 1155 | continue;
|
---|
| 1156 | }
|
---|
| 1157 |
|
---|
| 1158 | cFlushing = 0;
|
---|
| 1159 |
|
---|
| 1160 | beamNo = int(cBaseline / 256.0);
|
---|
| 1161 | iBeamSel = cBeamSel[beamNo-1];
|
---|
| 1162 |
|
---|
| 1163 | // Compute buffer number.
|
---|
| 1164 | iMBuff = cBuffer + iBeamSel;
|
---|
| 1165 | if (cNBin > 1) iMBuff += cNBeamSel*(cBin-1);
|
---|
| 1166 | }
|
---|
| 1167 | }
|
---|
| 1168 |
|
---|
| 1169 | if (!cFlushing) {
|
---|
| 1170 | // Buffer this MBrec.
|
---|
[1399] | 1171 | if ((cScanNo > iMBuff->scanNo) && iMBuff->IFno[0]) {
|
---|
[1325] | 1172 | // Sanity check on the number of IFs in the new scan.
|
---|
| 1173 | if (if_.n_if != cNIF) {
|
---|
[1452] | 1174 | sprintf(cMsg, "WARNING: Scan %d has %d IFs instead of %d, "
|
---|
| 1175 | "continuing.", cScanNo, if_.n_if, cNIF);
|
---|
| 1176 | logMsg(cMsg);
|
---|
[1325] | 1177 | }
|
---|
| 1178 | }
|
---|
| 1179 |
|
---|
[1372] | 1180 | // Sanity check on incomplete integrations within a scan.
|
---|
| 1181 | if (iMBuff->nIF && (iMBuff->cycleNo != cCycleNo)) {
|
---|
| 1182 | // Force the incomplete integration to be flushed before proceeding.
|
---|
| 1183 | cFlushing = 1;
|
---|
| 1184 | continue;
|
---|
| 1185 | }
|
---|
| 1186 |
|
---|
[1452] | 1187 | #ifdef PKSIO_DEBUG
|
---|
| 1188 | fprintf(stderr, "Buf:%4d%4d%3d%3d\n", cScanNo, cCycleNo, beamNo, cIFno);
|
---|
| 1189 | #endif
|
---|
[1325] | 1190 |
|
---|
[1452] | 1191 | // Store IF-independent parameters only for the first IF of a new cycle,
|
---|
| 1192 | // particularly because this is the only one for which the scan rates
|
---|
| 1193 | // are computed above.
|
---|
| 1194 | int firstIF = (iMBuff->nIF == 0);
|
---|
| 1195 | if (firstIF) {
|
---|
| 1196 | iMBuff->scanNo = cScanNo;
|
---|
| 1197 | iMBuff->cycleNo = cCycleNo;
|
---|
[1325] | 1198 |
|
---|
[1452] | 1199 | // Times.
|
---|
| 1200 | strcpy(iMBuff->datobs, cDateObs);
|
---|
| 1201 | iMBuff->utc = cUTC;
|
---|
| 1202 | iMBuff->exposure = param_.intbase;
|
---|
[1325] | 1203 |
|
---|
[1452] | 1204 | // Source identification.
|
---|
| 1205 | sprintf(iMBuff->srcName, "%-16.16s",
|
---|
| 1206 | names_.su_name + (cSrcNo-1)*16);
|
---|
| 1207 | iMBuff->srcName[16] = '\0';
|
---|
| 1208 | iMBuff->srcRA = doubles_.su_ra[cSrcNo-1];
|
---|
| 1209 | iMBuff->srcDec = doubles_.su_dec[cSrcNo-1];
|
---|
| 1210 |
|
---|
| 1211 | // Rest frequency of the line of interest.
|
---|
| 1212 | iMBuff->restFreq = doubles_.rfreq;
|
---|
| 1213 | if (strncmp(names_.instrument, "ATPKSMB", 7) == 0) {
|
---|
| 1214 | // Fix the HI rest frequency recorded for Parkes multibeam data.
|
---|
| 1215 | double reffreq = doubles_.freq;
|
---|
| 1216 | double restfreq = doubles_.rfreq;
|
---|
| 1217 | if ((restfreq == 0.0 || fabs(restfreq - reffreq) == 0.0) &&
|
---|
| 1218 | fabs(reffreq - 1420.405752e6) < 100.0) {
|
---|
| 1219 | iMBuff->restFreq = 1420.405752e6;
|
---|
| 1220 | }
|
---|
[1325] | 1221 | }
|
---|
| 1222 |
|
---|
[1452] | 1223 | // Observation type.
|
---|
| 1224 | int j;
|
---|
| 1225 | for (j = 0; j < 15; j++) {
|
---|
| 1226 | iMBuff->obsType[j] = names_.card[11+j];
|
---|
| 1227 | if (iMBuff->obsType[j] == '\'') break;
|
---|
| 1228 | }
|
---|
| 1229 | iMBuff->obsType[j] = '\0';
|
---|
[1325] | 1230 |
|
---|
[1452] | 1231 | // Beam-dependent parameters.
|
---|
| 1232 | iMBuff->beamNo = beamNo;
|
---|
[1325] | 1233 |
|
---|
[1452] | 1234 | // Beam position at the specified time.
|
---|
| 1235 | if (cSUpos) {
|
---|
| 1236 | // Non-ATNF data that does not store the position in (u,v,w).
|
---|
| 1237 | iMBuff->ra = doubles_.su_ra[cSrcNo-1];
|
---|
| 1238 | iMBuff->dec = doubles_.su_dec[cSrcNo-1];
|
---|
| 1239 | } else {
|
---|
| 1240 | iMBuff->ra = cU;
|
---|
| 1241 | iMBuff->dec = cV;
|
---|
| 1242 | }
|
---|
| 1243 | cPosUTC[iBeamSel] = cW;
|
---|
| 1244 | iMBuff->pCode = pCode;
|
---|
| 1245 |
|
---|
| 1246 | // Store rates for next time.
|
---|
| 1247 | iMBuff->raRate = raRate;
|
---|
| 1248 | iMBuff->decRate = decRate;
|
---|
| 1249 | iMBuff->paRate = paRate;
|
---|
[1325] | 1250 | }
|
---|
| 1251 |
|
---|
| 1252 | // IF-dependent parameters.
|
---|
| 1253 | int iIF = cIFno - 1;
|
---|
| 1254 | int startChan = cStartChan[iIF];
|
---|
| 1255 | int endChan = cEndChan[iIF];
|
---|
| 1256 | int refChan = cRefChan[iIF];
|
---|
| 1257 |
|
---|
| 1258 | int nChan = abs(endChan - startChan) + 1;
|
---|
| 1259 |
|
---|
| 1260 | iIFSel = cIFSel[iIF];
|
---|
[1452] | 1261 | if (iMBuff->IFno[iIFSel] == 0) {
|
---|
| 1262 | iMBuff->nIF++;
|
---|
| 1263 | iMBuff->IFno[iIFSel] = cIFno;
|
---|
| 1264 | } else {
|
---|
| 1265 | // Integration cycle written to the output file twice (the only known
|
---|
| 1266 | // example is 1999-05-22_1914_000-031805_03v.hpf).
|
---|
| 1267 | sprintf(cMsg, "WARNING: Integration cycle %d:%d, beam %2d, \n"
|
---|
| 1268 | " IF %d was duplicated.", cScanNo, cCycleNo-1,
|
---|
| 1269 | beamNo, cIFno);
|
---|
| 1270 | logMsg(cMsg);
|
---|
| 1271 | }
|
---|
[1325] | 1272 | iMBuff->nChan[iIFSel] = nChan;
|
---|
| 1273 | iMBuff->nPol[iIFSel] = cNPol[iIF];
|
---|
| 1274 |
|
---|
| 1275 | iMBuff->fqRefPix[iIFSel] = doubles_.if_ref[iIF];
|
---|
| 1276 | iMBuff->fqRefVal[iIFSel] = doubles_.if_freq[iIF];
|
---|
| 1277 | iMBuff->fqDelt[iIFSel] =
|
---|
| 1278 | if_.if_invert[iIF] * fabs(doubles_.if_bw[iIF] /
|
---|
| 1279 | (if_.if_nfreq[iIF] - 1));
|
---|
| 1280 |
|
---|
| 1281 | // Adjust for channel selection.
|
---|
| 1282 | if (iMBuff->fqRefPix[iIFSel] != refChan) {
|
---|
| 1283 | iMBuff->fqRefVal[iIFSel] +=
|
---|
| 1284 | (refChan - iMBuff->fqRefPix[iIFSel]) *
|
---|
| 1285 | iMBuff->fqDelt[iIFSel];
|
---|
| 1286 | iMBuff->fqRefPix[iIFSel] = refChan;
|
---|
| 1287 | }
|
---|
| 1288 |
|
---|
| 1289 | if (endChan < startChan) {
|
---|
| 1290 | iMBuff->fqDelt[iIFSel] = -iMBuff->fqDelt[iIFSel];
|
---|
| 1291 | }
|
---|
| 1292 |
|
---|
| 1293 |
|
---|
| 1294 | // System temperature.
|
---|
| 1295 | int iBeam = beamNo - 1;
|
---|
| 1296 | int scq = sc_.sc_q;
|
---|
| 1297 | float TsysPol1 = sc_.sc_cal[scq*iBeam + 3];
|
---|
| 1298 | float TsysPol2 = sc_.sc_cal[scq*iBeam + 4];
|
---|
| 1299 | iMBuff->tsys[iIFSel][0] = TsysPol1*TsysPol1;
|
---|
| 1300 | iMBuff->tsys[iIFSel][1] = TsysPol2*TsysPol2;
|
---|
| 1301 |
|
---|
| 1302 | // Calibration factor; may be changed later if the data is recalibrated.
|
---|
| 1303 | if (scq > 14) {
|
---|
| 1304 | // Will only be present for Parkes Multibeam or LBA data.
|
---|
| 1305 | iMBuff->calfctr[iIFSel][0] = sc_.sc_cal[scq*iBeam + 14];
|
---|
| 1306 | iMBuff->calfctr[iIFSel][1] = sc_.sc_cal[scq*iBeam + 15];
|
---|
| 1307 | } else {
|
---|
| 1308 | iMBuff->calfctr[iIFSel][0] = 0.0f;
|
---|
| 1309 | iMBuff->calfctr[iIFSel][1] = 0.0f;
|
---|
| 1310 | }
|
---|
| 1311 |
|
---|
| 1312 | // Cross-polarization calibration factor (unknown to MBFITS).
|
---|
| 1313 | for (int j = 0; j < 2; j++) {
|
---|
| 1314 | iMBuff->xcalfctr[iIFSel][j] = 0.0f;
|
---|
| 1315 | }
|
---|
| 1316 |
|
---|
| 1317 | // Baseline parameters (unknown to MBFITS).
|
---|
| 1318 | iMBuff->haveBase = 0;
|
---|
| 1319 |
|
---|
| 1320 | // Data (always present in MBFITS).
|
---|
| 1321 | iMBuff->haveSpectra = 1;
|
---|
| 1322 |
|
---|
| 1323 | // Flag: bit 0 set if off source.
|
---|
| 1324 | // bit 1 set if loss of sync in A polarization.
|
---|
| 1325 | // bit 2 set if loss of sync in B polarization.
|
---|
| 1326 | unsigned char rpflag =
|
---|
| 1327 | (unsigned char)(sc_.sc_cal[scq*iBeam + 12] + 0.5f);
|
---|
| 1328 |
|
---|
| 1329 | // The baseline flag may be set independently.
|
---|
| 1330 | if (rpflag == 0) rpflag = cFlag;
|
---|
| 1331 |
|
---|
| 1332 | // Copy and scale data.
|
---|
| 1333 | int inc = 2 * if_.if_nstok[iIF];
|
---|
| 1334 | if (endChan < startChan) inc = -inc;
|
---|
| 1335 |
|
---|
| 1336 | float TsysF;
|
---|
| 1337 | iMBuff->spectra[iIFSel] = iMBuff->spectra[0] + cChanOff[iIF];
|
---|
| 1338 | iMBuff->flagged[iIFSel] = iMBuff->flagged[0] + cChanOff[iIF];
|
---|
| 1339 |
|
---|
| 1340 | float *spectra = iMBuff->spectra[iIFSel];
|
---|
| 1341 | unsigned char *flagged = iMBuff->flagged[iIFSel];
|
---|
| 1342 | for (int ipol = 0; ipol < cNPol[iIF]; ipol++) {
|
---|
| 1343 | if (sc_.sc_cal[scq*iBeam + 3 + ipol] > 0.0f) {
|
---|
| 1344 | // The correlator has already applied the calibration.
|
---|
| 1345 | TsysF = 1.0f;
|
---|
| 1346 | } else {
|
---|
| 1347 | // The correlator has normalized cVis[k] to a Tsys of 500K.
|
---|
| 1348 | TsysF = iMBuff->tsys[iIFSel][ipol] / 500.0f;
|
---|
| 1349 | }
|
---|
| 1350 |
|
---|
| 1351 | int k = 2 * (if_.if_nstok[iIF]*(startChan - 1) + ipol);
|
---|
| 1352 | for (int ichan = 0; ichan < nChan; ichan++) {
|
---|
| 1353 | *(spectra++) = TsysF * cVis[k];
|
---|
| 1354 | *(flagged++) = rpflag;
|
---|
| 1355 | k += inc;
|
---|
| 1356 | }
|
---|
| 1357 | }
|
---|
| 1358 |
|
---|
| 1359 | if (cHaveXPol[iIF]) {
|
---|
| 1360 | int k = 2 * (3*(startChan - 1) + 2);
|
---|
| 1361 | iMBuff->xpol[iIFSel] = iMBuff->xpol[0] + cXpolOff[iIF];
|
---|
| 1362 | float *xpol = iMBuff->xpol[iIFSel];
|
---|
| 1363 | for (int ichan = 0; ichan < nChan; ichan++) {
|
---|
| 1364 | *(xpol++) = cVis[k];
|
---|
| 1365 | *(xpol++) = cVis[k+1];
|
---|
| 1366 | k += inc;
|
---|
| 1367 | }
|
---|
| 1368 | }
|
---|
| 1369 |
|
---|
| 1370 |
|
---|
| 1371 | // Calibration factor applied to the data by the correlator.
|
---|
| 1372 | if (scq > 14) {
|
---|
| 1373 | // Will only be present for Parkes Multibeam or LBA data.
|
---|
| 1374 | iMBuff->tcal[iIFSel][0] = sc_.sc_cal[scq*iBeam + 14];
|
---|
| 1375 | iMBuff->tcal[iIFSel][1] = sc_.sc_cal[scq*iBeam + 15];
|
---|
| 1376 | } else {
|
---|
| 1377 | iMBuff->tcal[iIFSel][0] = 0.0f;
|
---|
| 1378 | iMBuff->tcal[iIFSel][1] = 0.0f;
|
---|
| 1379 | }
|
---|
| 1380 |
|
---|
[1452] | 1381 | if (firstIF) {
|
---|
| 1382 | if (sc_.sc_ant <= anten_.nant) {
|
---|
| 1383 | // No extra syscal information present.
|
---|
| 1384 | iMBuff->extraSysCal = 0;
|
---|
| 1385 | iMBuff->azimuth = 0.0f;
|
---|
| 1386 | iMBuff->elevation = 0.0f;
|
---|
| 1387 | iMBuff->parAngle = 0.0f;
|
---|
| 1388 | iMBuff->focusAxi = 0.0f;
|
---|
| 1389 | iMBuff->focusTan = 0.0f;
|
---|
| 1390 | iMBuff->focusRot = 0.0f;
|
---|
| 1391 | iMBuff->temp = 0.0f;
|
---|
| 1392 | iMBuff->pressure = 0.0f;
|
---|
| 1393 | iMBuff->humidity = 0.0f;
|
---|
| 1394 | iMBuff->windSpeed = 0.0f;
|
---|
| 1395 | iMBuff->windAz = 0.0f;
|
---|
| 1396 | strcpy(iMBuff->tcalTime, " ");
|
---|
| 1397 | iMBuff->refBeam = 0;
|
---|
[1325] | 1398 |
|
---|
[1452] | 1399 | } else {
|
---|
| 1400 | // Additional information for Parkes Multibeam data.
|
---|
| 1401 | int iOff = scq*(sc_.sc_ant - 1) - 1;
|
---|
| 1402 | iMBuff->extraSysCal = 1;
|
---|
[1325] | 1403 |
|
---|
[1452] | 1404 | iMBuff->azimuth = sc_.sc_cal[iOff + 2];
|
---|
| 1405 | iMBuff->elevation = sc_.sc_cal[iOff + 3];
|
---|
| 1406 | iMBuff->parAngle = sc_.sc_cal[iOff + 4];
|
---|
[1325] | 1407 |
|
---|
[1452] | 1408 | iMBuff->focusAxi = sc_.sc_cal[iOff + 5] * 1e-3;
|
---|
| 1409 | iMBuff->focusTan = sc_.sc_cal[iOff + 6] * 1e-3;
|
---|
| 1410 | iMBuff->focusRot = sc_.sc_cal[iOff + 7];
|
---|
| 1411 |
|
---|
| 1412 | iMBuff->temp = sc_.sc_cal[iOff + 8];
|
---|
| 1413 | iMBuff->pressure = sc_.sc_cal[iOff + 9];
|
---|
| 1414 | iMBuff->humidity = sc_.sc_cal[iOff + 10];
|
---|
| 1415 | iMBuff->windSpeed = sc_.sc_cal[iOff + 11];
|
---|
| 1416 | iMBuff->windAz = sc_.sc_cal[iOff + 12];
|
---|
| 1417 |
|
---|
| 1418 | char *tcalTime = iMBuff->tcalTime;
|
---|
| 1419 | sprintf(tcalTime, "%-16.16s", (char *)(&sc_.sc_cal[iOff+13]));
|
---|
| 1420 | tcalTime[16] = '\0';
|
---|
| 1421 |
|
---|
[1325] | 1422 | #ifndef AIPS_LITTLE_ENDIAN
|
---|
[1452] | 1423 | // Do byte swapping on the ASCII date string.
|
---|
| 1424 | for (int j = 0; j < 16; j += 4) {
|
---|
| 1425 | char ctmp;
|
---|
| 1426 | ctmp = tcalTime[j];
|
---|
| 1427 | tcalTime[j] = tcalTime[j+3];
|
---|
| 1428 | tcalTime[j+3] = ctmp;
|
---|
| 1429 | ctmp = tcalTime[j+1];
|
---|
| 1430 | tcalTime[j+1] = tcalTime[j+2];
|
---|
| 1431 | tcalTime[j+2] = ctmp;
|
---|
| 1432 | }
|
---|
[1325] | 1433 | #endif
|
---|
| 1434 |
|
---|
[1452] | 1435 | // Reference beam number.
|
---|
| 1436 | float refbeam = sc_.sc_cal[iOff + 17];
|
---|
| 1437 | if (refbeam > 0.0f || refbeam < 100.0f) {
|
---|
| 1438 | iMBuff->refBeam = int(refbeam);
|
---|
| 1439 | } else {
|
---|
| 1440 | iMBuff->refBeam = 0;
|
---|
| 1441 | }
|
---|
[1325] | 1442 | }
|
---|
| 1443 | }
|
---|
| 1444 | }
|
---|
| 1445 | }
|
---|
| 1446 |
|
---|
| 1447 | return 0;
|
---|
| 1448 | }
|
---|
| 1449 |
|
---|
| 1450 | //-------------------------------------------------------- MBFITSreader::rpget
|
---|
| 1451 |
|
---|
| 1452 | // Read the next data record from the RPFITS file.
|
---|
| 1453 |
|
---|
| 1454 | int MBFITSreader::rpget(int syscalonly, int &EOS)
|
---|
| 1455 | {
|
---|
| 1456 | EOS = 0;
|
---|
| 1457 |
|
---|
| 1458 | int retries = 0;
|
---|
| 1459 |
|
---|
| 1460 | // Allow 10 read errors.
|
---|
| 1461 | int numErr = 0;
|
---|
| 1462 |
|
---|
| 1463 | int jstat = 0;
|
---|
| 1464 | while (numErr < 10) {
|
---|
| 1465 | int lastjstat = jstat;
|
---|
| 1466 |
|
---|
[1452] | 1467 | switch(rpfitsin(jstat)) {
|
---|
[1325] | 1468 | case -1:
|
---|
| 1469 | // Read failed; retry.
|
---|
| 1470 | numErr++;
|
---|
[1452] | 1471 | logMsg("WARNING: RPFITS read failed - retrying.");
|
---|
[1325] | 1472 | jstat = 0;
|
---|
| 1473 | break;
|
---|
| 1474 |
|
---|
| 1475 | case 0:
|
---|
| 1476 | // Successful read.
|
---|
| 1477 | if (lastjstat == 0) {
|
---|
| 1478 | if (cBaseline == -1) {
|
---|
| 1479 | // Syscal data.
|
---|
| 1480 | if (syscalonly) {
|
---|
| 1481 | return 0;
|
---|
| 1482 | }
|
---|
| 1483 |
|
---|
| 1484 | } else {
|
---|
| 1485 | if (!syscalonly) {
|
---|
| 1486 | return 0;
|
---|
| 1487 | }
|
---|
| 1488 | }
|
---|
| 1489 | }
|
---|
| 1490 |
|
---|
| 1491 | // Last operation was to read header or FG table; now read data.
|
---|
| 1492 | break;
|
---|
| 1493 |
|
---|
| 1494 | case 1:
|
---|
| 1495 | // Encountered header while trying to read data; read it.
|
---|
| 1496 | EOS = 1;
|
---|
| 1497 | jstat = -1;
|
---|
| 1498 | break;
|
---|
| 1499 |
|
---|
| 1500 | case 2:
|
---|
| 1501 | // End of scan; read past it.
|
---|
| 1502 | jstat = 0;
|
---|
| 1503 | break;
|
---|
| 1504 |
|
---|
| 1505 | case 3:
|
---|
| 1506 | // End-of-file; retry applies to real-time mode.
|
---|
| 1507 | if (retries++ >= cRetry) {
|
---|
| 1508 | return -1;
|
---|
| 1509 | }
|
---|
| 1510 |
|
---|
| 1511 | sleep(10);
|
---|
| 1512 | jstat = 0;
|
---|
| 1513 | break;
|
---|
| 1514 |
|
---|
| 1515 | case 4:
|
---|
| 1516 | // Encountered FG table while trying to read data; read it.
|
---|
| 1517 | jstat = -1;
|
---|
| 1518 | break;
|
---|
| 1519 |
|
---|
| 1520 | case 5:
|
---|
| 1521 | // Illegal data at end of block after close/reopen operation; retry.
|
---|
| 1522 | jstat = 0;
|
---|
| 1523 | break;
|
---|
| 1524 |
|
---|
| 1525 | default:
|
---|
| 1526 | // Shouldn't reach here.
|
---|
[1452] | 1527 | sprintf(cMsg, "WARNING: Unrecognized RPFITSIN return code: %d "
|
---|
| 1528 | "(retrying).", jstat);
|
---|
| 1529 | logMsg(cMsg);
|
---|
[1325] | 1530 | jstat = 0;
|
---|
| 1531 | break;
|
---|
| 1532 | }
|
---|
| 1533 | }
|
---|
| 1534 |
|
---|
[1452] | 1535 | logMsg("ERROR: RPFITS read failed too many times.");
|
---|
[1325] | 1536 | return 2;
|
---|
| 1537 | }
|
---|
| 1538 |
|
---|
[1452] | 1539 | //----------------------------------------------------- MBFITSreader::rpfitsin
|
---|
| 1540 |
|
---|
| 1541 | // Wrapper around RPFITSIN that reports errors. Returned RPFITSIN subroutine
|
---|
| 1542 | // arguments are captured as MBFITSreader member variables.
|
---|
| 1543 |
|
---|
| 1544 | int MBFITSreader::rpfitsin(int &jstat)
|
---|
| 1545 |
|
---|
| 1546 | {
|
---|
| 1547 | rpfitsin_(&jstat, cVis, cWgt, &cBaseline, &cUTC, &cU, &cV, &cW, &cFlag,
|
---|
| 1548 | &cBin, &cIFno, &cSrcNo);
|
---|
| 1549 |
|
---|
| 1550 | // Handle messages from RPFITSIN.
|
---|
| 1551 | if (names_.errmsg[0] != ' ') {
|
---|
| 1552 | int i;
|
---|
| 1553 | for (i = 80; i > 0; i--) {
|
---|
| 1554 | if (names_.errmsg[i-1] != ' ') break;
|
---|
| 1555 | }
|
---|
| 1556 |
|
---|
| 1557 | sprintf(cMsg, "WARNING: Cycle %d:%03d, RPFITSIN reported -\n"
|
---|
| 1558 | " %.*s", cScanNo, cCycleNo, i, names_.errmsg);
|
---|
| 1559 | logMsg(cMsg);
|
---|
| 1560 | }
|
---|
| 1561 |
|
---|
| 1562 | return jstat;
|
---|
| 1563 | }
|
---|
| 1564 |
|
---|
| 1565 | //------------------------------------------------------- MBFITSreader::fixPos
|
---|
| 1566 |
|
---|
| 1567 | // Check and, if necessary, repair a position timestamp.
|
---|
| 1568 | //
|
---|
| 1569 | // Problems with the position timestamp manifest themselves via the scan rate:
|
---|
| 1570 | //
|
---|
| 1571 | // 1) Zero scan rate pairs, 1997/02/28 to 1998/01/07
|
---|
| 1572 | //
|
---|
| 1573 | // These occur because the position timestamp for the first integration
|
---|
| 1574 | // of the pair is erroneous; the value recorded is t/1000, where t is the
|
---|
| 1575 | // true value.
|
---|
| 1576 | // Earliest known: 97-02-28_1725_132653-42_258a.hpf
|
---|
| 1577 | // Latest known: 98-01-02_1923_095644-50_165c.hpf
|
---|
| 1578 | // (time range chosen to encompass observing runs).
|
---|
| 1579 | //
|
---|
| 1580 | // 2) Slow-fast scan rate pairs (0.013 - 0.020 deg/s),
|
---|
| 1581 | // 1997/03/28 to 1998/01/07.
|
---|
| 1582 | //
|
---|
| 1583 | // The UTC position timestamp is 1.0s later than it should be (never
|
---|
| 1584 | // earlier), almost certainly arising from an error in the telescope
|
---|
| 1585 | // control system.
|
---|
| 1586 | // Earliest known: 97-03-28_0150_010420-74_008d.hpf
|
---|
| 1587 | // Latest known: 98-01-04_1502_065150-02_177c.hpf
|
---|
| 1588 | // (time range chosen to encompass observing runs).
|
---|
| 1589 | //
|
---|
| 1590 | // 3) Slow-fast scan rate pairs (0.015 - 0.018 deg/s),
|
---|
| 1591 | // 1999/05/20 to 2001/07/12 (HIPASS and ZOA),
|
---|
| 1592 | // 2001/09/02 to 2001/12/04 (HIPASS and ZOA),
|
---|
| 1593 | // 2002/03/28 to 2002/05/13 (ZOA only),
|
---|
| 1594 | // 2003/04/26 to 2003/06/09 (ZOA only).
|
---|
| 1595 | // Earliest known: 1999-05-20_1818_175720-50_297e.hpf
|
---|
| 1596 | // Latest known: 2001-12-04_1814_065531p14_173e.hpf (HIPASS)
|
---|
| 1597 | // 2003-06-09_1924_352-085940_-6c.hpf (ZOA)
|
---|
| 1598 | //
|
---|
| 1599 | // Caused by the Linux signalling NaN problem. IEEE "signalling" NaNs
|
---|
| 1600 | // are silently transformed to "quiet" NaNs during assignment by setting
|
---|
| 1601 | // bit 22. This affected RPFITS because of its use of VAX-format
|
---|
| 1602 | // floating-point numbers which, with their permuted bytes, may sometimes
|
---|
| 1603 | // appear as signalling NaNs.
|
---|
| 1604 | //
|
---|
| 1605 | // The problem arose when the linux correlator came online and was
|
---|
| 1606 | // fixed with a workaround to the RPFITS library (repeated episodes
|
---|
| 1607 | // are probably due to use of an older version of the library). It
|
---|
| 1608 | // should not have affected the data significantly because of the
|
---|
| 1609 | // low relative error, which ranges from 0.0000038 to 0.0000076, but
|
---|
| 1610 | // it is important for the computation of scan rates which requires
|
---|
| 1611 | // taking the difference of two large UTC timestamps, one or other
|
---|
| 1612 | // of which will have 0.5s added to it.
|
---|
| 1613 | //
|
---|
| 1614 | // The return value identifies which, if any, of these problems was repaired.
|
---|
| 1615 |
|
---|
| 1616 | int MBFITSreader::fixw(
|
---|
| 1617 | const char *datobs,
|
---|
| 1618 | int cycleNo,
|
---|
| 1619 | int beamNo,
|
---|
| 1620 | double avRate[2],
|
---|
| 1621 | double thisRA,
|
---|
| 1622 | double thisDec,
|
---|
| 1623 | double thisUTC,
|
---|
| 1624 | double nextRA,
|
---|
| 1625 | double nextDec,
|
---|
| 1626 | float &nextUTC)
|
---|
| 1627 | {
|
---|
| 1628 | if (strcmp(datobs, "2003-06-09") > 0) {
|
---|
| 1629 | return 0;
|
---|
| 1630 |
|
---|
| 1631 | } else if (strcmp(datobs, "1998-01-07") <= 0) {
|
---|
| 1632 | if (nextUTC < thisUTC && (nextUTC + 86400.0) > (thisUTC + 600.0)) {
|
---|
| 1633 | // Possible scaling problem.
|
---|
| 1634 | double diff = nextUTC*1000.0 - thisUTC;
|
---|
| 1635 | if (0.0 < diff && diff < 600.0) {
|
---|
| 1636 | nextUTC *= 1000.0;
|
---|
| 1637 | return 1;
|
---|
| 1638 | } else {
|
---|
| 1639 | // Irreparable.
|
---|
| 1640 | return -1;
|
---|
| 1641 | }
|
---|
| 1642 | }
|
---|
| 1643 |
|
---|
| 1644 | if (cycleNo > 2) {
|
---|
| 1645 | if (beamNo == 1) {
|
---|
| 1646 | // This test is only reliable for beam 1.
|
---|
| 1647 | double dUTC = nextUTC - thisUTC;
|
---|
| 1648 | if (dUTC < 0.0) dUTC += 86400.0;
|
---|
| 1649 |
|
---|
| 1650 | // Guard against RA cycling through 24h in either direction.
|
---|
| 1651 | if (fabs(nextRA - thisRA) > PI) {
|
---|
| 1652 | if (nextRA < thisRA) {
|
---|
| 1653 | nextRA += TWOPI;
|
---|
| 1654 | } else {
|
---|
| 1655 | nextRA -= TWOPI;
|
---|
| 1656 | }
|
---|
| 1657 | }
|
---|
| 1658 |
|
---|
| 1659 | double dRA = (nextRA - thisRA) * cos(nextDec);
|
---|
| 1660 | double dDec = nextDec - thisDec;
|
---|
| 1661 | double arc = sqrt(dRA*dRA + dDec*dDec);
|
---|
| 1662 |
|
---|
| 1663 | double averate = sqrt(avRate[0]*avRate[0] + avRate[1]*avRate[1]);
|
---|
| 1664 | double diff1 = fabs(averate - arc/(dUTC-1.0));
|
---|
| 1665 | double diff2 = fabs(averate - arc/dUTC);
|
---|
| 1666 | if ((diff1 < diff2) && (diff1 < 0.05*averate)) {
|
---|
| 1667 | nextUTC -= 1.0;
|
---|
| 1668 | cCode5 = cycleNo;
|
---|
| 1669 | return 2;
|
---|
| 1670 | } else {
|
---|
| 1671 | cCode5 = 0;
|
---|
| 1672 | }
|
---|
| 1673 |
|
---|
| 1674 | } else {
|
---|
| 1675 | if (cycleNo == cCode5) {
|
---|
| 1676 | nextUTC -= 1.0;
|
---|
| 1677 | return 2;
|
---|
| 1678 | }
|
---|
| 1679 | }
|
---|
| 1680 | }
|
---|
| 1681 |
|
---|
| 1682 | } else if ((strcmp(datobs, "1999-05-20") >= 0 &&
|
---|
| 1683 | strcmp(datobs, "2001-07-12") <= 0) ||
|
---|
| 1684 | (strcmp(datobs, "2001-09-02") >= 0 &&
|
---|
| 1685 | strcmp(datobs, "2001-12-04") <= 0) ||
|
---|
| 1686 | (strcmp(datobs, "2002-03-28") >= 0 &&
|
---|
| 1687 | strcmp(datobs, "2002-05-13") <= 0) ||
|
---|
| 1688 | (strcmp(datobs, "2003-04-26") >= 0 &&
|
---|
| 1689 | strcmp(datobs, "2003-06-09") <= 0)) {
|
---|
| 1690 | // Signalling NaN problem, e.g. 1999-07-26_1839_011106-74_009c.hpf.
|
---|
| 1691 | // Position timestamps should always be an integral number of seconds.
|
---|
| 1692 | double resid = nextUTC - int(nextUTC);
|
---|
| 1693 | if (resid == 0.5) {
|
---|
| 1694 | nextUTC -= 0.5;
|
---|
| 1695 | return 3;
|
---|
| 1696 | }
|
---|
| 1697 | }
|
---|
| 1698 |
|
---|
| 1699 | return 0;
|
---|
| 1700 | }
|
---|
| 1701 |
|
---|
[1325] | 1702 | //-------------------------------------------------------- MBFITSreader::close
|
---|
| 1703 |
|
---|
| 1704 | // Close the input file.
|
---|
| 1705 |
|
---|
| 1706 | void MBFITSreader::close(void)
|
---|
| 1707 | {
|
---|
| 1708 | if (cMBopen) {
|
---|
| 1709 | int jstat = 1;
|
---|
| 1710 | rpfitsin_(&jstat, cVis, cWgt, &cBaseline, &cUTC, &cU, &cV, &cW, &cFlag,
|
---|
| 1711 | &cBin, &cIFno, &cSrcNo);
|
---|
| 1712 |
|
---|
| 1713 | if (cBeams) delete [] cBeams;
|
---|
| 1714 | if (cIFs) delete [] cIFs;
|
---|
| 1715 | if (cNChan) delete [] cNChan;
|
---|
| 1716 | if (cNPol) delete [] cNPol;
|
---|
| 1717 | if (cHaveXPol) delete [] cHaveXPol;
|
---|
| 1718 | if (cStartChan) delete [] cStartChan;
|
---|
| 1719 | if (cEndChan) delete [] cEndChan;
|
---|
| 1720 | if (cRefChan) delete [] cRefChan;
|
---|
| 1721 |
|
---|
| 1722 | if (cVis) delete [] cVis;
|
---|
| 1723 | if (cWgt) delete [] cWgt;
|
---|
| 1724 |
|
---|
| 1725 | if (cBeamSel) delete [] cBeamSel;
|
---|
| 1726 | if (cIFSel) delete [] cIFSel;
|
---|
| 1727 | if (cChanOff) delete [] cChanOff;
|
---|
| 1728 | if (cXpolOff) delete [] cXpolOff;
|
---|
| 1729 | if (cBuffer) delete [] cBuffer;
|
---|
| 1730 | if (cPosUTC) delete [] cPosUTC;
|
---|
| 1731 |
|
---|
| 1732 | cMBopen = 0;
|
---|
| 1733 | }
|
---|
| 1734 | }
|
---|
[1452] | 1735 |
|
---|
| 1736 | //-------------------------------------------------------------------- utcDiff
|
---|
| 1737 |
|
---|
| 1738 | // Subtract two UTCs (s) allowing for any plausible number of cycles through
|
---|
| 1739 | // 86400s, returning a result in the range [-43200, +43200]s.
|
---|
| 1740 |
|
---|
| 1741 | double MBFITSreader::utcDiff(double utc1, double utc2)
|
---|
| 1742 | {
|
---|
| 1743 | double diff = utc1 - utc2;
|
---|
| 1744 |
|
---|
| 1745 | if (diff > 43200.0) {
|
---|
| 1746 | diff -= 86400.0;
|
---|
| 1747 | while (diff > 43200.0) diff -= 86400.0;
|
---|
| 1748 | } else if (diff < -43200.0) {
|
---|
| 1749 | diff += 86400.0;
|
---|
| 1750 | while (diff < -43200.0) diff += 86400.0;
|
---|
| 1751 | }
|
---|
| 1752 |
|
---|
| 1753 | return diff;
|
---|
| 1754 | }
|
---|
| 1755 |
|
---|
| 1756 | //------------------------------------------------------- scanRate & applyRate
|
---|
| 1757 |
|
---|
| 1758 | // Compute and apply the scan rate corrected for grid convergence. (ra0,dec0)
|
---|
| 1759 | // are the coordinates of the central beam, assumed to be the tracking centre.
|
---|
| 1760 | // The rate computed in RA will be a rate of change of angular distance in the
|
---|
| 1761 | // direction of increasing RA at the position of the central beam. Similarly
|
---|
| 1762 | // for declination. Angles in radian, time in s.
|
---|
| 1763 |
|
---|
| 1764 | void MBFITSreader::scanRate(
|
---|
| 1765 | double ra0,
|
---|
| 1766 | double dec0,
|
---|
| 1767 | double ra1,
|
---|
| 1768 | double dec1,
|
---|
| 1769 | double ra2,
|
---|
| 1770 | double dec2,
|
---|
| 1771 | double dt,
|
---|
| 1772 | double &raRate,
|
---|
| 1773 | double &decRate)
|
---|
| 1774 | {
|
---|
| 1775 | // Transform to a system where the central beam lies on the equator at 12h.
|
---|
| 1776 | eulerx(ra1, dec1, ra0+HALFPI, -dec0, -HALFPI, ra1, dec1);
|
---|
| 1777 | eulerx(ra2, dec2, ra0+HALFPI, -dec0, -HALFPI, ra2, dec2);
|
---|
| 1778 |
|
---|
| 1779 | raRate = (ra2 - ra1) / dt;
|
---|
| 1780 | decRate = (dec2 - dec1) / dt;
|
---|
| 1781 | }
|
---|
| 1782 |
|
---|
| 1783 |
|
---|
| 1784 | void MBFITSreader::applyRate(
|
---|
| 1785 | double ra0,
|
---|
| 1786 | double dec0,
|
---|
| 1787 | double ra1,
|
---|
| 1788 | double dec1,
|
---|
| 1789 | double raRate,
|
---|
| 1790 | double decRate,
|
---|
| 1791 | double dt,
|
---|
| 1792 | double &ra2,
|
---|
| 1793 | double &dec2)
|
---|
| 1794 | {
|
---|
| 1795 | // Transform to a system where the central beam lies on the equator at 12h.
|
---|
| 1796 | eulerx(ra1, dec1, ra0+HALFPI, -dec0, -HALFPI, ra1, dec1);
|
---|
| 1797 |
|
---|
| 1798 | ra2 = ra1 + (raRate * dt);
|
---|
| 1799 | dec2 = dec1 + (decRate * dt);
|
---|
| 1800 |
|
---|
| 1801 | // Transform back.
|
---|
| 1802 | eulerx(ra2, dec2, -HALFPI, dec0, ra0+HALFPI, ra2, dec2);
|
---|
| 1803 | }
|
---|
| 1804 |
|
---|
| 1805 | //--------------------------------------------------------------------- eulerx
|
---|
| 1806 |
|
---|
| 1807 | void MBFITSreader::eulerx(
|
---|
| 1808 | double lng0,
|
---|
| 1809 | double lat0,
|
---|
| 1810 | double phi0,
|
---|
| 1811 | double theta,
|
---|
| 1812 | double phi,
|
---|
| 1813 | double &lng1,
|
---|
| 1814 | double &lat1)
|
---|
| 1815 |
|
---|
| 1816 | // Applies the Euler angle based transformation of spherical coordinates.
|
---|
| 1817 | //
|
---|
| 1818 | // phi0 Longitude of the ascending node in the old system, radians. The
|
---|
| 1819 | // ascending node is the point of intersection of the equators of
|
---|
| 1820 | // the two systems such that the equator of the new system crosses
|
---|
| 1821 | // from south to north as viewed in the old system.
|
---|
| 1822 | //
|
---|
| 1823 | // theta Angle between the poles of the two systems, radians. THETA is
|
---|
| 1824 | // positive for a positive rotation about the ascending node.
|
---|
| 1825 | //
|
---|
| 1826 | // phi Longitude of the ascending node in the new system, radians.
|
---|
| 1827 |
|
---|
| 1828 | {
|
---|
| 1829 | // Compute intermediaries.
|
---|
| 1830 | double lng0p = lng0 - phi0;
|
---|
| 1831 | double slng0p = sin(lng0p);
|
---|
| 1832 | double clng0p = cos(lng0p);
|
---|
| 1833 | double slat0 = sin(lat0);
|
---|
| 1834 | double clat0 = cos(lat0);
|
---|
| 1835 | double ctheta = cos(theta);
|
---|
| 1836 | double stheta = sin(theta);
|
---|
| 1837 |
|
---|
| 1838 | double x = clat0*clng0p;
|
---|
| 1839 | double y = clat0*slng0p*ctheta + slat0*stheta;
|
---|
| 1840 |
|
---|
| 1841 | // Longitude in the new system.
|
---|
| 1842 | if (x != 0.0 || y != 0.0) {
|
---|
| 1843 | lng1 = phi + atan2(y, x);
|
---|
| 1844 | } else {
|
---|
| 1845 | // Longitude at the poles in the new system is consistent with that
|
---|
| 1846 | // specified in the old system.
|
---|
| 1847 | lng1 = phi + lng0p;
|
---|
| 1848 | }
|
---|
| 1849 | lng1 = fmod(lng1, TWOPI);
|
---|
| 1850 | if (lng1 < 0.0) lng1 += TWOPI;
|
---|
| 1851 |
|
---|
| 1852 | lat1 = asin(slat0*ctheta - clat0*stheta*slng0p);
|
---|
| 1853 | }
|
---|